Effects of Raw Materials and Pyrolysis Temperatures on Physicochemical Properties of Biochars Derived from Hemp Stalks
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation of Biochars
2.3. Experimental Methods
2.4. Data Analysis
3. Results
3.1. Basic Physicochemical Properties of Biochars
3.2. XRD Patterns of Biochars
3.3. FTIR
3.4. XPS
4. Discussion
4.1. Effects of Pyrolysis Temperatures on Hemp Stalk-Derived Biochars
4.2. Effects of Raw Materials on Hemp Stalk-Derived Biochar Physicochemical Properties
4.3. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2019; FAO: Rome, Italy, 2019; ISBN 978-92-5-131789-1. [Google Scholar]
- Zhao, X.; Wei, X.; Guo, Y.; Qiu, C.; Long, S.; Wang, Y.; Qiu, H. Industrial Hemp—An Old but Versatile Bast Fiber Crop. J. Nat. Fibers 2022, 19, 6269–6282. [Google Scholar] [CrossRef]
- Stefanidou, M.; Kamperidou, V.; Konstantinidis, A.; Koltsou, P.; Papadopoulos, S. Use of Posidonia Oceanica Fibres in Lime Mortars. Constr. Build. Mater. 2021, 298, 123881. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M.S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N.H.; Alkahtani, S.; et al. Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants 2020, 9, 496. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Mao, H.; Wen, Y.; Zheng, C.; Zhang, W.; Yi, S. Value-Added Bio-Products Extracted from Straw Utilized as Carriers for Pesticide Delivery: Innovative Repurposing of Agricultural Waste. Ind. Crops Prod. 2025, 223, 120294. [Google Scholar] [CrossRef]
- Marrot, L.; Candelier, K.; Valette, J.; Lanvin, C.; Horvat, B.; Legan, L.; DeVallance, D.B. Valorization of Hemp Stalk Waste through Thermochemical Conversion for Energy and Electrical Applications. Waste Biomass Valorization 2022, 13, 2267–2285. [Google Scholar] [CrossRef]
- Vávrová, K.; Solcova, O.; Knápek, J.; Weger, J.; Soukup, K.; Humešová, T.; Králík, T.; Bím, J. Economic Evaluation of Hemp’s (Cannabis sativa) Residual Biomass for Production of Direct Energy or Biochar. Fuel 2022, 329, 125435. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, N.; Li, X.; Wang, Y.; Xiong, Y.; Meng, R.; Liu, L.; He, S. Single-Step Hydrothermal Synthesis of Biochar from Waste Industrial Hemp Stalk Core for Pb2+ Sorption: Characterization and Mechanism Studies. Sustain. Chem. Pharm. 2023, 36, 101316. [Google Scholar] [CrossRef]
- Arslanoğlu, E.; Eren, M.Ş.A.; Arslanoğlu, H.; Çiftçi, H. Fabrication, Characterization, and Adsorption Applications of Low-Cost Hybride Activated Carbons from Peanut Shell-Vinasse Mixtures by One-Step Pyrolysis. Biomass Convers. Biorefinery 2023, 13, 2321–2335. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Qi, L.; Wang, H.; Ye, Z.; Zhao, Q. Heavy Metal-Contained Wastewater in China: Discharge, Management and Treatment. Sci. Total Environ. 2022, 808, 152091. [Google Scholar] [CrossRef]
