Greens in the Gaps: Diversity and the Ecological Potential of Urban Spontaneous Vegetation in Sidewalk Ecosystems
Abstract
1. Introduction
2. Results
2.1. Pavement Type and Species Found
2.2. Native Species of Thailand
2.3. Alien and Invasive Alien Species
3. Discussion
3.1. Urban Roadside Habitats Provide Living Space for USVs of Different Growth Habits and Life Cycles
3.2. Functional Roles and Greening Potential of USVs
3.3. Alien Species in Urban Environments
3.4. Integrating USVs into Urban Design and Management: Implications and Research Needs
4. Materials and Methods
4.1. Study Area
4.2. Data Collection and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Lehmann, S. Growing biodiverse urban futures: Renaturalization and rewilding as strategies to strengthen urban resilience. Sustainability 2021, 13, 2932. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of urban green spaces: An ecological perspective on human benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Edeigba, B.A.; Ashinze, U.K.; Umoh, A.A.; Biu, P.W.; Daraojimba, A.I.; Edeigba, B.; Ashinze, U.; Umoh, A.; Biu, P.; Daraojimba, A. Urban green spaces and their impact on environmental health: A Global Review. World J. Adv. Res. Rev. 2024, 21, 917–927. [Google Scholar] [CrossRef]
- Grunewald, K.; Bastian, O. Maintaining ecosystem services to support urban needs. Sustainability 2017, 9, 1647. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Bank, W. A Catalogue of Nature-Based Solutions for Urban Resilience; World Bank: Washington, WA, USA, 2021. [Google Scholar]
- Cortinovis, C.; Olsson, P.; Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 2022, 67, 127450. [Google Scholar] [CrossRef]
- O’Sullivan, O.S.; Holt, A.R.; Warren, P.H.; Evans, K.L. Optimising UK urban road verge contributions to biodiversity and ecosystem services with cost-effective management. J. Environ. Manag. 2017, 191, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, E.; Lundholm, J.; Du, X. Spontaneous urban vegetation and habitat heterogeneity in Xi’an, China. Landsc. Urban Plan. 2013, 120, 25–33. [Google Scholar] [CrossRef]
- Mathey, J.; Arndt, T.; Banse, J.; Rink, D. Public perception of spontaneous vegetation on brownfields in urban areas—Results from surveys in Dresden and Leipzig (Germany). Urban For. Urban Green. 2018, 29, 384–392. [Google Scholar] [CrossRef]
- Kühn, N. Intentions for the unintentional: Spontaneous vegetation as the basis for innovative planting design in urban areas. J. Landsc. Archit. 2006, 1, 46–53. [Google Scholar] [CrossRef]
- Bretzel, F.; Vannucchi, F.; Romano, D.; Malorgio, F.; Benvenuti, S.; Pezzarossa, B. Wildflowers: From conserving biodiversity to urban greening—A review. Urban For. Urban Green. 2016, 20, 428–436. [Google Scholar] [CrossRef]
- Del Tredici, P. Spontaneous urban vegetation: Reflections of change in a globalized world. Nat. Cult. 2010, 5, 299–315. [Google Scholar] [CrossRef]
- Colwill, S. The Root of the Problem: Addressing the Conflicts Between Spontaneous Vegetation and Built Landscape; Technische Universität Berlin: Berlin, Germany, 2019. [Google Scholar]
