Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture
Abstract
1. Introduction
2. Multi-Scale Remote-Sensing Phenomics
2.1. Phenotyping Platforms: Satellite, Airborne, UAV, and Ground-Based
2.2. Key Phenotypic Indicators of Drought and Heat Stress
Platform | Resolution | Key Indicators (Examples) | Strengths | Limitations | Representative Applications in Drought–Heat Detection |
---|---|---|---|---|---|
Satellite (e.g., Sentinel-2, MODIS, Landsat) | Low (10–500 m); revisit 5–16 d | NDVI, LST, NDWI | Regional coverage; multi-decadal time series; free/low cost | Cloud dependence; coarse resolution; limited genotype inference | Sentinel-2 NDVI & LST mapped regional drought severity and yield decline in wheat [60]; MODIS time-series revealed stay-green phenotypes in Sichuan wheat [31] |
UAV/Drones | High (cm-level, on-demand) | CTD, PRI, hyperspectral reflectance, RGB/LiDAR | Plot-level precision; captures transient stress | Flight regulations; short battery life; heavy data pipelines | UAV NDVI + canopy temperature identified drought-tolerant wheat genotypes with cooler canopies [61]; UAV hyperspectral (red-edge, PRI) detected pigment dynamics under heat stress in maize [62] |
Ground-based sensors (tripods, gantries, handhelds) | Very high (mm–cm) | Fv/Fm, PRI, leaf water potential | Highest mechanistic fidelity; essential for Cal/Val | Labor-intensive; very limited area | Porometry + leaf water potential validated UAV CTD signals in wheat [63]; chlorophyll fluorescence (Fv/Fm) distinguished heat-tolerant rice cultivars [49] |
Proximal phenotyping vehicles (e.g., carts, tractor-based) | Medium (m-level) | Multispectral/LiDAR imaging | Higher throughput than handheld; bridges plots to fields | Logistic constraints; less scalable than UAVs or satellites | Phenomobile multispectral imaging quantified soybean canopy traits under drought, supporting QTL mapping [64] |
2.3. AI and Machine Learning for Trait Extraction and Sensor Integration
2.4. Sensor Integration and High-Throughput Stress Phenotyping
Indicator | Physiological Basis | Measurement Type | Correlation with Yield Under Stress | Crops Reported | Representative Findings |
---|---|---|---|---|---|
NDVI (Normalized Difference Vegetation Index) | Canopy greenness/biomass | Multispectral reflectance | High (R = 0.6–0.8) | Wheat, Maize, Rice | NDVI decline correlated with yield loss in maize under South Asian drought trials [88] |
CTD (Canopy Temperature Depression = Tair − Tcanopy) | Transpirational cooling | Thermal imaging | High (R = 0.6–0.8) | Wheat, Sorghum | Cooler canopies identified tolerant wheat lines across multi-location trials [68] |
Fv/Fm (maximum quantum efficiency of PSII) | Photosystem II efficiency | Chlorophyll fluorescence sensor | Moderate (R = 0.4–0.6) | Rice, Soybean | Heat-tolerant genotypes maintain higher Fv/Fm under stress [89] |
Plant height | Growth/vigor proxy | RGB or LiDAR | Variable (context-dependent) | Maize, Sorghum | Height alone inconsistent; combined with NDVI improves prediction [90] |
Stay-green index | Delayed senescence | NDVI time-series | Moderate to High (R = 0.5–0.7) | Wheat, Pearl Millet | Stay-green genotypes showed improved grain filling under heat stress [89] |
3. Multi-Omics Dissection of Drought–Heat Tolerance
3.1. Genomic Insights: QTL Mapping and GWAS for Stress Tolerance Genes
3.2. Transcriptomic Responses: Gene Expression Networks Under Stress
3.3. Proteomics: Stress Proteins and Post-Translational Adjustments
3.4. Metabolomics: Metabolic Reprogramming Under Drought and Heat
3.5. Key Pathways: ABA–SnRK2, HSF–HSP, and ROS Crosstalk
- ABA–SnRK2 pathway: Drought sentinel; ABA-receptor (PYR/PYL) binding relieves PP2C inhibition, activating SnRK2 kinases to phosphorylate ABF transcription factors, inducing responsive genes. Omics corroborate genomic variants in receptors/SnRK2; transcript induction of biosynthesis/ABFs; proteomic phosphorylation/accumulation; metabolic ABA surge. Extends to heat: ABA-deficient mutants vulnerable via stomatal dysregulation; HSFA6b bridges ABA-heat. Agricultural exploitation: ABA agonists preemptively activate responses, efficacious in fields albeit cost-limited [136].
- HSF–HSP network: Heat master regulators; HSFA1 trimerizes post-HSP90 release, amplifying HSFA2/HSP cascade for protein refolding/membrane protection. Multi-omics: Elevated baseline/inducible HSF/HSP in tolerant crops; sHSPs safeguard organelles. Drought synergy: HSP70 osmotic induction; PTMs (phosphorylation/oligomerization) modulate. Intersects ABA/ethylene/calcium; calmodulin activates HSFs; TOR influences HSP translation. Transgenics overexpressing HSP/HSF confer thermotolerance, tempered by growth penalties [137].
- ROS management: Drought/heat disrupt electron transport, generating superoxide/H2O2, damaging biomolecules. Tolerance via enzymatic (SOD/catalase/peroxidases) and non-enzymatic (ascorbate/glutathione/flavonoids) scavenging. ROS dual role: Low levels signal defenses (H2O2 activates TFs/ABA); tolerant balance signaling/excess. Crosstalk: ABA employs ROS in stomatal closure; chloroplast singlet oxygen triggers nuclear acclimation; HSPs stabilize scavengers/induce antioxidants [138].
