Integrated Histological, Ultrastructural, and Transcriptomic Analyses Reveal New Insights into Stamen Development in Cytoplasmic Male Sterile Tobacco (CMS K326)
Abstract
1. Introduction
2. Results
2.1. The Stamens of CMS K326 Differed from Those of the Maintainer in the Small-Bud Stage (<3 mm)
2.2. Analysis of Differentially Expressed Genes (DEGs) During the Three Stages of Bud Development
2.3. The Stamen-Related Gene Dysfunction in CMS K326 Occurred at the Flower Meristematic Tissue Stage
2.4. The Dynamics of Genes Related to Mitochondrial Basic Processes Showed Obstacles
3. Discussion
3.1. Do Mitochondria Regulate Stamen Development in CMS K326 by Affecting the Auxin Pathway?
3.2. Are KIN10 and CDKE1 Signal Molecules for the Mitochondrial Retrograde Regulation of Stamen Development?
4. Materials and Methods
4.1. Materials
4.2. Histological Analysis
4.3. Electron Microscopy Observation
4.4. RNA Extraction, Sequencing, and Bioinformatics Analysis
4.5. Weighted Gene Correlation Network Analysis (WGCNA)
4.6. Reverse Transcription Pcr (Rt-Pcr) Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMS | Cytoplasmic Male Sterility |
ETC | Electronic Transport Chain |
WGCNA | Weighted Gene Correlation Network Analysis |
DEG | Differentially Expressed Gene |
TCA | Tricarboxylic Acid Cycle |
References
- Chase, C.D. Cytoplasmic male sterility: A window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef]
- Zubko, M.K. Mitochondrial tuning fork in nuclear homeotic functions. Trends Plant Sci. 2004, 9, 61–64. [Google Scholar] [CrossRef]
- Dewey, R.E.; Selote, D.; Griffin, H.C.; Dickey, A.N.; Jantz, D.; Smith, J.J.; Matthiadis, A.; Strable, J.; Kestell, C.; Smith, W.A. Cytoplasmic male sterility and abortive seed traits generated through mitochondrial genome editing coupled with allotopic expression of atp1 in tobacco. Front. Plant Sci. 2023, 14, 1253640. [Google Scholar] [CrossRef]
- Takatsuka, A.; Kazama, T.; Arimura, S.I.; Toriyama, K. TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. Plant J. 2022, 110, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xue, Y.; Li, B.; Lin, Y.; Li, H.; Guo, Z.; Li, W.; Fu, Z.; Ding, D.; Tang, J. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex. Mol. Plant 2022, 15, 872–886. [Google Scholar] [CrossRef]
- Xiao, S.; Zang, J.; Pei, Y.; Liu, J.; Liu, J.; Song, W.; Shi, Z.; Su, A.; Zhao, J.; Chen, H. Activation of Mitochondrial orf 355 Gene Expression by a Nuclear-Encoded DREB Transcription Factor Causes Cytoplasmic Male Sterility in Maize. Mol. Plant 2020, 13, 1270–1283. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef]
- Wang, R.; Cai, X.; Hu, S.; Li, Y.; Fan, Y.; Tan, S.; Liu, Q.; Zhou, W. Comparative Analysis of the Mitochondrial Genomes of Nicotiana tabacum: Hints Toward the Key Factors Closely Related to the Cytoplasmic Male Sterility Mechanism. Front. Genet. 2020, 11, 257. [Google Scholar] [CrossRef]
- Howard, T.B.; Waltraud, K.; Gunilla, H.; Kristina, G. Mitochondrial involvement in petal and stamen development studied by sexual and somatic hybridization of Nicotiana species. Plant Sci. 1991, 80, 119–130. [Google Scholar] [CrossRef]
- Prunet, N.; Yang, W.; Das, P.; Meyerowitz, E.M.; Jack, T.P. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proc. Natl. Acad. Sci. USA 2017, 114, 7166–7171. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, H.; Zhao, Y.; Feng, Z.; Li, Q.; Yang, H.Q.; Luan, S.; Li, J.; He, Z.H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 15485–15490. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Wang, B.; Feng, Y.F.; Xue, J.S.; Qian, X.X.; Liu, S.Q.; Zhou, J.; Yu, Y.H.; Yang, N.Y.; Xu, P.; et al. Auxin response factor17 directly regulates myb108 for anther dehiscence. Plant Physiol. 2019, 181, 645–655. [Google Scholar] [CrossRef]
- Sierro, N.; Battey, J.N.; Ouadi, S.; Bakaher, N.; Bovet, L.; Willig, A.; Goepfert, S.; Peitsch, M.C.; Ivanov, N.V. The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 2014, 5, 3833. [Google Scholar] [CrossRef]
