The Ecological Drivers of the Mosaic Structure of Bryophyte and Vascular Plant Cover in the Rich Fens of Lithuania
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Vegetation and Environmental Data Sampling
- Lawns with negligible microtopography and a high level of surface water that reaches at least half of the bryophyte cover. This usually occurs in flooded areas adjacent to lakes, rivers, or streams.
- Wet lawns (surface water slightly above the peat layer) with shallow hollows.
- Dry lawns (surface water below peat level) with negligible microtopography.
- Hummocky areas (hummocks cover up to 50% of the area).
- Highly hummocky areas (more than 50%) interfacing with deep hollows or water flows.
2.3. Data Analysis
3. Results
4. Discussion
4.1. Main Characteristics of Bryophyte and Vascular Plant Covers in the Studied Fens
4.2. Mosaic Structure of Vascular Plant Cover
4.3. Bryophyte Pools and Their Ecological Preferences
4.4. Vascular and Bryophyte Groups as Indicators of Habitat Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Vascular Plant Groups | 1H | 2H | 3H | 4H | 5H | 6H | 7H | 8H | 9H | 10H | 11H |
---|---|---|---|---|---|---|---|---|---|---|---|
No. of relevés | 6 | 6 | 21 | 13 | 12 | 4 | 4 | 5 | 11 | 6 | 10 |
Species | |||||||||||
Agrostis canina | - | - | 5 | 7 1.3 | - | - | - | - | - | - | - |
Agrostis stolonifera | 33 46.4 | - | - | - | 8 2.4 | 20 | 100 26.2 | 40 | 82 7.5 | 100 26.2 | 100 26.2 |
Alnus glutinosa | 17 14.2 | - | 5 | 7 1.3 | 17 14.2 | 17 | - | - | 9 27.7 | - | - |
Andromeda polifolia | - | 17 | 14 | 53 32.2 | 17 9.8 | - | - | - | - | - | - |
Angelica sylvestris | 33 45.5 | - | 10 4.1 | - | - | - | - | - | - | - | - |
Betula pubescens | 17 | 17 | 29 7.1 | 15 | 50 30.3 | 100 66.2 | - | 60 27.6 | 18 | 0 | 10 |
Calla palustris | - | - | 5 20 | - | - | 25 | 50 18 | - | 36 4.8 | 67 34.1 | 10 |
Caltha palustris | 50 43.3 | - | 5 | 15 3.3 | 17 1.8 | 50 | 100 27.3 | 60 | 27 | 100 27.3 | 100 27.3 |
Cardamine pratensis | 33 | 50 12.8 | 19 | 30 2.3 | 75 36.1 | - | 100 28.9 | 80 9.2 | 64 | 100 28.9 | 80 9.2 |
Carex chordorrhiza | - | - | 5 | 38 32.2 | 67 33.4 | - | - | - | - | - | - |
Carex diandra | 17 | 33 3.4 | 19 | 53 27.2 | 17 | 50 | 100 21.7 | 80 | 73 | 83 2.6 | 100 21.7 |
Carex dioica | 17 11.7 | - | 5 | 7 5.9 | - | 75 84.5 | - | - | - | - | - |
Carex flava | - | - | - | - | - | 17 | - | - | 9 | - | - |
Carex lasiocarpa | 33 | - | 10 | 85 20.2 | 100 44.8 | - | - | - | - | - | - |
Carex lepidocarpa | 67 | 83 | 100 18 | 92 11 | 100 18 | 100 82.3 | - | 20 | - | 17 | - |
Carex limosa | 17 | 67 9.3 | 43 | 76 36.2 | 42 | - | - | 80 47.2 | - | 17 | 90 56.9 |
Carex nigra | - | 17 0.4 | 5 | 23 24.8 | - | 75 72.5 | - | 20 5.1 | - | - | - |
Carex panicea | 50 | 17 | 86 30.9 | 76 20.3 | 8 | 100 82.3 | - | 20 | - | 17 | - |
Carex rostrata | 83 32.9 | - | 38 | 61 8 | 8 | 100 14.4 | 100 14.4 | 60 | 100 14.4 | 83 | 100 14.4 |
Cirsium palustre | 33 42.8 | - | 5 | - | 81 | 75 61.2 | - | 20 | 9 | 17 | - |
Cladium mariscus | 17 28 | - | - | - | 8 9.3 | - | - | - | - | - | - |
Comarum palustre | - | 17 | 33 | 69 32.2 | 17 | - | - | 40 59.8 | - | - | - |
Crepis palustris | - | - | 5 | - | - | - | - | - | - | - | - |
Dactylorhiza incarnata | 33 6.5 | 17 | 43 16.1 | 46 27.2 | 8 | 50 31.5 | 25 4.1 | - | 9 | 33 13.2 | 10 |