4. G × E × P Integration and “Pixels-to-Proteins” Framework
4.1. Phenomics–Genomics Integration: Association Mapping
4.2. Multi-Omics + Phenomics Case Studies
4.3. Deep Learning Models for G × E × P Integration
4.4. Digital Twin Prospects for Crop Stress Response
5. Translational Applications for Climate-Smart Agriculture
5.1. Breeding Climate-Resilient Crop Varieties
5.2. Field Management and Precision Agriculture Under Stress
5.3. Predictive Tools and Decision-Support Systems (DSS)
6. Knowledge Gaps and Future Directions
- (1)
- Standards and shared benchmarks. Heterogeneous metadata, trait vocabularies, and file formats still impede cross-study synthesis, while limited pairing of imaging and molecular measurements hampers reuse at scale. Wider adoption of community standards, explicit Cal/Val protocols, and AI-assisted harmonization are necessary, together with paired phenomics–omics acquisitions that are versioned and citable. The immediate deliverable is an open, MIAPPE-compliant benchmark—combining imaging and omics with persistent DOIs and versioned labels—to enable fair method comparisons and reproducibility across sites and years.
- (2)
- Climate-realistic, multi-scale modeling with explainability. Field crops experience compound, non-additive stresses whose dynamics span organs, canopies, and fields; yet many pipelines remain single-stress and site-specific, and state-of-the-art models are often opaque. Future work should couple multi-site trials that impose realistic drought–heat regimes with models that link organ-level physiology to canopy signals and field performance, while embedding biophysical constraints and reporting transparent attributions. The concrete deliverable is a multi-site compound-stress dataset aligned across organ–canopy–field scales, plus openly evaluated models that pass time-blocked external validation and publish attention/SHAP attributions keyed to biological priors [152,175].
- (3)
- The “E” in G × E × P must move beyond coarse labels to stage-aware thresholds that are portable across climates and actionable in farms. Trials should quantify timing, intensity, and co-variation in stresses, and distill them into rules that breeders and agronomists can operationalize through decision support. The practical deliverable is a set of stage-specific stress thresholds validated in ≥3 contrasting climates, together with farmer-facing DSS pilots that report usability metrics and return-on-investment under commercial management [175].
- (4)
- Regulatory and policy barriers. Field phenotyping increasingly relies on UAS/multi-sensor imaging, yet operations and data governance (ownership, privacy, cross-site sharing) impede multi-location trials and interoperability [48,64,74,142]. Varietal release and seed systems remain slow; aligning DUS/performance testing with climate-resilience traits and strengthening delivery pathways are emphasized in adaptation guidance [1,5]. Environmental permits and community consent can constrain heating/irrigation manipulations, and digital decision-support requires uncertainty disclosure and auditability. Targeted actions—enabling compliant UAS use, interoperable data standards, and streamlined release for resilience traits—would accelerate equitable adoption [74].
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABA | Abscisic Acid |
ACC | 1-Aminocyclopropane-1-carboxylic Acid (ethylene precursor) |
APX | Ascorbate Peroxidase |
BRDF | Bidirectional Reflectance Distribution Function |
Cal/Val | Calibration/Validation |
CAT | Catalase |
CDPK | Calcium-Dependent Protein Kinase |
CT | Canopy Temperature |
CTD | Canopy Temperature Depression |
CWSI | Crop Water Stress Index |
DSS | Decision-Support System |
DT | Digital Twin |
EVI | Enhanced Vegetation Index |
Fv/Fm | Maximal Quantum Yield of PSII (Photosystem II) |
gs | Stomatal Conductance |
GABA | γ-Aminobutyric Acid |
GSD | Ground Sampling Distance |
GWAS | Genome-wide Association Study |
G × E × P | Genotype × Environment × Phenotype |
HSF | Heat Shock Factor |
HSP | Heat Shock Protein |
iWUE | Intrinsic Water-Use Efficiency |
JA | Jasmonic Acid/Jasmonates |
LAI | Leaf Area Index |
LEA | Late Embryogenesis Abundant proteins |
LiDAR | Light Detection and Ranging |
LST | Land Surface Temperature |
ML | Machine Learning |
mQTL | Metabolite Quantitative Trait Loci |
NDRE | Normalized Difference Red-Edge Index |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
NIR | Near-Infrared |
OEC | Oxygen-Evolving Complex |
P5CS | Δ1-Pyrroline-5-Carboxylate Synthetase |
PRI | Photochemical Reflectance Index |
PTM | Post-Translational Modification |
QTL | Quantitative Trait Locus/Loci |
RGB | Red–Green–Blue imaging |
ROS | Reactive Oxygen Species |
Rubisco | Ribulose-1,5-bisphosphate Carboxylase/Oxygenase |
SA | Salicylic Acid |
SIF | Solar-Induced Fluorescence |
SnRK2 | Sucrose Non-Fermenting-1-Related Protein Kinase 2 |
SOD | Superoxide Dismutase |
SWIR | Short-Wave Infrared |
Tair | Air Temperature |
Tcanopy | Canopy Temperature |
TCA | Tricarboxylic Acid cycle |
TPE | Target Population of Environments |
TWAS | Transcriptome-Wide Association Study |
UAS | Unmanned Aircraft System |
UAV | Unmanned Aerial Vehicle |
UQ | Uncertainty Quantification |
VI | Vegetation Index |
VPD | Vapor Pressure Deficit |
WUE | Water-Use Efficiency |
Ψleaf | Leaf Water Potential |
References
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- FAO of the UN. The State of Food and Agriculture 2021: Making Agrifood Systems More Resilient to Shocks and Stresses; FAO of the UN: Rome, Italy, 2021. [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 153–188. [Google Scholar]
- Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.-D. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar] [CrossRef]
- Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004, 134, 1683–1696. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Blumwald, E. Genetic engineering for modern agriculture: Challenges and perspectives. Annu. Rev. Plant Biol. 2010, 61, 443–462. [Google Scholar] [CrossRef]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef]
- Fujita, Y.; Yoshida, T.; Yamaguchi-Shinozaki, K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant. 2013, 147, 15–27. [Google Scholar] [CrossRef]
- Scharf, K.-D.; Berberich, T.; Ebersberger, I.; Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2012, 1819, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef]
- Burgess, P.; Huang, B. Mechanisms of hormone regulation for drought tolerance in plants. In Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry; Springer: Cham, Switzerland, 2016; pp. 45–75. [Google Scholar]
- Ohama, N.; Kusakabe, K.; Mizoi, J.; Zhao, H.; Kidokoro, S.; Koizumi, S.; Takahashi, F.; Ishida, T.; Yanagisawa, S.; Shinozaki, K.; et al. The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 2016, 28, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Shulaev, V.; Mittler, R. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 2008, 133, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Koussevitzky, S.; Mittler, R.; Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012, 35, 259–270. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Chen, D.; Neumann, K.; Friedel, S.; Kilian, B.; Chen, M.; Altmann, T.; Klukas, C. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 2014, 26, 4636–4655. [Google Scholar] [CrossRef]
- Tardieu, F.; Cabrera-Bosquet, L.; Pridmore, T.; Bennett, M. Plant phenomics, from sensors to knowledge. Curr. Biol. 2017, 27, R770–R783. [Google Scholar] [CrossRef]
- Pieruschka, R.; Schurr, U. Plant phenotyping: Past, present, and future. Plant Phenomics 2019, 2019, 7507131. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Anderson, M.C.; Verdin, J.P. Remote Sensing of Drought: Innovative Monitoring Approaches; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Xu, Y.; Zhang, W.; Wang, Y.; Wei, J.; Cheng, W. Remote-Sensing Drought Monitoring in Sichuan Province from 2001 to 2020 Based on MODIS Data. Atmosphere 2022, 13, 1970. [Google Scholar] [CrossRef]
- Chapman, S.C.; Merz, T.; Chan, A.; Jackway, P.; Hrabar, S.; Dreccer, M.F.; Holland, E.; Zheng, B.; Ling, T.J.; Jimenez-Berni, J. Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 2014, 4, 279–301. [Google Scholar] [CrossRef]
- Sankaran, S.; Zhou, J.; Khot, L.R.; Trapp, J.J.; Mndolwa, E.; Miklas, P.N. High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Comput. Electron. Agric. 2018, 151, 84–92. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
- Rutkoski, J.; Poland, J.; Mondal, S.; Autrique, E.; Pérez, L.G.; Crossa, J.; Reynolds, M.; Singh, R. Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes Genomes Genet. 2016, 6, 2799–2808. [Google Scholar] [CrossRef]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; James, R.A.; Condon, A.G.; Bovill, W.D.; Hutchinson, P.; Scarrow, J.; Davy, R.; Furbank, R.T. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front. Plant Sci. 2016, 7, 1808. [Google Scholar] [CrossRef]
- Haghighattalab, A.; González Pérez, L.; Mondal, S.; Singh, D.; Schinstock, D.; Rutkoski, J.; Ortiz-Monasterio, I.; Singh, R.P.; Goodin, D.; Poland, J. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 2016, 12, 35. [Google Scholar] [CrossRef]
- Perich, G.; Hund, A.; Anderegg, J.; Roth, L.; Boer, M.P.; Walter, A.; Liebisch, F.; Aasen, H. Assessment of multi-image unmanned aerial vehicle based high-throughput field phenotyping of canopy temperature. Front. Plant Sci. 2020, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Tu, H.; Bai, B.; Yang, C.; Zhao, B.; Guo, Z.; Liu, Q.; Zhao, H.; Yang, W.; Xiong, L.; et al. Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress. New Phytol. 2021, 232, 440–455. [Google Scholar] [CrossRef] [PubMed]
- Spindel, J.E.; Dahlberg, J.; Colgan, M.; Hollingsworth, J.; Sievert, J.; Staggenborg, S.H.; Hutmacher, R.; Jansson, C.; Vogel, J.P. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. BMC Genom. 2018, 19, 679. [Google Scholar] [CrossRef]
- Jimenez-Berni, J.A.; Deery, D.M.; Rozas-Larraondo, P.; Condon, A.G.; Rebetzke, G.J.; James, R.A.; Bovill, W.D.; Furbank, R.T.; Sirault, X.R. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Front. Plant Sci. 2018, 9, 237. [Google Scholar] [CrossRef]
- Chen, D.; Shi, R.; Pape, J.-M.; Neumann, K.; Arend, D.; Graner, A.; Chen, M.; Klukas, C. Predicting plant biomass accumulation from image-derived parameters. GigaScience 2018, 7, giy001. [Google Scholar] [CrossRef]
- Kim, Y.; Barnaby, J.Y.; Warnke, S.E. Development of a low-cost automated greenhouse imaging system with machine learning-based processing for evaluating genetic performance of drought tolerance in a bentgrass hybrid population. Comput. Electron. Agric. 2024, 224, 108896. [Google Scholar] [CrossRef]
- Walter, A.; Liebisch, F.; Hund, A. Plant phenotyping: From bean weighing to image analysis. Plant Methods 2015, 11, 14. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Tian, Y.; Li, Z.; Ge, Y.; Zhang, J.; Wang, Y.; Zhou, G.; Deng, X.; Zhang, Z.; et al. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun. 2022, 3, 100344. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Song, W.; Lv, J.; Gui, R.; Shi, Y.; Lu, Y.; Li, M.; Chen, L.; Chen, X. Precise Drought Threshold Monitoring in Winter Wheat Using the Unmanned Aerial Vehicle Thermal Method. Remote Sens. 2024, 16, 710. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, C.; Dong, J.; Li, Y.; Li, Y.; Huang, Y.; Zhang, H.; Fan, J. Variations over 20 Years in Vegetation Dynamics and Its Coupled Responses to Individual and Compound Meteorological Drivers in Sichuan Province, China. Atmosphere 2024, 15, 1384. [Google Scholar] [CrossRef]