- Lundholm, J. Vegetation of urban hard surfaces. In Urban Ecology: Patterns, Processes, and Applications; Cambridge University Press: Cambridge, UK, 2011; pp. 93–102. [Google Scholar]
- Yalcinalp, E.; Meral, A. Wall vegetation characteristics of urban and sub-urban areas. Sustainability 2017, 9, 1691. [Google Scholar] [CrossRef]
- Benvenuti, S. Weed dynamics in the Mediterranean urban ecosystem: Ecology, biodiversity and management. Weed Res. 2004, 44, 341–354. [Google Scholar] [CrossRef]
- Rask, A.M. Non-Chemical Weed Control on Hard Surfaces: An Investigation of Long-Term Effects of Thermal Weed Control Methods; Forest & Landscape: Aalborg, Denmark, 2012. [Google Scholar]
- Hayasaka, D.; Akasaka, M.; Miyauchi, D.; Box, E.O.; Uchida, T. Qualitative variation in roadside weed vegetation along an urban–rural road gradient. Flora-Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 126–132. [Google Scholar] [CrossRef]
- Hayasaka, D.; Akasaka, M.; Miyauchi, D.; Uchida, T. Classification of roadside weeds along two highways in different climatic zones according to ecomorphological traits. Weed Technol. 2011, 25, 411–421. [Google Scholar] [CrossRef]
- Uchida, T.; Xue, J.; Hayasaka, D.; Arase, T.; Haller, W.T.; Gettys, L.A. The relation between road crack vegetation and plant biodiversity in urban landscape. GEOMATE J. 2014, 6, 885–891. [Google Scholar] [CrossRef]
- Pinsupa, J.; Chindakul, A.; Intanon, S. Distribution and resistance of barnyardgrass to quinclorac in rice fields in Thailand. Adv. Weed Sci. 2022, 40, e020220004. [Google Scholar] [CrossRef]
- Chouychai, W.; Somtrakoon, K. Weed selection for phytoremediation of fluoranthene. J. Agric. Res. Ext. 2019, 36, 1–10. [Google Scholar]
- Bundit, A.; Ostlie, M.; Prom-U-Thai, C. Sunn hemp (Crotalaria juncea) weed suppression and allelopathy at different timings. Biocontrol Sci. Technol. 2021, 31, 694–704. [Google Scholar] [CrossRef]
- Aekrathok, P.; Songsri, P.; Jongrungklang, N.; Gonkhamdee, S. Efficacy of post-emergence herbicides against important weeds of sugarcane in North-East Thailand. Agronomy 2021, 11, 429. [Google Scholar] [CrossRef]
- Srithi, K.; Balslev, H.; Tanming, W.; Trisonthi, C. Weed diversity and uses: A case study from tea plantations in northern Thailand. Econ. Bot. 2017, 71, 147–159. [Google Scholar] [CrossRef]
- Zahidin, N.S.; Saidin, S.; Zulkifli, R.M.; Muhamad, I.I.; Ya’akob, H.; Nur, H. A review of Acalypha indica L.(Euphorbiaceae) as traditional medicinal plant and its therapeutic potential. J. Ethnopharmacol. 2017, 207, 146–173. [Google Scholar] [CrossRef]
- Mourya, P.; Sharma, N.K.; Gupta, M. Antioxidant activity of ethanolic and aqueous extracts ofAlternanthera pungens Kunth. Asian J. Pharm. Pharmacol. 2019, 5, 1091–1096. [Google Scholar] [CrossRef]
- Saqib, F.; Janbaz, K.H. Rationalizing ethnopharmacological uses of Alternanthera sessilis: A folk medicinal plant of Pakistan to manage diarrhea, asthma and hypertension. J. Ethnopharmacol. 2016, 182, 110–121. [Google Scholar] [CrossRef]
- Reyad-ul-Ferdous, M.; Shahjahan, D.S.; Tanvir, S.; Mukti, M. Present biological status of potential medicinal plant of Amaranthus viridis: A comprehensive review. Am. J. Clin. Exp. Med. 2015, 3, 12. [Google Scholar] [CrossRef]