- Tian, S.; Tan, Z.; Alfreda, K.; Ai, P. Transformation Mechanism of Nutrient Elements in the Process of Biochar Preparation for Returning Biochar to Soil. J. Chem. Eng. China Engl. Ed. 2017, 25, 10. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential Mechanisms for Achieving Agricultural Benefits from Biochar Application to Temperate Soils: A Review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Cheng, H.; Song, Y.; Bolan, N. Biochar for Future and Futuristic Biochar. Pedosphere 2023, 33, 680–682. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Joseph, S.; Graber, E.; Chia, C.; Munroe, P.; Donne, S.; Thomas, T.; Nielsen, S.; Marjo, C.; Rutlidge, H.; Pan, G.; et al. Shifting Paradigms: Development of High-Efficiency Biochar Fertilizers Based on Nano-Structures and Soluble Components. Carbon Manag. 2013, 4, 323–343. [Google Scholar] [CrossRef]
- Kumar Mishra, R.; Jaya Prasanna Kumar, D.; Narula, A.; Minnat Chistie, S.; Ullhas Naik, S. Production and Beneficial Impact of Biochar for Environmental Application: A Review on Types of Feedstocks, Chemical Compositions, Operating Parameters, Techno-Economic Study, and Life Cycle Assessment. Fuel 2023, 343, 127968. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, Q.; Shen, B. Application of Biochar and Its Composites in Catalysis. Chemosphere 2020, 240, 124842. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Wu, M. Advances in Metal/Biochar Catalysts for Biomass Hydro-Upgrading: A Review. J. Clean. Prod. 2021, 303, 126825. [Google Scholar] [CrossRef]
- DeLuca, T.H.; MacKenzie, M.D.; Gundale, M.J.; Holben, W.E. Wildfire-produced Charcoal Directly Influences Nitrogen Cycling in Ponderosa Pine Forests. Soil Sci. Soc. Am. J. 2006, 70, 448–453. [Google Scholar] [CrossRef]
- Fenta, A.A. State of the Art of Biochar in Ethiopia. A Review. Heliyon 2024, 10, e24934. [Google Scholar] [CrossRef]
- Sørmo, E.; Lade, C.B.M.; Zhang, J.; Asimakopoulos, A.G.; Åsli, G.W.; Hubert, M.; Goranov, A.I.; Arp, H.P.H.; Cornelissen, G. Stabilization of PFAS-Contaminated Soil with Sewage Sludge- and Wood-Based Biochar Sorbents. Sci. Total Environ. 2024, 922, 170971. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; Mauro, R.P.; Consentino, B.B.; De Pasquale, C. Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System. Appl. Sci. 2020, 10, 1258. [Google Scholar] [CrossRef]
- Fernandez, A.; Zalazar-García, D.; Torres, E.; Torres-Sciancalepore, R.; Parthasarathy, P.; McKay, G.; Fouga, G.; Mazza, G.; Rodriguez, R. Assessment of the Use of Biochar from the Slow Pyrolysis of Walnut and Almond Shells as an Energy Carrier. Energy Sources Part Recovery Util. Environ. Eff. 2024, 46, 15379–15394. [Google Scholar] [CrossRef]
- Musa, N.; Khan, K.S.; Blankinship, J.C.; Ijaz, S.S.; Akram, Z.; Alwahibi, M.S.; Ali, M.A.; Yousra, M. Sorption-Desorption of Phosphorus on Manure- and Plant-Derived Biochars at Different Pyrolysis Temperatures. Sustainability 2024, 16, 2755. [Google Scholar] [CrossRef]
- Hafiza, S.; Riaz, A.; Arshad, Z.; Zahra, S.T.; Akhtar, J.; Kanwal, S.; Zeb, H.; Kim, J. Effect of Pyrolysis Temperature on the Physiochemical Properties of Biochars Produced from Raw and Fermented Rice Husks. Korean J. Chem. Eng. 2023, 40, 1986–1992. [Google Scholar] [CrossRef]