- Qin, W.; Wang, J.; Ma, L.; Wang, F.; Hu, N.; Yang, X.; Xiao, Y.; Zhang, Y.; Sun, Z.; Wang, Z.; et al. UAV-Based Multi-Temporal Thermal Imaging to Evaluate Wheat Drought Resistance in Different Deficit Irrigation Regimes. Remote Sens. 2022, 14, 5608. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. [Google Scholar] [CrossRef]
- Borrell, A.K.; Mullet, J.E.; George-Jaeggli, B.; van Oosterom, E.J.; Hammer, G.L.; Klein, P.E.; Jordan, D.R. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J. Exp. Bot. 2014, 65, 6251–6263. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.S.; Reynolds, M.P.; Mathews, K.L.; McIntyre, C.L.; Olivares-Villegas, J.-J.; Chapman, S.C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 2010, 121, 1001–1021. [Google Scholar] [CrossRef]
- Idso, S.B. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agric. Meteorol. 1982, 27, 59–70. [Google Scholar] [CrossRef]
- Amani, I.; Fischer, R.; Reynolds, M. Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J. Agron. Crop Sci. 1996, 176, 119–129. [Google Scholar] [CrossRef]
- Reynolds, M.; Balota, M.; Delgado, M.; Amani, I.; Fischer, R. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Funct. Plant Biol. 1994, 21, 717–730. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Sharma, D.K.; Andersen, S.B.; Ottosen, C.O.; Rosenqvist, E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 2015, 153, 284–298. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suarez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Christopher, J.T.; Christopher, M.J.; Borrell, A.K.; Fletcher, S.; Chenu, K. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. J. Exp. Bot. 2016, 67, 5159–5172. [Google Scholar] [CrossRef]
- Furbank, R.T.; Jimenez-Berni, J.A.; George-Jaeggli, B.; Potgieter, A.B.; Deery, D.M. Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytol. 2019, 223, 1714–1727. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- López-Pereira, M.; Connor, D.J.; Hall, A.J. Intercepted radiation and radiation-use efficiency in sunflower crops grown at conventional and wide inter-row spacings: Measurements and modeled estimates of intercepted radiation. Field Crops Res. 2020, 246, 107684. [Google Scholar] [CrossRef]
- Kim, S.L.; Kim, N.; Lee, H.; Lee, E.; Cheon, K.-S.; Kim, M.; Baek, J.; Choi, I.; Ji, H.; Yoon, I.S.; et al. High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta 2020, 252, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Mou, H.; Zhou, J.; Ali, M.L.; Ye, H.; Chen, P.; Nguyen, H.T. Qualification of Soybean Responses to Flooding Stress Using UAV-Based Imagery and Deep Learning. Plant Phenomics 2021, 2021, 9892570. [Google Scholar] [CrossRef] [PubMed]
- Swain, P.; Raman, A.; Singh, S.; Kumar, A. Breeding drought tolerant rice for shallow rainfed ecosystem of eastern India. Field Crops Res. 2017, 209, 168–178. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Babar, M.; Reynolds, M.; Van Ginkel, M.; Klatt, A.; Raun, W.; Stone, M. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Anderegg, J.; Aasen, H.; Perich, G.; Roth, L.; Walter, A.; Hund, A. Temporal trends in canopy temperature and greenness are potential indicators of late-season drought avoidance and functional stay-green in wheat. Field Crops Res. 2021, 274, 108311. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef]
- Pound, M.P.; Atkinson, J.A.; Wells, D.M.; Pridmore, T.P.; French, A.P. Deep learning for multi-task plant phenotyping. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2055–2063. [Google Scholar]
- Ubbens, J.R.; Stavness, I. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Front. Plant Sci. 2017, 8, 1190. [Google Scholar] [CrossRef] [PubMed]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ampatzidis, Y.; Kakarla, S.C.; Roberts, P. Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precis. Agric. 2020, 21, 955–978. [Google Scholar] [CrossRef]
- Resquin, F.; Navarro-Cerrillo, R.M.; Rachid-Casnati, C.; Hirigoyen, A.; Carrasco-Letelier, L.; Duque-Lazo, J. Allometry, growth and survival of three eucalyptus species (Eucalyptus benthamii Maiden and Cambage, E. dunnii Maiden and E. grandis Hill ex Maiden) in high-density plantations in Uruguay. Forests 2018, 9, 745. [Google Scholar] [CrossRef]
- Zhao, T.; Stark, B.; Chen, Y.; Ray, A.L.; Doll, D. A detailed field study of direct correlations between ground truth crop water stress and normalized difference vegetation index (NDVI) from small unmanned aerial system (sUAS). In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 520–525. [Google Scholar]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Roosjen, P.P.; Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Kooistra, L.; Clevers, J.G. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data–potential of unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 14–26. [Google Scholar] [CrossRef]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; Bovill, W.D.; James, R.A.; Condon, A.G.; Furbank, R.T.; Chapman, S.C.; Fischer, R.A. Evaluation of the phenotypic repeatability of canopy temperature in wheat using continuous-terrestrial and airborne measurements. Front. Plant Sci. 2019, 10, 875. [Google Scholar] [CrossRef]
- Rebetzke, G.; Jimenez-Berni, J.; Fischer, R.; Deery, D.; Smith, D. High-throughput phenotyping to enhance the use of crop genetic resources. Plant Sci. 2019, 282, 40–48. [Google Scholar] [CrossRef]