- Rahman, F.M.; Kabir, S.F.; Nurnabi, M.; Chowdhury, A.S.; Sikder, M.A.A. Chemical and Biological Investigations of Axonopus compressus (Sw.) P. Beauv. Bangladesh Pharm. J. 2014, 17, 113–115. [Google Scholar] [CrossRef]
- Xuan, T.D.; Khanh, T.D. Chemistry and pharmacology of Bidens pilosa: An overview. J. Pharm. Investig. 2016, 46, 91–132. [Google Scholar] [CrossRef]
- Mishra, S.; Aeri, V.; Gaur, P.K.; Jachak, S.M. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Res. Int. 2014, 2014, 808302. [Google Scholar] [CrossRef]
- Dey, A.; Abu, A.; Shakar, S.; Rahman, A.; Amin, M. Evaluation of the anti-inflammatory and antipyretic activities of the plant Boerhavia repens.(Family: Nyctaginaceae). J. Nat. Prod. Plant Resour. 2012, 2, 471–474. [Google Scholar]
- Silva, A.A.; Haraguchi, S.K.; Cellet, T.S.P.; Schuquel, I.T.A.; Sarragiotto, M.H.; Vidotti, G.J.; de Melo, J.O.; Bersani-Amado, C.A.; Zanoli, K.; Nakamura, C.V. Resveratrol-derived stilbenoids and biological activity evaluation of seed extracts of Cenchrus echinatus L. Nat. Prod. Res. 2012, 26, 865–868. [Google Scholar] [CrossRef]
- Natrajan, P.; Elumalai, A.; Soundarajan, C.; Iyyampalayam, T. Study of Antibacterial activity of Chloris barbata (SW) Leaves. Int. Res. J. Pharm. Appl. Sci. 2012, 2, 37–40. [Google Scholar]
- Omokhua, A.G.; McGaw, L.J.; Finnie, J.F.; Van Staden, J. Chromolaena odorata (L.) RM King & H. Rob.(Asteraceae) in sub-Saharan Africa: A synthesis and review of its medicinal potential. J. Ethnopharmacol. 2016, 183, 112–122. [Google Scholar]
- Ghosh, P.; Chatterjee, S.; Das, P.; Karmakar, S.; Mahapatra, S. Natural habitat, phytochemistry and pharmacological properties of a medicinal weed—Cleome rutidosperma DC. (Cleomaceae): A comprehensive review. Int. J. Pharm. Sci. Res. 2019, 10, 1605–1612. [Google Scholar]
- Pekamwar, S.; Kalyankar, T.; Kokate, S. Pharmacological activities of Coccinia grandis. J. Appl. Pharm. Sci. 2013, 3, 114–119. [Google Scholar]
- Ghosh, P.; Dutta, A.; Biswas, M.; Biswas, S.; Hazra, L.; Nag, S.K.; Sil, S.; Chatterjee, S. Phytomorphological, chemical and pharmacological discussions about Commelina benghalensis Linn. (Commelinaceae): A review. Pharma Innov. J. 2019, 8, 12–18. [Google Scholar]
- Thongkhao, K.; Pongkittiphan, V.; Phadungcharoen, T.; Tungphatthong, C.; Urumarudappa, S.K.J.; Pengsuparp, T.; Sutanthavibul, N.; Wiwatcharakornkul, W.; Kengtong, S.; Sukrong, S. Differentiation of Cyanthillium cinereum, a smoking cessation herb, from its adulterant Emilia sonchifolia using macroscopic and microscopic examination, HPTLC profiles and DNA barcodes. Sci. Rep. 2020, 10, 14753. [Google Scholar] [CrossRef]
- Khatun, P.; Das, S.K.; Khulna, B. Medicinal and versatile uses of an amazing, obtainable and valuable grass: Cynodon dactylon. Int. J. Pharm. Med. Res. 2020, 8, 1–11. [Google Scholar]
- Kabir, I.; Biswas, S.; Asaduzzaman, M.; Molla, M.; Rafe, M. Neurobehavioral activity study of methanolic whole plants extract of Cyperus rotundus Linn. J. Pharm. Negat. Results 2019, 10, 36–40. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. A review on Cyperus rotundus A potential medicinal plant. IOSR J. Pharm. 2016, 6, 32–48. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Xu, X.; Sulieman, A.A.; Mahdi, A.A.; Na, Y. Effect of extraction conditions on phenolic compounds and antioxidant properties of koreeb (Dactyloctenium aegyptium) seeds flour. J. Food Meas. Charact. 2020, 14, 799–808. [Google Scholar] [CrossRef]