- Vercruysse, W.; Smeets, J.; Haeldermans, T.; Joos, B.; Hardy, A.; Samyn, P.; Yperman, J.; Vanreppelen, K.; Carleer, R.; Adriaensens, P.; et al. Biochar from Raw and Spent Common Ivy: Impact of Preprocessing and Pyrolysis Temperature on Biochar Properties. J. Anal. Appl. Pyrolysis 2021, 159, 105294. [Google Scholar] [CrossRef]
- Ying, Z.-Y.; Zhang, L.-Y.; Li, Y.; Wang, Z.-W.; Qiao, L.; Wang, F.-H.; Yuan, Y.; Yang, S.-S.; Ding, J.; Ren, N.-Q.; et al. Effects of Different Types and Pyrolysis Temperature of Straw Biochar on Promoting Hydrogen Production of Sludge Fermentation. Environ. Technol. Innov. 2025, 37, 104020. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, S.; Wang, Y.; Lu, H.; Brar, S.K.; Yang, S. Bio- and Hydrochars from Rice Straw and Pig Manure: Inter-Comparison. Bioresour. Technol. 2017, 235, 332–337. [Google Scholar] [CrossRef]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of Biochars from Crop Residues: Potential for Carbon Sequestration and Soil Amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef]
- Otoni, J.P.; Matoso, S.C.G.; Pérez, X.L.O.; Da Silva, V.B. Potential for Agronomic and Environmental Use of Biochars Derived from Different Organic Waste. J. Clean. Prod. 2024, 449, 141826. [Google Scholar] [CrossRef]
- Boraah, N.; Chakma, S.; Kaushal, P. Optimum Features of Wood-Based Biochars: A Characterization Study. J. Environ. Chem. Eng. 2023, 11, 109976. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Q.; Xie, W.; Wang, Y.; Kang, J. Effects of Temperature, Time and Acidity of Hydrothermal Carbonization on the Hydrochar Properties and Nitrogen Recovery from Corn Stover. Biomass Bioenergy 2019, 122, 175–182. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Smith, A.M.; Singh, S.; Ross, A.B. Fate of Inorganic Material during Hydrothermal Carbonisation of Biomass: Influence of Feedstock on Combustion Behaviour of Hydrochar. Fuel 2016, 169, 135–145. [Google Scholar] [CrossRef]
- Song, J.; Zhang, S.; Li, G.; Du, Q.; Yang, F. Preparation of Montmorillonite Modified Biochar with Various Temperatures and Their Mechanism for Zn Ion Removal. J. Hazard. Mater. 2020, 391, 121692. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, J.; Yellezuome, D.; Liu, R. Effects of Cotton Straw-Derived Biochar under Different Pyrolysis Conditions on Pb (II) Adsorption Properties in Aqueous Solutions. J. Anal. Appl. Pyrolysis 2021, 157, 105214. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K.; Zhang, H. The Forms of Alkalis in the Biochar Produced from Crop Residues at Different Temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and Quantification of Biochar Alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar] [CrossRef]
- Wijitkosum, S.; Sriburi, T. Aromaticity, Polarity, and Longevity of Biochar Derived from Disposable Bamboo Chopsticks Waste for Environmental Application. Heliyon 2023, 9, e19831. [Google Scholar] [CrossRef] [PubMed]
- Ro, K.S.; Novak, J.M.; Johnson, M.G.; Szogi, A.A.; Libra, J.A.; Spokas, K.A.; Bae, S. Leachate Water Quality of Soils Amended with Different Swine Manure-Based Amendments. Chemosphere 2016, 142, 92–99. [Google Scholar] [CrossRef]