- McIntyre, C.L.; Seung, D.; Casu, R.E.; Rebetzke, G.J.; Shorter, R.; Xue, G.P. Genotypic variation in the accumulation of water soluble carbohydrates in wheat. Funct. Plant Biol. 2012, 39, 560–568. [Google Scholar] [CrossRef]
- Chapuis, R.; Delluc, C.; Debeuf, R.; Tardieu, F.; Welcker, C. Resiliences to water deficit in a phenotyping platform and in the field: How related are they in maize? Eur. J. Agron. 2012, 42, 59–67. [Google Scholar] [CrossRef]
- Tracy, S.R.; Nagel, K.A.; Postma, J.A.; Fassbender, H.; Wasson, A.; Watt, M. Crop improvement from phenotyping roots: Highlights reveal expanding opportunities. Trends Plant Sci. 2020, 25, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiol. 2011, 156, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- White, J.W.; Andrade-Sanchez, P.; Gore, M.A.; Bronson, K.F.; Coffelt, T.A.; Conley, M.M.; Feldmann, K.A.; French, A.N.; Heun, J.T.; Hunsaker, D.J.; et al. Field-based phenomics for plant genetics research. Field Crops Res. 2012, 133, 101–112. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Gaiser, T.; Vanderborght, J.; Schnepf, A.; Bauer, F.; Klotzsche, A.; Lärm, L.; Hüging, H.; Ewert, F. Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit. Biogeosciences 2024, 21, 5495–5515. [Google Scholar] [CrossRef]
- Tamás, A.; Kovács, E.; Horváth, É.; Juhász, C.; Radócz, L.; Rátonyi, T.; Ragán, P. Assessment of NDVI Dynamics of Maize (Zea mays L.) and Its Relation to Grain Yield in a Polyfactorial Experiment Based on Remote Sensing. Agriculture 2023, 13, 689. [Google Scholar] [CrossRef]
- Tiwari, R.; Singh, A.K.; Rajam, M.V. GmPARPs differentially regulate the drought and heat stress tolerance in soybean. Plant Growth Regul. 2023, 101, 643–661. [Google Scholar] [CrossRef]
- Wen, X.; Li, H.-Y.; Song, Y.-L.; Zhang, P.-Y.; Zhang, Z.; Bu, H.-H.; Dong, C.-L.; Ren, Z.-Q.; Chang, J.-Z. Genome-wide association study for plant height and ear height in maize under well-watered and water-stressed conditions. BMC Genom. 2025, 26, 745. [Google Scholar] [CrossRef]
- Urano, K.; Kurihara, Y.; Seki, M.; Shinozaki, K. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr. Opin. Plant Biol. 2010, 13, 132–138. [Google Scholar] [CrossRef]
- Jogaiah, S.; Govind, S.R.; Tran, L.-S.P. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit. Rev. Biotechnol. 2013, 33, 23–39. [Google Scholar] [CrossRef]
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef]
- Broz, A.K.; Manter, D.K.; Callaway, R.M.; Paschke, M.W.; Vivanco, J.M. A molecular approach to understanding plant–plant interactions in the context of invasion biology. Funct. Plant Biol. 2008, 35, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Peleg, Z.; Fahima, T.; Krugman, T.; Abbo, S.; Yakir, D.; Korol, A.B.; Saranga, Y. Genomic dissection of drought resistance in durum wheat× wild emmer wheat recombinant inbreed line population. Plant Cell Environ. 2009, 32, 758–779. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.; Reynolds, M.; Mullan, D.; Izanloo, A.; Kuchel, H.; Langridge, P.; Schnurbusch, T. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor. Appl. Genet. 2012, 125, 1473–1485. [Google Scholar] [CrossRef] [PubMed]
- Sylvester-Bradley, R.; Riffkin, P.; O’Leary, G. Designing resource-efficient ideotypes for new cropping conditions: Wheat (Triticum aestivum L.) in the High Rainfall Zone of southern Australia. Field Crops Res. 2012, 125, 69–82. [Google Scholar] [CrossRef]
- Kelliher, T.; Egger, R.L.; Zhang, H.; Walbot, V. Unresolved issues in pre-meiotic anther development. Front. Plant Sci. 2014, 5, 347. [Google Scholar] [CrossRef]
- Prasad, V.B.R.; Govindaraj, M.; Djanaguiraman, M.; Djalovic, I.; Shailani, A.; Rawat, N.; Singla-Pareek, S.L.; Pareek, A.; Prasad, P.V.V. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. Int. J. Mol. Sci. 2021, 22, 9826. [Google Scholar] [CrossRef]
- Varshney, R.K.; Thudi, M.; Nayak, S.N.; Gaur, P.M.; Kashiwagi, J.; Krishnamurthy, L.; Jaganathan, D.; Koppolu, J.; Bohra, A.; Tripathi, S.; et al. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2014, 127, 445–462. [Google Scholar] [CrossRef]
- Ma, Z.; He, S.; Wang, X.; Sun, J.; Zhang, Y.; Zhang, G.; Wu, L.; Li, Z.; Liu, Z.; Sun, G.; et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat. Genet. 2018, 50, 803–813. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 2014, 5, 170. [Google Scholar] [CrossRef]
- Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Maršálová, L.; Vítámvás, P.; Hynek, R.; Prášil, I.T.; Kosová, K. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte. Front. Plant Sci. 2016, 7, 1154. [Google Scholar] [CrossRef]
- Juliana, P.; Poland, J.; Huerta-Espino, J.; Shrestha, S.; Crossa, J.; Crespo-Herrera, L.; Toledo, F.H.; Govindan, V.; Mondal, S.; Kumar, U.; et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 2019, 51, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Aprile, A.; Mastrangelo, A.M.; De Leonardis, A.M.; Galiba, G.; Roncaglia, E.; Ferrari, F.; De Bellis, L.; Turchi, L.; Giuliano, G.; Cattivelli, L. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genom. 2009, 10, 279. [Google Scholar] [CrossRef]
- Kumar, J.; Gunapati, S.; Kianian, S.; Singh, S. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. Protoplasma 2018, 255, 1487–1504. [Google Scholar] [CrossRef] [PubMed]
- Driedonks, N.; Rieu, I.; Vriezen, W.H. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod. 2016, 29, 67–79. [Google Scholar] [CrossRef]
- Min, L.; Li, Y.; Hu, Q.; Zhu, L.; Gao, W.; Wu, Y.; Ding, Y.; Liu, S.; Yang, X.; Zhang, X. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol. 2014, 164, 1293–1308. [Google Scholar] [CrossRef]