- Karthikumar, S.; Vigneswari, K.; Jegatheesan, K. Screening of antibacterial and antioxidant activities of leaves of Eclipta prostrata (L). Sci. Res. Essays 2007, 2, 101–104. [Google Scholar]
- Adoho, A.C.C.; Zinsou, F.; Olounlade, P.; Azando, E.; Hounzangbe-Adote, M.S.; Gbangboche, A.B. Review of the literature of Eleusine indica: Phytochemical, toxicity, pharmacological and zootechnical studies. J. Pharmacogn. Phytochem. 2021, 10, 29–33. [Google Scholar] [CrossRef]
- Uche, M.E.; Chinyerea, C.G.; Ekweogu, C.N.; Nwankpa, P.; Ugbogu, E.A. Phytochemical analysis, toxicity assessment, and wound healing properties of Emilia sonchifolia L. leaf extract in rats. S. Afr. J. Bot. 2024, 172, 736–746. [Google Scholar] [CrossRef]
- Petrelli, R.; Orsomando, G.; Sorci, L.; Maggi, F.; Ranjbarian, F.; Biapa Nya, P.C.; Petrelli, D.; Vitali, L.A.; Lupidi, G.; Quassinti, L. Biological activities of the essential oil from Erigeron floribundus. Molecules 2016, 21, 1065. [Google Scholar] [CrossRef]
- Kausar, J.; Muthumani, D.; Hedina, A.; Anand, V. Review of the phytochemical and pharmacological activities of Euphorbia hirta Linn. Pharmacogn. J. 2016, 8, 310–313. [Google Scholar] [CrossRef]
- Kumar, S.; Malhotra, R.; Kumar, D. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn. Rev. 2010, 4, 58. [Google Scholar] [CrossRef]
- Mali, P.Y.; Panchal, S.S. A review on phyto-pharmacological potentials of Euphorbia thymifolia L. Anc. Sci. Life 2013, 32, 165–172. [Google Scholar]
- Pavithra, P.; Sreevidya, N.; Verma, R.S. Antibacterial and antioxidant activity of methanol extract of Evolvulus nummularius. Indian J. Pharmacol. 2009, 41, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Macorini, L.F.B.; Radai, J.A.S.; Maris, R.S.; Silva-Filho, S.E.; Leitao, M.M.; Andrade, S.F.d.; Gelves, D.I.A.; Salvador, M.J.; Arena, A.C.; Kassuya, C.A.L. Antiarthritic and antihyperalgesic properties of ethanolic extract from Gomphrena celosioides Mart. (Amaranthaceae) aerial parts. Evid. Based Complement. Altern. Med. 2020, 2020, 4170589. [Google Scholar] [CrossRef]
- Lai, S.-C.; Ho, Y.-L.; Huang, S.-C.; Huang, T.-H.; Lai, Z.-R.; Wu, C.-R.; Lian, K.-Y.; Chang, Y.-S. Antioxidant and antiproliferative activities of Desmodium triflorum (L.) DC. Am. J. Chin. Med. 2010, 38, 329–342. [Google Scholar] [CrossRef]
- Choudhury, S.; Rahaman, C.H.; Mandal, S. Studies on Ipomoea cairica (L.) sweet-A promising ethnomedicinally important plant. J. Innov. Pharm. Biol. Sci. 2015, 2, 378–395. [Google Scholar]
- Mungole, A.J.; Awati, R.; Chaturvedi, A.; Zanwar, P. Preliminary Phytochemical screening of Ipomoea obscura (L)-A hepatoprotective medicinal plant. Int. J. PharmTech Res. 2010, 2, 2307–2312. [Google Scholar]
- Hamsa, T.; Kuttan, G. Evaluation of the anti-inflammatory and anti-tumor effect of Ipomoea obscura (L) and its mode of action through the inhibition of pro inflammatory cytokines, nitric oxide and COX-2. Inflammation 2011, 34, 171–183. [Google Scholar] [CrossRef]