Dactylorhiza majalis subsp. baltica | 17 37.8 | - | - | - | - | 25 29.7 | - | 20 21.2 | - | - | - |
Drosera anglica | - | 83 22.7 | 76 16.3 | 46 3 | 83 22.7 | - | - | 20 41.5 | - | - | - |
Drosera rotundifolia | - | 33 39.7 | 10 1.6 | - | - | 50 23.8 | - | 100 74.5 | 9 | - | - |
Eleocharis quinqueflora | - | 83 49.2 | 29 | 30 1.3 | 17 | - | - | 20 41.5 | - | - | - |
Epilobium palustre | 100 66.1 | - | 29 | 7 | 50 17.9 | 25 | 50 | 100 24.9 | 100 24.9 | 83 7.3 | 100 24.9 |
Epipactis palustris | 83 23.5 | 33 | 81 21.3 | 61 17 | 67 8.4 | 100 16.8 | 100 16.8 | 80 | 73 | 83 | 90 3.2 |
Equisetum fluviatile | 83 18.6 | 17 | 38 | 69 17.6 | 92 26.3 | 75 | 100 17.3 | 100 17.3 | 100 17.3 | 67 | 80 |
Equisetum palustre | - | - | 5 | - | - | - | - | - | - | - | - |
Eriophorum angustifolium | 50 21.7 | 17 | 19 | 15 9.6 | 17 | 75 26.8 | 100 49.3 | 20 | 9 | 67 19.4 | - |
Eriophorum latifolium | 33 | - | 43 8.6 | 53 | 33 24.8 | 25 46.6 | - | - | - | - | - |
Eriophorum gracile | - | - | - | 15 7.3 | - | - | - | - | - | - | - |
Eupatorium cannabinum | 50 60.8 | - | - | - | 8 | 75 58.5 | - | 20 | - | 33 13 | - |
Festuca rubra | 5060 | - | 10 | - | 8 | 50 | 25 | 80 14.6 | 91 24.8 | 100 33.3 | 40 |
Galium palustre | 50 | 33 | 62 6.7 | 53 22 | 42 | 50 | 75 | 60 | 100 24.1 | 100 24.1 | 80 2.7 |
Galium uliginosum | 33 31.1 | 17 7.6 | 10 | - | 8 | 100 25.6 | 75 | 80 4.8 | 64 | 83 8.3 | 50 |
Juncus articulatus | - | - | 33 54.2 | - | - | - | 25 | - | 18 | 67 55.9 | - |
Liparis loeselii | - | 33 16.2 | 5 | 7 8 | 42 28.3 | 17 | - | - | - | 17 | - |
Lysimachia thyrsiflora | 17 14.2 | 17 14.2 | 5 | 7 1.3 | - | 25 | 75 34.8 | 80 39.5 | 27 | 17 | - |
Menyanthes trifoliata | 100 20.7 | 83 1.2 | 90 9.6 | 69 1.2 | 83 | 75 | - | 100 25.2 | 100 25.2 | 100 25.2 | 80 4.4 |
Myosotis scorpioides subsp. scorpioides | 50 57.6 | - | 5 | - | 8 | - | 100 41.1 | 60 5.2 | 82 24.8 | 33 | 50 |
Molinia caerulea | - | - | - | - | 8 26.5 | 25 46.6 | - | - | - | - | - |
Parnassia palustris | - | 67 63.1 | - | 7 | 17 1.4 | - | - | - | 18 23.7 | 17 20.8 | - |
Pedicularis palustris | - | - | - | - | - | - | 75 84.5 | - | - | - | - |
Peucedanum palustre | 17 | 33 | 67 3.6 | 69 22.1 | 100 34.4 | - | - | 40 46.7 | - | 17 11 | - |
Phragmites australis | 17 4.2 | 17 4.2 | 141 | - | 33 26 | 25 18.4 | - | - | 45 46.8 | - | - |
Picea abies | 50 57.6 | - | 5 | - | 8 | 25 31.8 | - | - | - | 17 17.1 | - |
Pinguicula vulgaris | - | 17 17.7 | 24 30.4 | - | - | - | - | - | - | - | - |
Pinus sylvestris | - | - | - | - | 8 26.5 | 25 12.5 | 25 12.5 | 40 31.3 | - | - | - |
Poa palustris | 33 54.2 | - | - | - | - | - | 75 58.6 | - | 36 16.4 | 17 | - |
Poa trivialis | - | - | - | - | - | 50 20 | - | 40 10.2 | 27 | - | 60 26.9 |
Potentilla erecta | - | 33 20 | 33 20 | 7 8 | - | 25 46.6 | - | - | - | - | - |
Ranunculus lingua | 50 59.6 | - | - | 7 | - | - | 100 55.9 | 80 37.6 | 27 | 17 | 10 |
Rhynchospora alba | - | 17 | 5 | - | - | - | - | - | - | - | - |
Rumex acetosa | 67 34.5 | - | 52 20.7 | - | 67 34.5 | 25 | 25 | 80 | 91 | 83 | 100 |
Salix aurita | 17 9 | - | 5 | - | 42 45.4 | 25 37.3 | - | - | 9 6.6 | - | - |
Salix rosmarinifolia | 33 | 33 | 57 11.1 | 23 | 92 42.1 | 50 32.6 | - | 40 21.5 | - | 33 14.1 | - |
Saxifraga hirculus | - | 17 10.9 | - | - | - | - | - | - | - | - | - |
Silene flos-cuculi | 33 54.2 | - | - | - | - | 50 1.7 | - | 80 28.6 | 82 30.2 | 67 16.6 | 10 |