- Fu, M.-M.; Mo, C.-H.; Li, H.; Zhang, Y.-N.; Huang, W.-X.; Wong, M.H. Comparison of Physicochemical Properties of Biochars and Hydrochars Produced from Food Wastes. J. Clean. Prod. 2019, 236, 117637. [Google Scholar] [CrossRef]
- Nagel, K.; Hoilett, N.O.; Mottaleb, M.A.; Meziani, M.J.; Wistrom, J.; Bellamy, M. Physicochemical Characteristics of Biochars Derived From Corn, Hardwood, Miscanthus, and Horse Manure Biomasses. Commun. Soil Sci. Plant Anal. 2019, 50, 987–1002. [Google Scholar] [CrossRef]
- Lv, C.; Liu, P.; Cheng, S. Preparation of Biochar from Pyrolysis of Soybean Straw at Different Pyrolysis Temperature for Cadmium Removal from Wastewater and Pyrolysis Gas Investigation. Arab. J. Chem. 2024, 17, 105946. [Google Scholar] [CrossRef]
- Khater, E.-S.; Bahnasawy, A.; Hamouda, R.; Sabahy, A.; Abbas, W.; Morsy, O.M. Biochar Production under Different Pyrolysis Temperatures with Different Types of Agricultural Wastes. Sci. Rep. 2024, 14, 2625. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Zhang, L.; Li, Q.; Li, C.; Chen, G.; Zhang, S.; Liu, Q.; Hu, X. Evolution of the Functionalities and Structures of Biochar in Pyrolysis of Poplar in a Wide Temperature Range. Bioresour. Technol. 2020, 304, 123002. [Google Scholar] [CrossRef]
- Xu, S.; Chen, J.; Peng, H.; Leng, S.; Li, H.; Qu, W.; Hu, Y.; Li, H.; Jiang, S.; Zhou, W.; et al. Effect of Biomass Type and Pyrolysis Temperature on Nitrogen in Biochar, and the Comparison with Hydrochar. Fuel 2021, 291, 120128. [Google Scholar] [CrossRef]
- Sultan, S.; Khan, K.S.; Akmal, M.; Ahmed, Z.I.; Hussain, Q.; Khosa, S.A. Carbon Mineralization in Subtropical Dryland Soil Amended with Different Biochar Sources. Arab. J. Geosci. 2019, 12, 451. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-Chemical Properties and Microbial Responses in Biochar-Amended Soils: Mechanisms and Future Directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Videgain, M.; Manyà, J.J.; Vidal, M.; Correa, E.C.; Diezma, B.; García-Ramos, F.J. Influence of Feedstock and Final Pyrolysis Temperature on Breaking Strength and Dust Production of Wood-Derived Biochars. Sustainability 2021, 13, 11871. [Google Scholar] [CrossRef]
- Song, S.; Cong, P.; Wang, C.; Li, P.; Liu, S.; He, Z.; Zhou, C.; Liu, Y.; Yang, Z. Properties of Biochar Obtained from Tropical Crop Wastes under Different Pyrolysis Temperatures and Its Application on Acidic Soil. Agron 2023, 13, 921. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of Biochar on Soil Available Inorganic Nitrogen: A Review and Meta-Analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Liu, T.; Yuan, M.; Ma, X. Effects of Aging Methods on the Adsorption of Antibiotics in Wastewater by Soybean Straw Biochar. J. Sci. Food Agric. 2024, 104, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Dai, B.; Shi, J.; Li, J.; Xia, C. Sustainable Supercapacitor Electrode Based on Activated Biochar Derived from Preserved Wood Waste. Forests 2024, 15, 177. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; He, L.; Li, C.; Wang, Y.; Lu, H.; Yang, S. Microbial Resistance Stability of Rice Straw Biochar with Vermiculite Modification: A Novel Insight into Persistent Free Radicals and Pore Structure. J. Environ. Chem. Eng. 2023, 11, 110572. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, C.; Wang, Y.; He, L.; Lu, H.; Yang, S. Vermiculite Modification Increases Carbon Retention and Stability of Rice Straw Biochar at Different Carbonization Temperatures. J. Clean. Prod. 2020, 254, 120111. [Google Scholar] [CrossRef]