- Sanghai, D.B.; Kumar, S.V.; Srinivasan, K.; Aswatharam, H.; Shreedhara, C. Pharmacognostic and phytochemical investigation of the leaves of Malvastrum coromandelianum (L.) Garcke. Anc. Sci. Life 2013, 33, 39–44. [Google Scholar] [CrossRef]
- Mamatha, B.; Palaksha, M.; Gnanasekaran, D.; Senthilkumar, G.; Tamizmani, T. Melochia corchorifolia L: A review. World J. Pharm. Res. 2018, 7, 482–491. [Google Scholar]
- Das, S.; Mondal, N.; Mondal, S.; Ghosh, P.; Ghosh, C.; Das, C.; Chatterjee, S.; Sirshendu Chatterjee, C. Botanical features, phytochemical and pharmacological overviews of Oldenlandia corymbosa Linn.: A brief review. Pharma Innov. J. 2019, 8, 464–468. [Google Scholar]
- Srikanth, M.; Swetha, T.; Veeresh, B. Phytochemistry and pharmacology of Oxalis corniculata Linn.: A review. Int. J. Pharm. Sci. Res. 2012, 3, 4077. [Google Scholar]
- Mohanasundari, C.; Natarajan, D.; Srinivasan, K.; Umamaheswari, S.; Ramachandran, A. Antibacterial properties of Passiflora foetida L.–a common exotic medicinal plant. Afr. J. Biotechnol. 2007, 6, 2650–2653. [Google Scholar]
- Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol. 2011, 138, 286–313. [Google Scholar] [CrossRef]
- Novitasari, A.; Rohmawaty, E.; Rosdianto, A.M. Physalis angulata Linn. as a medicinal plant. Biomed. Rep. 2024, 20, 1–16. [Google Scholar] [CrossRef]
- Bansal, P.; Paul, P.; Mudgal, J.; Nayak, P.G.; Pannakal, S.T.; Priyadarsini, K.; Unnikrishnan, M. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp. Toxicol. Pathol. 2012, 64, 651–658. [Google Scholar] [CrossRef]
- Modarresi Chahardehi, A.; Ibrahim, D.; Fariza Sulaiman, S. Antioxidant, antimicrobial activity and toxicity test of Pilea microphylla. Int. J. Microbiol. 2010, 2010, 826830. [Google Scholar] [CrossRef]
- Iranshahy, M.; Javadi, B.; Iranshahi, M.; Jahanbakhsh, S.P.; Mahyari, S.; Hassani, F.V.; Karimi, G. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J. Ethnopharmacol. 2017, 205, 158–172. [Google Scholar] [CrossRef]
- Mekap, S.K.; Panda, P.K.; Mishra, S.K. Phytochemical and pharmacological profile of Portulaca pilosa Linn.: A review. J. Environ. Life Sci. 2017, 2, 46–51. [Google Scholar]
- Ajaib, M.; Zikrea, A.; Khan, K.M.; Perveen, S.; Shah, S.; Karim, A. Rivina humilis L.: A potential antimicrobial and antioxidant source. J. Chem. Soc. Pak. 2013, 35, 1384–1398. [Google Scholar]
- Lande, S.; Bhogaonkar, P. Physical characterisation of Dipteracanthus prostatus (Poir.) Nees a medicinal herb. Int. J. Biol. Res. 2018, 3, 60–63. [Google Scholar]
- Sharma, A.; Kumar, A.; Singh, A.K.; Kumar, K.J.; Narasimhan, B.; Kumar, P. Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Ruellia tuberosa L.: A Review. Chem. Biodivers. 2024, 21, e202400292. [Google Scholar] [CrossRef]
- Nischitha, R.; Shivanna, M. Phyto-and myco-chemical profiling, bioactivity, and in silico docking study of endophytic fungi and host—Setaria flavida. Int. Microbiol. 2025, 28, 1–14. [Google Scholar] [CrossRef]
- Adjibode, A.; Tougan, U.; Youssao, A.; Mensah, G.; Hanzen, C.; Koutinhouin, G. Synedrella nodiflora (L.) Gaertn: A review on its phytochemical screening and uses in animal husbandry and medicine. Int. J. Adv. Sci. Tech. Res. 2015, 3, 436–443. [Google Scholar]