Stellaria palustris | 67 63.9 | 17 1.7 | - | - | 8 | - | - | - | 6421 | 100 54.1 | 80 35.9 |
Thelypteris palustris | - | - | 5 | 7 6.3 | 17 22.9 | - | - | 40 45.8 | 18 12.8 | - | - |
Typha sp. | - | - | 5 20 | - | - | - | - | - | 82 65.9 | 17 | 30 9.4 |
Trichophorum alpinum | 17 | 67 16.1 | 57 7.6 | 23 8.2 | 75 23.5 | - | - | 20 41.5 | - | - | - |
Triglochin palustris | - | 83 69.7 | 10 | 23 8.2 | - | 25 2.5 | 75 56 | - | 9 | 17 | 10 |
Utricularia intermedia | - | - | - | 23 6.8 | 8 | - | - | - | - | 17 | - |
Vaccinium oxycoccos | 50 | 100 19.7 | 81 | 84 19.7 | 92 9.6 | - | - | 80 76.9 | 18 2.2 | - | - |
Viola sp. | 33 20.7 | - | 14 | 7 13.5 | 17 0.5 | 50 34.8 | - | 40 23.5 | 9 | 17 | - |
Appendix B
Bryophyte Groups | 1B | 2B | 3B | 4B | 5B | 6B | 7B | 8B | 9B | 10B |
---|---|---|---|---|---|---|---|---|---|---|
No. of relevés | 8 | 7 | 12 | 10 | 17 | 7 | 8 | 10 | 6 | 13 |
Species | ||||||||||
Aneura pinguis | - | - | 8 | 33 48 | 28 9.3 | - | - | - | - | - |
Aulacomnium palustre | - | - | 25 42.1 | - | - | 50 28.3 | - | 60 35.6 | 100 54.6 | 77 44.5 |
Brachythecium mildeanum | - | - | - | - | - | - | - | 20 34 | - | 54 77.6 |
Calliergon giganteum | 38 24.2 | - | - | - | 16 | 28 | 75 30.2 | - | 16 9.3 | - |
Calliergonella cuspidata | - | 28 | - | - | - | 57 28.2 | 100 42.2 | 100 42.2 | 83 31.8 | 100 42.2 |
Campylium stellatum | 100 45.3 | 100 45.3 | 100 45.3 | 100 45.3 | 72 18.1 | 57 | - | - | - | - |
Cinclidium stygium | 71 64.5 | - | 25 12.3 | 55 32.4 | 100 77.1 | - | 12 | - | - | - |
Climacium dendroides | - | - | 14 32.2 | - | 10 | - | 7 | |||
Drepanocladus aduncus | - | - | - | - | - | - | - | 50 64.4 | 16 15.7 | 30 30.2 |
Drepanocladus trifarius | - | - | - | 100 78.9 | - | - | - | - | - | - |
Hamatocaulis vernicosus | - | - | - | - | - | 28 15.6 | 100 65.5 | 90 60.2 | - | 38 28.2 |
Helodium blandowii | 14 1.8 | - | - | - | - | - | - | - | 33 24.4 | 77 59 |
Marchantia polymorpha | - | - | - | - | - | - | 100 49.6 | 80 42.2 | 83 46.6 | 84 49 |
Meesia triquetra | - | - | - | 20 19.2 | 11 14.1 | - | - | - | - | - |
Paludella squarrosa | 14 1.8 | - | - | - | - | 28 12.4 | - | 10 1.3 | 100 68.9 | 23 10.3 |
Philonotis fontana | - | - | - | - | 5 | - | - | - | - | - |
Plagiomnium elatum | - | 28 22 | 58 62 | 33 37 | - | - | - | - | 16 11.3 | - |
Plagiomnium ellipticum | - | - | - | - | - | 71 33 | 62 27.9 | 100 48 | 100 48 | 92 43 |
Polytrichum strictum | 14 32.8 | - | - | - | - | - | - | - | - | 7 |
Ptychostomum pseudotriquetrum | 100 | 100 | 100 | 100 | 100 | 100 | 100 6.9 | 100 6.9 | 100 6.9 | 84 |
Scorpidium cossonii | 100 39.8 | 100 39.8 | 100 39.8 | 100 39.8 | 94 24.2 | 57 12.3 | - | - | - | - |
Scorpidium scorpioides | 28 11.2 | - | 66 32.2 | 88 68.2 | 88 68.2 | - | - | - | - | - |
Sphagnum contortum | 57 72.2 | - | - | - | 11 14.1 | - | - | - | - | - |
Sphagnum divinum | - | - | - | - | - | - | - | - | - | 7 |
Sphagnum teres | - | - | 91 86.2 | - | - | 57 38.4 | - | 10 6.3 | 100 60.7 | 15 8.9 |
Sphagnum warnstorfii | - | - | - | - | - | 28 48.2 | - | - | - | 15 34.7 |
Tomentypnum nitens | - | - | 50 47.3 | - | - | 14 1.8 | 12 1.5 | 100 53.9 | 100 53.9 | 100 53.9 |
References
- European Environment Agency. European Biodiversity Strategy for 2030. Available online: https://ec.europa.eu/environment/nature/biodiversity/strategy/index_en.htm (accessed on 30 June 2025).