Sample | pH | EC (μS/cm) | C (%) | N (%) | H (%) | S (%) | C/N | H/C |
---|---|---|---|---|---|---|---|---|
KS300 | 6.60 ± 0.03 f | 517 ± 7.07 f | 66.8 ± 0.03 f | 0.31 ± 0.01 d | 3.85 ± 0.01 c | 0.31 ± 0.01 d | 249.8 | 0.69 |
KS500 | 7.35 ± 0.04 d | 469 ± 8.49 g | 79.0 ± 0.09 c | 0.36 ± 0.01 cd | 4.04 ± 0.08 ab | 0.36 ± 0.01 c | 258.6 | 0.61 |
KS700 | 9.23 ± 0.04 ab | 879 ± 5.66 d | 82.8 ± 0.14 a | 0.42 ± 0.01 dc | 4.09 ± 0.06 a | 0.29 ± 0.02 d | 227.6 | 0.59 |
JS300 | 6.23 ± 0.03 g | 583 ± 10.6 e | 51.7 ± 0.20 g | 0.29 ± 0.04 d | 3.84 ± 0.02 c | 0.40 ± 0.02 b | 208.5 | 0.89 |
JS500 | 6.67 ± 0.04 f | 540 ± 7.78 f | 72.6 ± 1.39 e | 0.43 ± 0.03 c | 3.90 ± 0.07 bc | 0.58 ± 0.01 a | 197.3 | 0.64 |
JS700 | 9.01 ± 0.06 c | 863 ± 16.3 d | 81.2 ± 0.09 b | 0.41 ± 0.05 c | 4.05 ± 0.04 ab | 0.57 ± 0.01 a | 232.6 | 0.60 |
RS300 | 6.89 ± 0.05 e | 940 ± 12.7 c | 48.8 ± 0.48 h | 0.62 ± 0.01 b | 3.78 ± 0.02 c | 0.13 ± 0.01 e | 91.7 | 0.93 |
RS500 | 9.18 ± 0.06 b | 1216 ± 16.3 b | 67.5 ± 0.08 f | 0.87 ± 0.03 a | 3.81 ± 0.09 c | 0.15 ± 0.02 e | 90.7 | 0.68 |
RS700 | 9.32 ± 0.04 a | 2278 ± 9.90 a | 74.6 ± 0.14 d | 0.64 ± 0.05 b | 3.94 ± 0.14 abc | 0.15 ± 0.01 e | 135.9 | 0.63 |
Sample | Yield (%) |
---|---|
KS300 | 60.51 |
KS500 | 39.60 |
KS700 | 24.29 |
JS300 | 57.57 |
JS500 | 28.25 |
JS700 | 23.75 |
RS300 | 55.12 |
RS500 | 32.37 |
RS700 | 24.86 |
Sample | Equilibrium Moisture Content (%) | Bulk Density (g/cm3) |
---|---|---|
KS300 | 5.9 | 0.058 |
KS500 | 3.1 | 0.059 |
KS700 | 7.6 | 0.042 |
JS300 | 20.3 | 0.046 |
JS500 | 15.7 | 0.029 |
JS700 | 10.5 | 0.035 |
RS300 | 8.3 | 0.055 |
RS500 | 6.1 | 0.056 |
RS700 | 8.9 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, X.; Zhu, Z.; Luo, X.; Chen, C.; Liu, T.; Zou, L.; Li, S.; Liu, Y. Effects of Raw Materials and Pyrolysis Temperatures on Physicochemical Properties of Biochars Derived from Hemp Stalks. Plants 2025, 14, 2564. https://doi.org/10.3390/plants14162564
An X, Zhu Z, Luo X, Chen C, Liu T, Zou L, Li S, Liu Y. Effects of Raw Materials and Pyrolysis Temperatures on Physicochemical Properties of Biochars Derived from Hemp Stalks. Plants. 2025; 14(16):2564. https://doi.org/10.3390/plants14162564
Chicago/Turabian StyleAn, Xia, Ziyi Zhu, Xiahong Luo, Changli Chen, Tingting Liu, Lina Zou, Shaocui Li, and Yuxue Liu. 2025. "Effects of Raw Materials and Pyrolysis Temperatures on Physicochemical Properties of Biochars Derived from Hemp Stalks" Plants 14, no. 16: 2564. https://doi.org/10.3390/plants14162564
APA StyleAn, X., Zhu, Z., Luo, X., Chen, C., Liu, T., Zou, L., Li, S., & Liu, Y. (2025). Effects of Raw Materials and Pyrolysis Temperatures on Physicochemical Properties of Biochars Derived from Hemp Stalks. Plants, 14(16), 2564. https://doi.org/10.3390/plants14162564