- Khaing, Y.Y.; Moe, M.M. Morphological, Microscopical Characters and Antioxidant activity of leaves of Talinum fruticosum (L.) Juss. In Proceedings of the 2nd Myanmar Korea Conference Research Journal, Yangon, Myanmar, 1 August 2019; pp. 540–550. [Google Scholar]
- Zhu, W.; Du, Y.; Meng, H.; Dong, Y.; Li, L. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem. Cent. J. 2017, 11, 60. [Google Scholar] [CrossRef]
- Naqash, S.Y.; Nazeer, R. Anticoagulant, antiherpetic and antibacterial activities of sulphated polysaccharide from Indian medicinal plant Tridax procumbens L. (Asteraceae). Appl. Biochem. Biotechnol. 2011, 165, 902–912. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Prabakaran, R.; Preetha, V. Antimicrobial and antioxidant activities of ethanolic crude extracts of Turnera ulmifolia L. J. Pharm. Sci. Drug Res. Dec. 2014, 6, 329–333. [Google Scholar] [CrossRef]
- Nascimento, M.; Silva, A.; França, L.; Quignard, E.; López, J.; Almeida, M. Turnera ulmifolia L. (Turneraceae): Preliminary study of its antioxidant activity. Bioresour. Technol. 2006, 97, 1387–1391. [Google Scholar] [CrossRef]
- Dash, S.; Bohidar, J.; Das, C.; Mohanty, A.; Meher, A.; Hota, R. Evaluation of Anthelmintic Activity and GC-MS Characterization of Urochloa distachya (L.). Int. J. Pharm. Investig. 2023, 13, 248–254. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 1990, 71, 1232–1237. [Google Scholar] [CrossRef]
- Gilbert, O.; Gilbert, O. Urban Commons. In The Ecology of Urban Habitats; Springer: Dordrecht, The Netherlands, 1989; pp. 68–109. [Google Scholar]
- Hou, S.; Tian, C.; Meng, J.; Liu, C.; Yao, Z. The Impact of Urbanization on the Distribution of Spontaneous Herbaceous Plants in an Ancient City: A Pilot Case Study in Jingzhou, China. Plants 2023, 12, 3353. [Google Scholar] [CrossRef]
- Hu, S.; Jin, C.; Huang, L.; Huang, J.; Luo, M.; Qian, S.; Jim, C.Y.; Song, K.; Chen, S.; Lin, D. Characterizing composition profile and diversity patterns of spontaneous urban plants across China’s major cities. J. Environ. Manag. 2022, 317, 115445. [Google Scholar] [CrossRef]
- Xu, W.; Dai, W.; Ding, Y.; Song, S.; Liu, Q.; Yang, W. Drivers of Spontaneous Plant Communities in Urban Parks: A Case from Nanjing, China. Sustainability 2024, 16, 3841. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Pyšek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.; Murray, B.R. Widespread plant species: Natives versus aliens in our changing world. Biol. Invasions 2011, 13, 1931–1944. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Cheng, Z.; Ye, T.; Chan, Z. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS ONE 2012, 7, e53422. [Google Scholar] [CrossRef]
- Noor, M.; Fan, J.; Kaleem, M.; Akhtar, M.T.; Jin, S.; Nazir, U.; Zhang, C.-J.; Yan, X. Assessment of the changes in growth, photosynthetic traits and gene expression in Cynodon dactylon against drought stress. BMC Plant Biol. 2024, 24, 235. [Google Scholar] [CrossRef]
- Maroco, J.P.; Pereira, J.S.; Chaves, M.M. Growth, photosynthesis and water-use efficiency of two C4Sahelian grasses subjected to water deficits. J. Arid. Environ. 2000, 45, 119–137. [Google Scholar] [CrossRef]