- Yang, L.; Qi, S.; Touqeer, A.; Li, H.; Zhang, X.; Liu, X.; Wu, S. SlGT11 controls floral organ patterning and floral determinacy in tomato. BMC Plant Biol. 2020, 20, 562. [Google Scholar] [CrossRef]
- Shang, E.; Ito, T.; Sun, B. Control of floral stem cell activity in Arabidopsis. Plant Signal. Behav. 2019, 14, 1659706. [Google Scholar] [CrossRef]
- Smyth, D.R.; Bowman, J.L.; Meyerowitz, E.M. Early flower development in Arabidopsis. Plant Cell 1990, 2, 755–767. [Google Scholar] [CrossRef]
- Irish, V.F. The flowering of Arabidopsis flower development. Plant J. 2010, 61, 1014–1028. [Google Scholar] [CrossRef]
- Bhatia, N.; Heisler, M.G. Self-organizing periodicity in development: Organ positioning in plants. Development 2018, 145, 149336. [Google Scholar] [CrossRef]
- Heisler, M.G.; Ohno, C.; Das, P.; Sieber, P.; Reddy, G.V.; Long, J.A.; Meyerowitz, E.M. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 2005, 15, 1899–1911. [Google Scholar] [CrossRef] [PubMed]
- Calderón, V.L.; Lee, S.; De, O.C.; Ivetac, A.; Brandt, W.; Armitage, L.; Sheard, L.B.; Tan, X.; Parry, G.; Mao, H.; et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 2012, 8, 477–485. [Google Scholar] [CrossRef]
- Dharmasiri, N.; Dharmasiri, S.; Weijers, D.; Lechner, E.; Yamada, M.; Hobbie, L.; Ehrismann, J.S.; Jürgens, G.; Estelle, M. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 2005, 9, 109–119. [Google Scholar] [CrossRef]
- Cucinotta, M.; Cavalleri, A.; Chandler, J.W.; Colombo, L. Auxin and Flower Development: A Blossoming Field. Cold Spring Harb. Perspect. Biol. 2021, 13, a039974. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Li, Y.; Li, Y.; Wang, Y.; Jiang, C.; Choisy, P.; Xu, T.; Cai, Y.; Pei, D.; et al. Auxin response factor 18-histone deacetylase 6 module regulates floral organ identity in rose (Rosa hybrida). Plant Physiol. 2021, 186, 1074–1087. [Google Scholar] [CrossRef]
- Møller, I.M.; Rasmusson, A.G.; Van, A.O. Plant mitochondria—Past, present and future. Plant J. 2021, 108, 912–959. [Google Scholar] [CrossRef]
- Barreto, P.; Koltun, A.; Nonato, J.; Yassitepe, J.; Maia, I.G.; Arruda, P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int. J. Mol. Sci. 2022, 23, 11176. [Google Scholar] [CrossRef] [PubMed]
- Meyerowitz, E.M. Genetic control of cell division patterns in developing plants. Cell 1997, 88, 299–308. [Google Scholar] [CrossRef]
- Thomson, B.; Wellmer, F. Molecular regulation of flower development. Curr. Top. Dev. Biol. 2018, 131, 185–210. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.T.; Farbos, I.; Glimelius, K. Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J. 2005, 42, 731–742. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, H.; Pan, Y.; Niu, Y.; Guo, L.; Ma, Y.; Tian, S.; Wei, J.; Wang, C.; Yang, X.; et al. Cell- and noncell-autonomous AUXIN RESPONSE FACTOR3 controls meristem proliferation and phyllotactic patterns. Plant Physiol. 2022, 190, 2335–2349. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Prunet, N.; Gan, E.S.; Wang, Y.; Stewart, D.; Wellmer, F.; Huang, J.; Yamaguchi, N.; Tatsumi, Y.; Kojima, M.; et al. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J. 2018, 37, e97499. [Google Scholar] [CrossRef]
- Bereterbide, A.; Hernould, M.; Farbos, I.; Glimelius, K.; Mouras, A. Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene. Plant J. 2002, 29, 607–615. [Google Scholar] [CrossRef]
- Ng, S.; Giraud, E.; Duncan, O.; Law, S.R.; Wang, Y.; Xu, L.; Narsai, R.; Carrie, C.; Walker, H.; Day, D.A.; et al. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J. Biol. Chem. 2013, 288, 3449–3459. [Google Scholar] [CrossRef]
- Shapiguzov, A.; Vainonen, J.P.; Hunter, K.; Tossavainen, H.; Tiwari, A.; Järvi, S.; Hellman, M.; Aarabi, F.; Alseekh, S.; Wybouw, B.; et al. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 2019, 8, e43284. [Google Scholar] [CrossRef]
- Farbos, I.; Mouras, A.; Bereterbide, A.; Glimelius, K. Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. Plant J. 2001, 26, 131–142. [Google Scholar] [CrossRef]