- Rollins, J.; Habte, E.; Templer, S.E.; Colby, T.; Schmidt, J.; Von Korff, M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Bot. 2013, 64, 3201–3212. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.-H.; Ma, X.; Zhai, Y.-F.; Gong, Z.-H.; Lu, M.-H. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress. Plant Sci. 2016, 252, 246–256. [Google Scholar] [CrossRef]
- Yan, J.; Wang, S.; Xiao, D.; Yang, M.; Miao, B.; Niu, B.; Wang, J.; Wei, J.; Ma, F.; Xu, J. Comparative Transcriptomic Profiling Reveals Divergent Drought-Response Mechanisms Between Resistant and Susceptible Apple Genotype Roots. Agronomy 2025, 15, 748. [Google Scholar] [CrossRef]
- Li, J.; Islam, F.; Huang, Q.; Wang, J.; Zhou, W.; Xu, L.; Yang, C. Genome-wide characterization of WRKY gene family in Helianthus annuus L. and their expression profiles under biotic and abiotic stresses. PLoS ONE 2020, 15, e0241965. [Google Scholar] [CrossRef]
- Jung, H.-S.; Crisp, P.A.; Estavillo, G.M.; Cole, B.; Hong, F.; Mockler, T.C.; Pogson, B.J.; Chory, J. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc. Natl. Acad. Sci. USA 2013, 110, 14474–14479. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Liao, H.T.; Charng, Y.Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 2011, 34, 738–751. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Y.; Lv, P.; Antwi-Boasiako, A.; Begum, N.; Zhao, T.; Zhao, J. NAC Transcription Factor GmNAC12 Improved Drought Stress Tolerance in Soybean. Int. J. Mol. Sci. 2022, 23, 12029. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 2011, 52, 1569–1582. [Google Scholar] [CrossRef] [PubMed]
- Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Ndathe, R.; Dale, R.; Kato, N. Dynamic modeling of ABA-dependent expression of the Arabidopsis RD29A gene. Front. Plant Sci. 2022, 13, 928718. [Google Scholar] [CrossRef]
- Vollenweider, P.; Cosio, C.; Günthardt-Goerg, M.S.; Keller, C. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): Part II Microlocalization and cellular effects of cadmium. Environ. Exp. Bot. 2006, 58, 25–40. [Google Scholar] [CrossRef]
- Zhou, X.; Cooke, P.; Li, L. Eukaryotic release factor 1–2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development. J. Exp. Bot. 2010, 61, 357–367. [Google Scholar] [CrossRef]
- Ghatak, A.; Chaturvedi, P.; Weckwerth, W. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front. Plant Sci. 2017, 8, 757. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, L.; Dickinson, R.E.; Pallardy, S.G.; Baker, J.; Cao, Y.; DaMatta, F.M.; Dong, X.; Ellsworth, D.; Van Goethem, D.; et al. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ. 2014, 37, 978–994. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lawas, L.M.; Malo, R.; Glaubitz, U.; Erban, A.; Mauleon, R.; Heuer, S.; Zuther, E.; Kopka, J.; Hincha, D.K.; et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ. 2015, 38, 2171–2192. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, N.; Wu, L.; Li, C.; Li, C.; Zhang, L.; Liu, T.; Wang, W. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Sci. Rep. 2015, 5, 15626. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Zhang, D.; Tang, X.; Li, Z.; Shen, C.; Han, X.; Deng, W.; Yin, W.; Xia, X. PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar. Environ. Exp. Bot. 2020, 176, 104117. [Google Scholar] [CrossRef]
- Mielke, K.; Wagner, R.; Mishra, L.S.; Demir, F.; Perrar, A.; Huesgen, P.F.; Funk, C. Abundance of metalloprotease FtsH12 modulates chloroplast development in Arabidopsis thaliana. J. Exp. Bot. 2021, 72, 3455–3473. [Google Scholar] [CrossRef]
- Obata, T.; Witt, S.; Lisec, J.; Palacios-Rojas, N.; Florez-Sarasa, I.; Yousfi, S.; Araus, J.L.; Cairns, J.E.; Fernie, A.R. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol. 2015, 169, 2665–2683. [Google Scholar] [CrossRef]
- Lu-Irving, P.; Marx, H.E.; Dlugosch, K.M. Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution. Curr. Opin. Plant Biol. 2018, 42, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Aljuaid, B.S.; Ashour, H. Exogenous γ-Aminobutyric Acid (GABA) Application Mitigates Salinity Stress in Maize Plants. Life 2022, 12, 1860. [Google Scholar] [CrossRef]
- Zhang, Y.; Fernie, A.R. The Role of TCA Cycle Enzymes in Plants. Adv. Biol. 2023, 7, 2200238. [Google Scholar] [CrossRef]
- Gupta, A.; Hisano, H.; Hojo, Y.; Matsuura, T.; Ikeda, Y.; Mori, I.C.; Senthil-Kumar, M. Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci. Rep. 2017, 7, 4017. [Google Scholar] [CrossRef]
- Zandi, P.; Schnug, E. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef]
- Rao, M.J.; Duan, M.; Zhou, C.; Jiao, J.; Cheng, P.; Yang, L.; Wei, W.; Shen, Q.; Ji, P.; Yang, Y.; et al. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Horticulturae 2025, 11, 477. [Google Scholar] [CrossRef]
- Beegum, S.; Hassan, M.; Ramamoorthy, P.; Bheemanahalli, R.; Reddy, K.; Reddy, V.; Reddy, K. Hyperspectral Reflectance-Based High Throughput Phenotyping to Assess Water-Use Efficiency in Cotton. Agriculture 2024, 14, 1054. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Niu, C.-Y.; Yang, C.-R.; Jinn, T.-L. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 2016, 172, 1182–1199. [Google Scholar] [CrossRef] [PubMed]
- Bakery, A.; Vraggalas, S.; Shalha, B.; Chauhan, H.; Benhamed, M.; Fragkostefanakis, S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. New Phytol. 2024, 244, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Singh, D. Juggling with reactive oxygen species and antioxidant defense system—A coping mechanism under salt stress. Plant Stress 2022, 5, 100093. [Google Scholar] [CrossRef]
- Carianopol, C.S.; Chan, A.L.; Dong, S.; Provart, N.J.; Lumba, S.; Gazzarrini, S. An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Commun. Biol. 2020, 3, 145. [Google Scholar] [CrossRef]