- Wu, Y.; Tao, Y.; Yang, G.; Ou, W.; Pueppke, S.; Sun, X.; Chen, G.; Tao, Q. Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projection. Land Use Policy 2019, 85, 419–427. [Google Scholar] [CrossRef]
- Hicks, L.L.; Vogel, W.O.; Herter, D.R.; Early, R.J.; Stabins, H.C. Plum creek’s central cascades habitat conservation plan and modeling for the northern spotted owl. In Models for Planning Wildlife Conservation in Large Landscapes; Millspaugh, J.J., Thomsin, F.R., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 561–592. [Google Scholar] [CrossRef]
- Jukonienė, I.; Kalvaitienė, M.; Bagušinskaitė, A. Bryophyte diversity as an indication of habitat quality in two special areas of conservation on the outskirts of Vilnius (Verkiai Regional Park). Botanica 2022, 28, 159–170. [Google Scholar] [CrossRef]
- Ghasemi, M.; González-García, A.; Serrao-Neumann, S. Ecosystem services modelling to analyse the isolation of protected areas from a social-ecological perspective. J. Environ. Manag. 2025, 386, 125459. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Lamers, L.P.M.; Vile, M.A.; Grootjans, A.P.; Acreman, M.C.; van Diggelen, R.; Evans, M.G.; Richardson, C.J.; Rochefort, L.; Kooijman, A.M.; Roelofs, J.G.M.; et al. Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach. Biol. Rev. 2015, 90, 182–203. [Google Scholar] [CrossRef] [PubMed]
- Bedford, B.L.; Godwin, K.S. Fens of the United States: Distribution, characteristics, and scientific connection versus legal isolation. Wetlands 2003, 23, 608–629. [Google Scholar] [CrossRef]
- Schot, P.P.; Wassen, M.J. Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. J. Hydrol. 1993, 141, 197–217. [Google Scholar] [CrossRef]
- Hájek, M.; Jiménez-Alfaro, B.; Hájek, O.; Brancaleoni, L.; Cantonati, M.; Carbognani, M.; Dedić, A.; Ditĕ, D.; Gerdol, R.; Hájková, P.; et al. European map of groundwater pH and calcium. Earth Syst. Sci. Data Discuss. 2021, 13, 1089–1105. [Google Scholar] [CrossRef]
- van Haesebroeck, V.; Boeye, D.; Verhagen, B.; Verheyen, R.F. Experimental investigation of drought induced acidification in a rich fen soil. Biogeochemistry 1997, 37, 15–32. [Google Scholar] [CrossRef]
- Beltman, B.; Van den Broek, T.; Barendregt, A.; Bootsma, M.C.; Grootjans, A.P. Rehabilitation of acidified and eutrophied fens in The Netherlands: Effects of hydrologic manipulation and liming. Ecol. Eng. 2001, 17, 21–31. [Google Scholar] [CrossRef]
- Kooijman, A.; Paulissen, M.P.C.P. Higher acidification rates in fens with phosphorus enrichment. Appl. Veg. Sci. 2006, 9, 205–212. [Google Scholar] [CrossRef]
- van Diggelen, J.M.; Bense, I.H.; Brouwer, E.; Limpens, J.; van Schie, J.M.; Smolders, A.J.; Lamers, L.P. Restoration of acidified and eutrophied rich fens: Long-term effects of traditional management and experimental liming. Ecol. Eng. 2015, 75, 208–216. [Google Scholar] [CrossRef]
- Karpińska-Kołaczek, M.; Kołaczek, P.; Czerwiński, S.; Gałka, M.; Guzowski, P.; Lamentowicz, M. Anthropocene history of rich fen acidification in W Poland—Causes and indicators of change. Sci. Total Environ. 2022, 838, 155785. [Google Scholar] [CrossRef]
- Kooijman, A.M. Poor rich fen mosses’: Atmospheric N-deposition and P-eutrophication in base-rich fens. Lindbergia 2012, 35, 42–52. [Google Scholar]
- Wassen, M.; Venterink, H.; Lapshina, E.; Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 2005, 437, 547–550. [Google Scholar] [CrossRef]
- Cusell, C.; Lamers, L.P.; van Wirdum, G.; Kooijman, A. Impacts of water level fluctuation on mesotrophic rich fens: Acidification vs. eutrophication. J. Appl. Ecol. 2013, 50, 998–1009. [Google Scholar] [CrossRef]
- Hájek, M.; Jiroušek, M.; Navrátilová, J.; Horodyská, E.; Peterka, T.; Plesková, Z.; Navrátil, J.; Hájková, P.; Hájek, T. Changes in the moss layer in Czech fens indicate early succession triggered by nutrient enrichment. Preslia 2015, 87, 279–301. [Google Scholar]
- Janssen, J.A.; Rodwell, J.S.; Criado, M.G.; Gubbay, S.; Haynes, T.; Nieto, A.; Sanders, N.; Landucci, F.; Loidi, J.; Ssymank, A.; et al. European Red List of Habitats Part 2. Terrestrial and Freshwater Habitats; European Union: Brussels, Belgium, 2016. [Google Scholar]
- Rion, V.; Gallandat, J.D.; Gobat, J.M.; Vittoz, P. Recent changes in the plant composition of wetlands in the Jura Mountains. Appl. Veg. Sci. 2018, 21, 121–131. [Google Scholar] [CrossRef]
- Geurts, J.J.; Sarneel, J.M.; Willers, B.J.; Roelofs, J.G.; Verhoeven, J.T.; Lamers, L.P. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment. Environ. Pollut. 2009, 157, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
- Mälson, K.; Backéus, I.; Rydin, H. Long-term effects of drainage and initial effects of hydrological restoration on rich fen vegetation. Appl. Veg. Sci. 2008, 11, 99–106. [Google Scholar] [CrossRef]
- Booth, E.G.; Loheide, S.B.; Bart, D. Fen ecohydrological trajectories in response to groundwater drawdown with edaphic feedback. Ecohydrology 2022, 15, e2471. [Google Scholar] [CrossRef]
- Shih, J.G.; Finkelstein, S.A. Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 2008, 28, 1–16. [Google Scholar] [CrossRef]
- Pyšek, P.; Chytrý, M.; Pergl, J.; Sádlo, J.; Wild, J. Plant invasions in the Czech Republic: Current state, introduction dynamics, invasive species and invaded habitats. Preslia 2012, 84, 575–629. [Google Scholar]
- Dube, C.; Pellerin, S.; Poulin, M. Do power line rights-of-way facilitate the spread of non-peatland and invasive plants in bogs and fens? Botany 2011, 89, 91–103. [Google Scholar] [CrossRef]
- Essl, F.; Dullinger, S.; Moser, D.; Rabitsch, W.; Kleinbauer, I. Vulnerability of mires under climate change: Implications for nature conservation and climate change adaptation. Biodivers. Conserv. 2012, 21, 655–669. [Google Scholar] [CrossRef]
- Kolari, T.H.M.; Korpelainen, P.; Kumpula, T.; Tahvanainen, T. Accelerated vegetation succession but no hydrological change in a boreal fen during 20 years of recent climate change. Ecol. Evol. 2021, 11, 7602–7621. [Google Scholar] [CrossRef] [PubMed]
- Moen, A.; Lyngstad, A.; Øien, D.I. Hay crop of boreal rich fen communitiest raditionally used for haymaking. Folia Geobot. 2015, 50, 25–38. [Google Scholar] [CrossRef]
- Hájková, P.; Horsáková, V.; Peterka, T.; Janeček, Š.; Galvánek, D.; Dítě, D.; Horník, J.; Horsák, M.; Hájek, M. Conservation and restoration of Central European fens by mowing: A consensus from 20 years of experimental work. Sci. Total Environ. 2022, 846, 157293. [Google Scholar] [CrossRef]
- Wheeler, B.D.; Shaw, S.C.; Fojt, W.J.; Robertson, R.A. (Eds.) Restoration of Temperate Wetlands, 1st ed.; Wiley: Hoboken, NJ, USA, 1995; 562p. [Google Scholar]
- EUNIS. Habitat Classification. Available online: https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1/eunis-terrestrial-habitat-classification-review-2021 (accessed on 21 May 2025).