- Rafique, T.; Hameed, M.; Naseer, M.; Rafique, R.; Sadiq, R.; Zikrea, A.; Tehseen, S.; Sajjad, M.R. Comparative leaf anatomy of grasses (Poaceae) in Faisalabad region of Pakistan. Pol. J. Environ. Stud. 2021, 30, 5701–5709. [Google Scholar] [CrossRef]
- Banan, S.A.; Al-Watban, A.A.; Doaigey, A.R.; Alsahli, A.A.; El-Zaidy, M. Anatomical adaptations in species of Poaceae growing in Al-Hair region of Riyadh, Saudi Arabia. Afr. J. Plant Sci. 2019, 13, 201–208. [Google Scholar] [CrossRef]
- Takano, H.; Oliveira Jr, R.; Constantin, J.; Braz, G.; Padovese, J. Growth, Development and Seed Production of Goosegrass1. Planta Daninha 2016, 34, 249–258. [Google Scholar] [CrossRef]
- Fernandez, O. Establishment of Cynodon dactylon from stolon and rhizome fragments. Weed Res. 2003, 43, 130–138. [Google Scholar] [CrossRef]
- Shaukat, S.; Siddiqui, I.; Zarina, A. Seed dispersal pattern of a composite weed Tridax procumbens L. Int. J. Biol. Biotechnol. 2005, 2, 321–327. [Google Scholar]
- Wijesinghe, S.; Yakandawala, K.; Karunarathne, W. Seed Germination of Selected Wild Flowering Species for Low Maintenance Planting Designs. J. Environ. Prof. Sri Lanka 2016, 5, 15. [Google Scholar]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Kowarik, I. Time lags in biological invasions with regard to the success and failure of alien species. In Plant Invasions: General Aspects and Special Problems; Pyšek, P., Prach, K., Rejmánek, M., Wade, M., Eds.; SPB Academic Publishing: Amsterdam, The Netherlands, 1995; pp. 15–38. [Google Scholar]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, O.L. The Ecology of Urban Habitats; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Geslin, B.; Le Féon, V.; Kuhlmann, M.; Vaissière, B.E.; Dajoz, I. The bee fauna of large parks in downtown Paris, France. Ann. Soc. Entomol. Fr. (N.S.) 2015, 51, 487–493. [Google Scholar] [CrossRef]
- Matteson, K.C.; Ascher, J.S.; Langellotto, G.A. Bee richness and abundance in New York City urban gardens. Ann. Entomol. Soc. Am. 2008, 101, 140–150. [Google Scholar] [CrossRef]
- Baldock, K.C.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; Stone, G.N. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142849. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, J.; Guan, M.; Lu, Y.; Liu, H.; Zhao, D. Effects of vegetation structure and environmental characteristics on pollinator diversity in urban green spaces. Urban For. Urban Green. 2023, 84, 127928. [Google Scholar] [CrossRef]
- Berger, J.L.; Daum, S.N.; Hartlieb, M. Simply the green: Urban refuges. Basic Appl. Ecol. 2024, 80, 108–119. [Google Scholar] [CrossRef]
- Wartmann, F.M.; Lorimer, J. Messy natures: The political aesthetics of nature recovery. People Nat. 2024, 6, 2564–2576. [Google Scholar] [CrossRef]
- Nassauer, J.I. Messy ecosystems, orderly frames. Landsc. J. 1995, 14, 161–170. [Google Scholar] [CrossRef]
- Thailand Foundation. Pitee Wai Khru: The Thai Teacher Appreciation Ceremony. Available online: https://thailandfoundation.or.th/pitee-wai-khru-the-thai-teacher-appreciation-ceremony/ (accessed on 7 August 2025).