- Kulik, A.; Wawer, I.; Krzywińska, E.; Bucholc, M.; Dobrowolska, G. SnRK2 protein kinases--key regulators of plant response to abiotic stresses. Omics 2011, 15, 859–872. [Google Scholar] [CrossRef]
- Lauterberg, M.; Saranga, Y.; Deblieck, M.; Klukas, C.; Krugman, T.; Perovic, D.; Ordon, F.; Graner, A.; Neumann, K. Precision phenotyping across the life cycle to validate and decipher drought-adaptive QTLs of wild emmer wheat (Triticum turgidum ssp. dicoccoides) introduced into elite wheat varieties. Front. Plant Sci. 2022, 13, 965287. [Google Scholar] [PubMed]
- Chang, A.; Jung, J.; Maeda, M.; Landivar, J.; Carvalho, H.; Yoem, J. Measurement of Cotton Canopy Temperature Using Radiometric Thermal Sensor Mounted on the Unmanned Aerial Vehicle (UAV). J. Sens. 2020, 2020, 8899325. [Google Scholar] [CrossRef]
- Shahi, D.; Guo, J.; Pradhan, S.; Khan, J.; Avci, M.; Khan, N.; McBreen, J.; Bai, G.; Reynolds, M.; Foulkes, J.; et al. Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat. BMC Genom. 2022, 23, 298. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Christopher, J.; Cooper, M.; Collins, B.; Voss-Fels, K.; Hickey, L.; Chenu, K. Envirotyping Facilitates Understanding of Genotype × Environment Interactions and Highlights the Potential of Stay-green Traits in Wheat. Field Crops Res. 2025, 331, 109940. [Google Scholar] [CrossRef]
- Adak, A.; Kang, M.; Anderson, S.L.; Murray, S.C.; Jarquin, D.; Wong, R.K.W.; Katzfuß, M. Phenomic data-driven biological prediction of maize through field-based high-throughput phenotyping integration with genomic data. J. Exp. Bot. 2023, 74, 5307–5326. [Google Scholar] [CrossRef]
- Zagorscak, M.; Abdelhakim, L.; Rodriguez-Granados, N.; Široká, J.; Ghatak, A.; Bleker, C.; Blejec, A.; Zrimec, J.; Novak, O.; Pencík, A.; et al. Integration of multi-omics and deep phenotyping provides novel insights into multiple abiotic stress responses in potato. Plant Physiol. 2024, 197, kiaf126. [Google Scholar] [CrossRef]
- Iquebal, M.A.; Sharma, P.; Jasrotia, R.S.; Jaiswal, S.; Kaur, A.; Saroha, M.; Angadi, U.B.; Sheoran, S.; Singh, R.; Singh, G.P.; et al. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci. Rep. 2019, 9, 13917. [Google Scholar] [CrossRef]
- Tsehaye, Y.; Menamo, T.M.; Abay, F.; Tadesse, T.; Bantte, K. Multi-locus genome-wide association study for grain yield and drought tolerance indices in sorghum accessions. Plant Genome 2024, 17, e20505. [Google Scholar] [CrossRef]
- Maistriaux, L.C.; Laurent, M.J.; Jeanguenin, L.; Prado, S.A.; Nader, J.; Welcker, C.; Charcosset, A.; Tardieu, F.; Nicolas, S.D.; Chaumont, F. Genetic variability of aquaporin expression in maize: From eQTLs to a MITE insertion regulating PIP2;5 expression. Plant Physiol. 2024, 196, 368–384. [Google Scholar] [CrossRef]
- Cembrowska-Lech, D.; Krzemińska, A.; Miller, T.; Nowakowska, A.; Adamski, C.; Radaczyńska, M.; Mikiciuk, G.; Mikiciuk, M. An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture. Biology 2023, 12, 1298. [Google Scholar] [CrossRef]
- Chen, Y.; Monks, L.; Rubio, V.E.; Cox, A.J.; Swenson, N.G. Linking leaf hyperspectral reflectance to gene expression. Commun. Earth Environ. 2025, 6, 694. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T. Digital Twins in Agriculture: A State-of-the-art review. Smart Agric. Technol. 2023, 3, 100094. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, H.; Chang, Q.; Mao, Q. A Comprehensive Review of Digital Twins Technology in Agriculture. Agriculture 2025, 15, 903. [Google Scholar] [CrossRef]
- Melesse, T.Y. Digital twin-based applications in crop monitoring. Heliyon 2025, 11, e42137. [Google Scholar] [CrossRef]
- Ariesen-Verschuur, N.; Verdouw, C.; Tekinerdogan, B. Digital Twins in greenhouse horticulture: A review. Comput. Electron. Agric. 2022, 199, 107183. [Google Scholar] [CrossRef]
- Soy, H.; Dilay, Y. Fog-Connected Digital Twin Implementation for Autonomous Greenhouse Management. In Digital Twin Driven Intelligent Systems and Emerging Metaverse; Karaarslan, E., Aydin, Ö., Cali, Ü., Challenger, M., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 125–139. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Hodson, A.K.; Bloom, A.J.; Carter, M.R.; Cattaneo, A.; Chartres, C.J.; Hatfield, J.L.; Henry, K.; Hopmans, J.W.; Horwath, W.R.; et al. Climate-smart agriculture global research agenda: Scientific basis for action. Agric. Food Secur. 2014, 3, 11. [Google Scholar] [CrossRef]
- Turner, N.C.; Wright, G.C.; Siddique, K. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 2001, 71, 193–231. [Google Scholar]
- Bernier, J.; Kumar, A.; Ramaiah, V.; Spaner, D.; Atlin, G. A large-effect QTL for grain yield under reproductive—Stage drought stress in upland rice. Crop Sci. 2007, 47, 507–516. [Google Scholar] [CrossRef]
- Messina, C.D.; Podlich, D.; Dong, Z.; Samples, M.; Cooper, M. Yield–trait performance landscapes: From theory to application in breeding maize for drought tolerance. J. Exp. Bot. 2011, 62, 855–868. [Google Scholar] [CrossRef]
- Hammer, G.L.; van Oosterom, E.; McLean, G.; Chapman, S.C.; Broad, I.; Harland, P.; Muchow, R.C. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 2010, 61, 2185–2202. [Google Scholar] [CrossRef]
- Nevo, E.; Chen, G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 2010, 33, 670–685. [Google Scholar] [CrossRef]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Sadau, S.B.; Liu, Z.; Ninkuu, V.; Guan, L.; Sun, X. DREB transcription factors are crucial regulators of abiotic stress responses in Gossypium spp. Plant Stress 2024, 11, 100350. [Google Scholar] [CrossRef]