- European Commission. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- Jiménez-Alfaro, B.; Fernández-Pascual, E.; Díaz González, T.E.; Peréz-Haase, A.; Ninot, J.M. Diversity of rich fen vegetation and related plant specialists in mountain refugia of the Iberian Peninsula. Folia Geobot. 2012, 47, 403–419. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Hájek, M.; Ejrnaes, R.; Rodwell, J.; Pawlikowski, P.; Weeda, E.J.; Laitinen, J.; Moen, A.; Bergamini, A.; Aunina, L.; et al. Biogeographic patterns of base-rich fen vegetation across Europe. Appl. Veg. Sci. 2014, 17, 367–380. [Google Scholar] [CrossRef]
- Hájková, P.; Hájek, M. Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot. 2004, 39, 335–351. [Google Scholar] [CrossRef]
- Hájková, P.; Hájek, M. Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationships to water and soil chemistry. Preslia 2003, 5, 271–287. [Google Scholar]
- Hájek, M.; Dítě, D.; Horsáková, V.; Mikulášková, E.; Peterka, T.; Navrátilová, J.; Jiménez-Alfaro, B.; Hájková, P.; Tichy, L.; Horsák, M. Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecol. Indic. 2020, 116, 106527. [Google Scholar] [CrossRef]
- Peterka, T.; Hájek, M.; Jiroušek, M.; Jiménez-Alfaro, B.; Aunina, L.; Bergamini, A.; Dítě, D.; Felbaba-Klushyna, L.; Graf, U.; Hájková, P.; et al. Formalized classification of European fen vegetation at the alliance level. Appl. Veg. Sci. 2017, 20, 124–142. [Google Scholar] [CrossRef]
- Øien, D.-I. Nutrient limitation in boreal rich-fen vegetation: A fertilization experiment. Appl. Veg. Sci. 2004, 7, 119–132. [Google Scholar] [CrossRef]
- Vitt, D.H.; Hopuse, M.; Glaeser, L. The response of vegetation to chemical and hydrological gradients at a patterned rich fen in northern Alberta, Canada. J. Hydrol. Reg. Stud. 2022, 40, 101038. [Google Scholar] [CrossRef]
- van Der Hoek, D.; van Mierlo, A.J.E.M.; van Groenendael, J.M. Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow. J. Veg. Sci. 2004, 15, 389–396. [Google Scholar] [CrossRef]
- Kay, S.; Proctor, J. Population dynamics of two Scottish ultramafic (serpentine) rarities with contrasting life histories. Bot. J. Scotl. 2003, 55, 269–285. [Google Scholar] [CrossRef]
- van der Maarel, E. On the establishment of plant community boundaries. Berichte Dtsch. Bot. Ges. 1976, 89, 415–443. [Google Scholar] [CrossRef]
- van der Maarel, E. Ecotones and ecoclines are different. J. Veg. Sci. 1990, 1, 135–138. [Google Scholar] [CrossRef]
- Eppinga, M.B.; Michaels, T.K.; Santos, M.J.; Bever, J.D. Introducing desirable patches to initiate ecosystem transitions and accelerate ecosystem restoration. Ecol. Appl. 2023, 33, e2910. [Google Scholar] [CrossRef]
- Kalvaitienė, M.; Jukonienė, I. Habitat preferences of Hamatocaulis vernicosus at the junction of continental and boreal phytogeographical regions (Lithuania). Boreal Environ. Res. 2022, 27, 81–96. [Google Scholar]
- Pawlikowski, P.; Abramczyk, K.; Szczepaniuk, A.; Kozub, Ł. Nitrogen: Phosphorus ratio as the main ecological determinant of the differences in the species composition of brown-moss rich fens in north-eastern Poland. Preslia 2013, 85, 349–367. [Google Scholar]
- Jabłońska, E.; Pawlikowski, P.; Jarzombkowski, F.; Tarapata, M.; Kłosowski, S. Thirty years of vegetation dynamics in the Rospuda fen (NE Poland). Mires Peat 2019, 24, 05. [Google Scholar] [CrossRef]
- Auniņa, L. Vegetation changes in extremely rich fens in Latvia. Rend. Fis. Acc. Lincei 2022, 33, 707–712. [Google Scholar] [CrossRef]
- Šimanauskienė, R.; Linkevičienė, R.; Bartold, M.; Dąbrowska-Zielińska, K.; Slavinskienė, G.; Veteikis, D.; Taminskas, J. Peatland degradation: The relationship between raised bog hydrology and normalized difference vegetation index. Ecohydrology 2019, 12, e2159. [Google Scholar] [CrossRef]