- Hayes, J.S.; Klöppel, H.; Wieling, R.; Sprecher, C.M.; Richards, R.G. Influence of steel implant surface microtopography on soft and hard tissue integration. J. Biomed. Mater. Res. B. Appl. Biomater. 2018, 106, 705–715. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van, P.Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, W. OLIGO 7 primer analysis software. Methods Mol. Biol. 2007, 402, 35–60. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Huang, S.; Qian, J.; Qing, H.; Wan, Z.; Cheng, H.; Zhang, C. Genome-wide identification of Petunia HSF Genes and potential function of PhHSF19 in benzenoid/phenylpropanoid biosynthesis. Int. J. Mol. Sci. 2022, 23, 2974. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Reads | Clean Reads | Clean Bases (G) | Q30 (%) a | Total Mapped | Non-Splice Reads (%) | Splice Reads (%) | GC (%) |
---|---|---|---|---|---|---|---|---|
CK-K326-1-1 | 104,512,128 | 103,875,880 | 12.91 | 94.43 | 99,966,911 (96.24%) | 59.14 | 30.39 | 42.18 |
CK-K326-1-2 | 102,055,434 | 101,280,986 | 12.69 | 94.23 | 97,383,205 (96.15%) | 58.99 | 30.64 | 42.2 |
CK-K326-1-3 | 99,866,614 | 99,078,916 | 12.47 | 94.5 | 95,337,710 (96.22%) | 58.93 | 30.87 | 42.18 |
CK-K326-2-1 | 104,166,470 | 103,170,638 | 12.69 | 94.22 | 99,229,123 (96.18%) | 61.68 | 28.16 | 41.9 |
CK-K326-2-2 | 103,706,794 | 102,812,584 | 12.68 | 94.19 | 98,947,284 (96.24%) | 61.67 | 28.29 | 41.95 |
CK-K326-2-3 | 106,884,174 | 105,948,224 | 13 | 94.35 | 101,884,105 (96.16%) | 61.77 | 28.03 | 41.84 |
CK-K326-3-1 | 103,375,706 | 102,648,638 | 13.33 | 94.26 | 98,891,972 (96.34%) | 59.86 | 30.94 | 42.5 |
CK-K326-3-2 | 84,662,664 | 84,101,954 | 10.89 | 94.26 | 81,019,601 (96.33%) | 59.96 | 30.78 | 42.5 |
CK-K326-3-3 | 90,994,404 | 90,383,882 | 11.6 | 94.62 | 87,084,579 (96.35%) | 60.24 | 30.35 | 42.39 |
SK326-1-1 | 136,226,838 | 134,977,386 | 15.62 | 94.51 | 128,613,155 (95.28%) | 59.46 | 26.82 | 41.98 |
SK326-1-2 | 108,540,094 | 107,363,826 | 12.82 | 94.21 | 102,478,800 (95.45%) | 59.22 | 27.91 | 42.06 |
SK326-1-3 | 114,793,874 | 113,187,096 | 13.55 | 94.48 | 108,027,225 (95.44%) | 59.19 | 27.97 | 41.98 |
SK326-2-1 | 92,449,656 | 91,199,248 | 11.22 | 94.27 | 87,141,096 (95.55%) | 58.75 | 28.86 | 42.24 |
SK326-2-2 | 94,939,256 | 93,649,454 | 11.35 | 94.27 | 89,419,575 (95.48%) | 58.98 | 28.31 | 42.16 |
SK326-2-3 | 96,782,486 | 95,665,092 | 11.47 | 94.44 | 91,305,843 (95.44%) | 59.02 | 27.98 | 42.16 |
SK326-3-1 | 106,661,546 | 105,373,566 | 12.44 | 94.3 | 100,422,379 (95.30%) | 59.07 | 27.43 | 42.21 |
SK326-3-2 | 106,576,346 | 105,247,334 | 12.42 | 94.28 | 100,219,624 (95.22%) | 59.19 | 27.27 | 42.13 |
SK326-3-3 | 108,111,576 | 106,703,754 | 12.52 | 94.67 | 101,667,123 (95.28%) | 59.35 | 27.08 | 42.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, F.; Qiu, S.; Ma, J.; Wang, Y.; Wang, J.; Liu, Q. Integrated Histological, Ultrastructural, and Transcriptomic Analyses Reveal New Insights into Stamen Development in Cytoplasmic Male Sterile Tobacco (CMS K326). Plants 2025, 14, 2613. https://doi.org/10.3390/plants14172613
Cui F, Qiu S, Ma J, Wang Y, Wang J, Liu Q. Integrated Histological, Ultrastructural, and Transcriptomic Analyses Reveal New Insights into Stamen Development in Cytoplasmic Male Sterile Tobacco (CMS K326). Plants. 2025; 14(17):2613. https://doi.org/10.3390/plants14172613
Chicago/Turabian StyleCui, Fangfang, Shanshan Qiu, Jikai Ma, Yanbo Wang, Jiange Wang, and Qiyuan Liu. 2025. "Integrated Histological, Ultrastructural, and Transcriptomic Analyses Reveal New Insights into Stamen Development in Cytoplasmic Male Sterile Tobacco (CMS K326)" Plants 14, no. 17: 2613. https://doi.org/10.3390/plants14172613
APA StyleCui, F., Qiu, S., Ma, J., Wang, Y., Wang, J., & Liu, Q. (2025). Integrated Histological, Ultrastructural, and Transcriptomic Analyses Reveal New Insights into Stamen Development in Cytoplasmic Male Sterile Tobacco (CMS K326). Plants, 14(17), 2613. https://doi.org/10.3390/plants14172613