- Luqman, T.; Hussain, M.; Ahmed, S.R.; Ijaz, I.; Maryum, Z.; Nadeem, S.; Khan, Z.; Khan, S.M.U.D.; Aslam, M.; Liu, Y.; et al. Cotton under heat stress: A comprehensive review of molecular breeding, genomics, and multi-omics strategies. Front. Genet. 2025, 16, 1553406. [Google Scholar] [CrossRef]
- Lin, J.; Song, N.; Liu, D.; Liu, X.; Chu, W.; Li, J.; Chang, S.; Liu, Z.; Chen, Y.; Yang, Q.; et al. Histone acetyltransferase TaHAG1 interacts with TaNACL to promote heat stress tolerance in wheat. Plant Biotechnol. J. 2022, 20, 1645. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.H.; Waza, S.A.; Shukla, S.; Zaidi, N.W.; Nayak, S.; Hossain, M.; Kumar, A.; Ismail, A.M.; Singh, U.S. Drought tolerant rice for ensuring food security in Eastern India. Sustainability 2020, 12, 2214. [Google Scholar] [CrossRef]
- Yari, A.; Madramootoo, C.A.; Woods, S.A.; Adamchuk, V.I. Performance evaluation of constant versus variable rate irrigation. Irrig. Drain. 2017, 66, 501–509. [Google Scholar] [CrossRef]
- Stone, K.; Billman, E.D.; Bauer, P.J.; Sigua, G. Using NDVI for variable rate cotton irrigation prescriptions. Appl. Eng. Agric. 2022, 38, 787–795. [Google Scholar] [CrossRef]
- Descals, A.; Torres, K.; Verger, A.; Peñuelas, J. Evaluating Sentinel-2 for Monitoring Drought-Induced Crop Failure in Winter Cereals. Remote Sens. 2025, 17, 340. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Mushtaq, S.; Kath, J.; Nguyen-Huy, T.; Reymondin, L. Satellite-based data for agricultural index insurance: A systematic quantitative literature review. Nat. Hazards Earth Syst. Sci. 2025, 25, 913–927. [Google Scholar] [CrossRef]
- Zhu, T.; Lu, M.; Yang, J.; Bao, Q.; New, S.; Pan, Y.; Qu, A.; Feng, X.; Jian, J.; Hu, S.; et al. Enhancing Ready-to-Implementation subseasonal crop growth predictions in central Southwestern Asia: A machine learning-climate dynamical hybrid strategy. Agric. For. Meteorol. 2025, 370, 110582. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wen, J.; Wu, C.; Zhou, W.; Han, L.; Tang, X. Early warning of drought-induced vegetation stress using multiple satellite-based ecological indicators. Ecol. Indic. 2024, 169, 112857. [Google Scholar] [CrossRef]
- Sato, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Complex plant responses to drought and heat stress under climate change. Plant J. 2024, 117, 1873–1892. [Google Scholar] [CrossRef]
Metabolite Class | Function In Stress Tolerance | Spectral Proxy (Indicative Features) | Representative Crops/Examples |
---|---|---|---|
Compatible solutes (proline, glycine betaine, trehalose, mannitol/sorbitol) | Osmotic adjustment; macromolecule stabilization; partial ROS buffering | NIR/SWIR water-sensitive bands (~1450–1510 nm, ~1940 nm); red-edge shifts; PRI context | Tomato, chickpea, maize; engineered glycine betaine in non-accumulators [128,129,130] |
Antioxidants (ascorbate, glutathione, tocopherols; flavonols/anthocyanins) | ROS scavenging; membrane protection | UV–blue for flavonoids; red-edge position; PRI dynamics | Grapevine, cotton; tolerant lines sustain pools [129,135] |
TCA/GABA shunts (malate, fumarate, citrate; GABA) | Respiratory priming; carbon/nitrogen buffering under combined stress | SWIR water/leaf chemistry features; time-series red-edge | Rice (TCA priming), maize (GABA surge) [131] |
Polyamines (putrescine, spermidine) | Membrane stabilization; ROS mitigation; stress signaling | Indirect proxies via pigment/water-related bands; requires calibration/validation (Cal/Val) | Cucumber; exogenous application improves heat resilience [135] |
Hormonal metabolites (ABA, ACC; cytokinins) | Stomatal closure (ABA); heat/ethylene signaling (ACC); root maintenance (cytokinins) | Indirect via CTD/PRI/red-edge combined with environmental covariates | ABA increase under drought; ACC under heat; tolerant lines maintain cytokinins [132] |
Crop | Integration Approach | Key Findings|Outcome | Outcome |
---|---|---|---|
Rice | UAV NDVI + Transcriptomics | Identified ABA loci for yield stability | Improved varieties |
Maize | Satellite LST + Genomics | QTLs for G × E interactions | Enhanced prediction models |
Wheat | Hyperspectral + Proteomics | HSP markers for heat tolerance | Breeding acceleration |
Soybean | AI fusion (pixels-to-proteins) | Metabolite predictions | Precision management |
Gap | Description | Proposed Direction | Potential Impact |
---|---|---|---|
Data Standardization | Lack of uniform formats across platforms | Develop ontologies and AI harmonization | Improved cross-study comparisons |
Combined Stress Models | Underrepresentation of multifactorial stresses | Multi-omics field trials with DL | Better real-world predictions |
Accessibility in Developing Regions | High costs limit adoption | Low-cost sensors and open-source tools | Global equity in breeding |
Digital Twins Implementation | Limited validation in diverse environments | Simulation-based breeding pipelines | Accelerated variety development |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Yu, S.; Ju, Y.; Wang, Y.; Yin, D. Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture. Plants 2025, 14, 2829. https://doi.org/10.3390/plants14182829
Liang X, Yu S, Ju Y, Wang Y, Yin D. Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture. Plants. 2025; 14(18):2829. https://doi.org/10.3390/plants14182829
Chicago/Turabian StyleLiang, Xiongwei, Shaopeng Yu, Yongfu Ju, Yingning Wang, and Dawei Yin. 2025. "Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture" Plants 14, no. 18: 2829. https://doi.org/10.3390/plants14182829
APA StyleLiang, X., Yu, S., Ju, Y., Wang, Y., & Yin, D. (2025). Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture. Plants, 14(18), 2829. https://doi.org/10.3390/plants14182829