- Povilaitis, A.; Taminskas, J.; Gulbinas, Z.; Linkevičienė, R.I.; Pileckas, M. Lietuvos Šlapynės ir jų Vandensauginė Reikšmė; Apyaušris: Vilnius, Lithuania, 2011; 327p. [Google Scholar]
- Taminskas, J.; Pileckas, M.; Šimanauskienė, R.; Linkevičienė, R. Wetland classification and inventory in Lithuania. Baltica 2012, 25, 33–44. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde, 3rd ed.; Springer: Wien, Austria, 1964; 631p. [Google Scholar]
- Hill, M.O. TWINSPAN: A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-Way Table by the Classification of the Individuals and Attributes; Ecology and Systematics, Cornell University: Ithaca, NY, USA, 1979; 90p. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Hodgetts, N.G.; Söderström, L.; Blockeel, T.L.; Caspari, S.; Ignatov, M.S.; Konstantinova, N.A.; Lockhard, N.; Papp, B.; Schröck, C.; Sim-Sim, M.; et al. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J. Bryol. 2020, 42, 1–116. [Google Scholar] [CrossRef]
- Govaerts, R.; Nic Lughadha, E.; Black, N.; Turner, R.; Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 2021, 8, 215. [Google Scholar] [CrossRef]
- Štechová, T.; Hájek, M.; Hájková, P.; Navrátilová, J. Comparison of habitat requirements of the mosses Hamatocaulis vernicosus, Scorpidium cossonii and Warnstorfia exannulata in different parts of temperate Europe. Preslia 2008, 80, 399–410. [Google Scholar]
- Bufková, I.; Prach, K.; Bastl, M. Relationships between vegetation and environment within the montane floodplain of the Upper Vltava River (Šumava National Park, Czech Republic). Silva Gabreta 2005, 11 (Suppl. S2), 1–78. [Google Scholar]
- Hultgren, A.C. Growth in length of Carex rostrata Stokes shoots in relation to water level. Aquat. Bot. 1989, 34, 353–365. [Google Scholar] [CrossRef]
- Aggenbach, C.J.S.; Backx, H.; Emsens, W.J.; Grootjans, A.P.; Lamers, L.P.M.; Smolders, A.J.P.; Stuyfzand, P.J.; Wołejko, L.; van Diggelen, R. Do high iron concentrations in rewetted rich fens hamper restoration? Preslia 2013, 85, 405–420. [Google Scholar]
- Dierßen, K. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophyt. Bibl. 2001, 56, 1–289. [Google Scholar]
- Samson, T.; Kaasik, A.; Ingerpuu, N.; Vellak, K. Is an infrequent moss species a weaker competitor? Experiment with three fen species. Nordic J. Bot. 2023, 8, e04038. [Google Scholar] [CrossRef]
- Manukjanová, A.; Štechová, T.; Kučera, J. Drought survival test of eight fen moss species. Cryptogam. Bryol. 2014, 35, 397–403. [Google Scholar] [CrossRef]
- Hájek, M.; Horsák, M.; Hájková, P.; Dítě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 2006, 8, 97–114. [Google Scholar] [CrossRef]
- Jabłońska, E.; Kotowski, W.; Soudzilovskaia, N. Desiccation avoidance and hummock formation traits of rich fen bryophytes. Wetlands 2023, 43, 21. [Google Scholar] [CrossRef]
- Hedenäs, L. The genera Scorpidium and Hamatocaulis, gen. nov., in northern Europe. Lindbergia 1989, 15, 8–36. [Google Scholar]
- Mälson, K.; Rydin, H. The regeneration capabilities of bryophytes for rich fen restoration. Biol. Conserv. 2007, 135, 435–442. [Google Scholar] [CrossRef]
- Hájek, M.; Plesková, Z.; Syrovátka, V.; Peterka, T.; Laburdová, J.; Kintrová, K.; Hájek, T. Patterns in moss element concentrations in fens across species, habitats, and regions. Perspect. Plant Ecol. Evol. Syst. 2014, 16, 203–218. [Google Scholar] [CrossRef]
- Hájek, M.; Hájková, P. Eleocharitetum quinqueflorae Lüdi 1921. In Vegetace České Republiky. 3. Vodní a Mokřadní Vegetace [Vegetation of the Czech Republic 3. Aquatic and Wetland Vegetation]; Chytrý, M., Ed.; Academia: Praha, Czech Republic, 2011; pp. 639–641. Available online: https://www.sci.muni.cz/botany/chytry/Vegetace-Ceske-republiky-3-2011-low-resolution.pdf (accessed on 15 June 2025).
- FloraVeg, E. Caricion Davallianae Klika 1934. Available online: https://floraveg.eu/vegetation/nomenclature/Caricion%20davallianae (accessed on 15 June 2025).
- Gąbka, M.; Owsianny, P.M.; Sobczyński, T. Comparison of the habitat conditions of peat-moss phytocoenoses dominated by Eriophorum angustifolium Honck. or Carex rostrata Stokes from mires in Western Poland. Biodivers. Res. Conserv. 2007, 5–8, 61–69. [Google Scholar] [CrossRef]
- Philips, M.E. Studies in the quantitative morphology and ecology of Eriophorum angustifolium Roth: II. Competition and Dispersion. J. Ecol. 1954, 42, 187–210. [Google Scholar] [CrossRef]
- Goodman, G.T.; Perkins, D.F. The role of mineral nutrients in Eriophorum communities: IV Potassium supply as a limiting factor in an E. vaginatum community. J. Ecol. 1968, 56, 685–696. [Google Scholar] [CrossRef]
- Veerkamp, M.T.; Corré, W.J.; Atwell, B.J.; Kuiper, P.J. Growth rate and phosphate utilization of some Carex species from a range of oligotrophic to eutrophic swamp habitats. Physiol. Plant. 1980, 50, 237–240. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A.; Cornelissen, J.H.C.; During, H.J.; Van Logtestijn, R.S.P.; Lang, S.I.; Aerts, R. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology 2010, 91, 2716–2726. [Google Scholar] [CrossRef] [PubMed]
- Goetz, J.D.; Price, J.S. Role of morphological structure and layering of Sphagnum and Tomenthypnum mosses on moss productivity and evaporation rates. Can. J. Soil Sci. 2015, 95, 109–124. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Bond-Lamberty, B.; Euskirchen, E.; Talbot, J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol. 2012, 196, 49–67. [Google Scholar] [CrossRef]
- Grootjans, A.P.; Adema, E.B.; Bleuten, W.; Joosten, H.; Madaras, M.; Janáková, M. Hydrological landscape settings of base-rich fen mires and fen meadows: An overview. Appl. Veg. Sci. 2006, 9, 175–184. [Google Scholar] [CrossRef]
- Peterka, T.; Syrovátka, V.; Dítě, D.; Hájková, P.; Hrubanová, M.; Jiroušek, M.; Hájek, M. Is variable plot size a serious constraint in broad-scale vegetation studies? A case study on fens. J. Veg. Sci. 2020, 31, 594–605. [Google Scholar] [CrossRef]
- Jabvanainen, T. Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the north-eastern fennoscandian Shield. Folia Geobot. 2004, 39, 353–369. [Google Scholar] [CrossRef]
- Emsens, W.J.; Aggenbach, C.J.; Smolders, A.J.; Zak, D.; Van Diggelen, R. Restoration of endangered fen communities: The ambiguity of iron–phosphorus binding and phosphorus limitation. J. Appl. Ecol. 2017, 54, 1755–1764. [Google Scholar] [CrossRef]
- Mettrop, I.S.; Neijmeijer, T.; Cusell, C.; Lamers, L.P.; Hedenäs, L.; Kooijman, A.M. Calcium and iron as key drivers of brown moss composition through differential effects on phosphorus availability. J. Bryol. 2018, 40, 350–357. [Google Scholar] [CrossRef]
- Graham, J.; Farr, G.; Hedenäs, L.; Devez, A.; Watts, M.J. Using water chemistry to define ecological preferences within the moss genus Scorpidium, from Wales, UK. J. Bryol. 2019, 41, 197–204. [Google Scholar] [CrossRef]
- Paulissen, M.P.; van der Ven, P.J.; Dees, A.J.; Bobbink, R. Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input. New Phytol. 2004, 164, 451–458. [Google Scholar] [CrossRef]
- Malmer, N.; Svensson, B.M.; Wallén, B. Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot. Phytotax. 1994, 29, 483–496. [Google Scholar] [CrossRef]
- Mezbahuddin, S.; Nikonovas, T.; Spessa, A.; Grant, R.; Imron, M. Modelling large-scale seasonal variations in water table depth over tropical peatlands in Riau, Sumatra. Authorea, 2022; preprint. [Google Scholar]
- Araki, S.; Kunii, H. Relationship between seed and clonal growth in the reproduction of Carex rugulosa KüK. in riverside meadows. Plant Species Biol. 2008, 23, 81–89. [Google Scholar] [CrossRef]
Study Site no. | Fen Name | Administrative Unit | Coordinates (WGS-84) | Number of Study Plots | |
---|---|---|---|---|---|
Lat. | Lon. | ||||
1 | Acintas | Švenčioniai District | 55.00198 | 25.97825 | 4 |
2 | Bražuolė | Trakai District | 54.70632 | 24.88171 | 11 |
3 | Burgis | Plateliai District | 56.02479 | 21.92462 | 15 |
4 | Čiaunas | Zarasai District | 55.77684 | 25.87725 | 7 |
5 | Pelesa | Varėna District | 56.01642 | 21.79576 | 4 |
6 | Velėnija | Plateliai District | 56.01105 | 21.82575 | 3 |
7 | Juodupis | Plateliai District | 56.06659 | 21.84840 | 7 |
8 | Pravalas | Molėtai District | 54.95740 | 25.67367 | 8 |
9 | Siberija | Plateliai District | 56.03012 | 21.81525 | 9 |
10 | Skerdzimų pieva | Varėna District | 54.01560 | 24.29427 | 10 |
11 | Smalvos | Zarasai District | 55.61854 | 26.35358 | 8 |
12 | Šeirė | Plateliai District | 56.05417 | 21.83646 | 2 |
13 | Šillėnai | Vilnius District | 54.73043 | 25.03369 | 6 |
14 | Tyras | Plungė District | 56.004667 | 21.794748 | 3 |
15 | Fen by the Verknė River | Trakai District | 54.54754 | 24.50527 | 4 |
Parameters | Vascular Plants | Bryophytes | ||||
---|---|---|---|---|---|---|
I H (n = 56) (Mean ± SD) | II H (n = 42) (Mean ± SD) | p | I B (n = 54) (Mean ± SD) | II B (n = 44) (Mean ± SD) | p | |
Hummock cover (%) | 17.89 ± 18.46 | 29.92 ± 29.36 | 0.30 | 13.74 ± 11.05 | 34.47 ± 30.75 | 0.02 |
pH | 7.24 ± 0.02 | 7.08 ± 0.17 | 0.00 | 7.26 ± 0.01 | 7.08 ± 0.03 | 0.00 |
Conductivity (µS/cm) | 371.71 ± 14.02 | 354.67 ± 113.84 | 0.35 | 376.22 ± 104.8 | 349.91 ± 112.60 | 0.15 |
Ca2+ (mg/L) | 64.83 ± 10.92 | 66.63 ± 14.19 | 0.64 | 64.65 ± 11.10 | 66.77 ± 13.86 | 0.59 |
Fe3+ (mg/L) | 0.54 ± 0.92 | 3.51 ± 3.8 | 0.00 | 0.53 ± 0.91 | 3.40 ± 3.79 | 0.00 |
K+ (mg/L) | 2.16 ± 1.01 | 4.85 ± 3.72 | 0.00 | 2.22 ± 1.11 | 4.64 ± 3.70 | 0.00 |
Mg2+ (mg/L) | 10.21 ± 5.89 | 24.17 ± 9.40 | 0.00 | 10.64 ± 6.27 | 23.01 ± 13.86 | 0.00 |
NH4+ (mg/L) | 0.34 ± 0.26 | 0.63 ± 0.56 | 0.13 | 0.35 ± 0.28 | 0.60 ± 0.55 | 0.14 |
NO3− (mg/L) | 0.09 ± 0.03 | 0.10 ± 0.10 | 0.30 | 0.09 ± 0.03 | 0.10 ± 0.10 | 0.33 |
PO43− (mg/L) | 0.02 ± 0.02 | 0.08 ± 0.12 | 0.00 | 0.02 ± 0.02 | 0.08 ± 0.11 | 0.00 |
Topography type | ||||||
1 | 15 (26.8%) | 22 (52.4%) | 0.00 | 16 (29.6%) | 21 (47.7%) | 0.00 |
2 | 23 (41.1%) | - | 23 (42.6%) | - | ||
3 | 12 (21.4%) | 2 (4.8%) | 13 (24.1%) | 1 (2.3%) | ||
4 | 2 (3.6%) | 6 (14.3%) | 2 (3.7%) | 6 (13.6%) | ||
5 | 4 (7.1%) | 12 (28.6%) | - | 16 (36.4) |
Parameters | Vascular Plant Groups | Bryophyte Groups | ||
---|---|---|---|---|
PC 1 | PC 2 | PC 1 | PC 2 | |
Hummock cover (%) | 0.63 | −0.17 | 0.60 | 0.49 |
Topography type | 0.72 | −0.09 | 0.51 | 0.34 |
pH | −0.03 | 0.05 | 0.03 | −0.03 |
Conductivity (µS/cm) | 0.03 | 0.08 | 0.08 | −0.06 |
Ca2+ (mg/L) | 0.02 | 0.04 | 0.06 | −0.05 |
Fe3+ (mg/L) | 0.17 | 0.84 | 0.48 | −0.72 |
K+ (mg/L) | 0.09 | −0.01 | −0.07 | 0.11 |
Mg2+ (mg/L) | 0.04 | 0.01 | 0.06 | −0.01 |
NH4+ (mg/L) | 0.03 | −0.37 | −0.23 | 0.22 |
NO3- (mg/L) | 0.09 | 0.26 | 0.21 | −0.22 |
PO43- (mg/L) | 0.13 | 0.18 | 0.21 | 0.01 |
Eigenvalue | 2.87 | 1.21 | 2.01 | 1.27 |
Explained % of variance | 43.05 | 18.13 | 32.22 | 20.47 |
Vascular Plant Groups | 1H | 2H | 3H | 4H | 5H | 6H | 7H | 8H | 9H | 10H | 11H |
---|---|---|---|---|---|---|---|---|---|---|---|
1H | 0.04 | 0.01 | 0.01 | 0.06 | 0.23 | 0.02 | 0.29 | 0.00 | 0.11 | 0.00 | |
2H | 0.04 | 0.35 | 0.12 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
3H | 0.01 | 0.35 | 0.02 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
4H | 0.01 | 0.12 | 0.02 | 0.10 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
5H | 0.06 | 0.13 | 0.09 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
6H | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.85 | 0.01 | 0.19 | 0.05 | |
7H | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.08 | 0.00 | 0.04 | 0.00 | |
8H | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.85 | 0.08 | 0.00 | 0.12 | 0.01 | |
9H | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.46 | 0.00 | |
10H | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.04 | 0.12 | 0.46 | 0.32 | |
11H | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.02 | 0.00 | 0.32 |
Bryophyte Groups | 1B | 2B | 3B | 4B | 5B | 6B | 7B | 8B | 9B | 10B |
---|---|---|---|---|---|---|---|---|---|---|
1B | 0.00 | 0.21 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
2B | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01 | |
3B | 0.21 | 0.03 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
4B | 0.00 | 0.00 | 0.01 | 0.06 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | |
5B | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
6B | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.12 | |
7B | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.97 | 0.00 | 0.05 | |
8B | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.97 | 0.00 | 0.08 | |
9B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.28 | |
10B | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.11 | 0.04 | 0.08 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalvaitienė, M.; Jukonienė, I. The Ecological Drivers of the Mosaic Structure of Bryophyte and Vascular Plant Cover in the Rich Fens of Lithuania. Plants 2025, 14, 2662. https://doi.org/10.3390/plants14172662
Kalvaitienė M, Jukonienė I. The Ecological Drivers of the Mosaic Structure of Bryophyte and Vascular Plant Cover in the Rich Fens of Lithuania. Plants. 2025; 14(17):2662. https://doi.org/10.3390/plants14172662
Chicago/Turabian StyleKalvaitienė, Monika, and Ilona Jukonienė. 2025. "The Ecological Drivers of the Mosaic Structure of Bryophyte and Vascular Plant Cover in the Rich Fens of Lithuania" Plants 14, no. 17: 2662. https://doi.org/10.3390/plants14172662
APA StyleKalvaitienė, M., & Jukonienė, I. (2025). The Ecological Drivers of the Mosaic Structure of Bryophyte and Vascular Plant Cover in the Rich Fens of Lithuania. Plants, 14(17), 2662. https://doi.org/10.3390/plants14172662