- Wisetkomolmat, J.; Suppakittpaisarn, P.; Sommano, S.R. Detergent plants of Northern Thailand: Potential sources of natural saponins. Resources 2019, 8, 10. [Google Scholar] [CrossRef]
- Robinson, S.L.; Lundholm, J.T. Ecosystem services provided by urban spontaneous vegetation. Urban Ecosyst. 2012, 15, 545–557. [Google Scholar] [CrossRef]
- van Wilgen, B.W.; Reyers, B.; Le Maitre, D.; Richardson, D.; Schonegevel, L. A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa. J. Environ. Manag. 2008, 89, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, M.; Wilson, J.R.; Cadotte, M.W.; MacIvor, J.S.; Zenni, R.D.; Richardson, D.M. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 2017, 19, 3461–3469. [Google Scholar] [CrossRef]
- Sheppard, C.S.; Lüpke, N. Are alien plant species superior to natives, and is this determined by performance measure and study design? A meta-analysis. Basic Appl. Ecol. 2024, 77, 16–25. [Google Scholar] [CrossRef]
- Alue, B.A.; Salleh Hudin, N.; Mohamed, F.; Mat Said, Z.; Ismail, K. Plant diversity along an urbanization gradient of a tropical city. Diversity 2022, 14, 1024. [Google Scholar] [CrossRef]
- Ilie, D.; Cosmulescu, S. Spontaneous plant diversity in urban contexts: A review of its impact and importance. Diversity 2023, 15, 277. [Google Scholar] [CrossRef]
- Arévalo, J.R.; Delgado, J.D.; Otto, R.; Naranjo, A.; Salas, M.; Fernández-Palacios, J.M. Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect. Plant Ecol. Evol. Syst. 2005, 7, 185–202. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Witt, A.B.; Shen, S.; Khuroo, A.A.; Shrestha, U.B.; Naqinezhad, A. Plant invasions in Asia. In Global Plant Invasions; Springer: Berlin/Heidelberg, Germany, 2022; pp. 89–127. [Google Scholar]
- Jayasundera, M.; Florentine, S.; Tennakoon, K.U.; Chauhan, B.S. Medicinal value of three agricultural weed species of the asteraceae family: A review. Pharmacogn. J. 2021, 13. [Google Scholar] [CrossRef]
- Meteostat. Chiang Mai Weather Station (Station 48327)—Daily Weather Data. Available online: https://meteostat.net/en/station/48327?t=2025-07-16/2025-07-23 (accessed on 30 July 2025).
- Thai Meteorological Department. Monthly Weather Summary in Thailand (December 2023); Meteorological Development Division, Climate Center, Thai Meteorological Department: Bangkok, Thailand, 4 January 2024; 16p. Available online: https://www.tmd.go.th/media/climate/climate-monthly/weather_summary_dec_2023_rev1-0.pdf (accessed on 14 August 2025).
- Tutiempo. Climate Data for Chiang Mai Airport (Station 483270). 2023. Available online: https://en.tutiempo.net/climate/2023/ws-483270.html (accessed on 30 July 2025).
- Pongruengkiat, W.; Tippayawong, K.Y.; Aggarangsi, P.; Pichayapan, P.; Katongtung, T.; Tippayawong, N. Assessing sustainability of Chiang Mai urban development. Discov. Sustain. 2023, 4, 54. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Z.; Crabbe, M.J.C.; Suntichaikul, P. Effects of urban land-use planning on housing prices in Chiang Mai, Thailand. Land 2024, 13, 1136. [Google Scholar] [CrossRef]
- Wanitchakorn, T.; Muangasame, K. The identity change of rural–urban transformational tourism development in Chiang Mai heritage city: Local residents’ perspectives. Int. J. Tour. Cities 2021, 7, 1008–1028. [Google Scholar] [CrossRef]
- Ibrahim, K.M.; Peterson, P.M. Grasses of Washington, DC.; Smithsonian Institution Scholarly Press: Washington, WA, USA, 2019. [Google Scholar]
- Nelson, L.S.; Shih, R.D.; Balick, M.J. Glossary of botanical terms. In Handbook of Poisonous and Injurious Plants; Springer: Berlin/Heidelberg, Germany, 2007; pp. 9–17. [Google Scholar]
- Crozier, A.A. A Dictionary of Botanical Terms; H. Holt: New York, NY, USA, 1892. [Google Scholar]
- Beentje, H. Plant Glossary; Kew, Royal Botanical Gardens: London, UK, 2010. [Google Scholar]
- POWO. Plants of the World Online; Facilitated by the Royal Botanic Gardens, Kew: London, UK, 2024. [Google Scholar]
- Research Center of Forest and Plant Species Conservation. Alien Invasive Plants “พืชต่างถิ่นรุกราน” [in TH]; Department of National Park, Wildlife, and Plant Conservation: Bangkok, Thailand, 2022. [Google Scholar]
No. | Species | Family | Native Status | Growth Habit | Life Cycle | Some Pharmacological Activities | References |
---|---|---|---|---|---|---|---|
1 | Acalypha indica L. | Euphorbiaceae | Native | Erect | Annual | Anthelmintic, anti-ulcer, antibacterial, asthma, bronchitis, and wound healing | [28] |
2 | Acalypha lanceolata Willd. | Euphorbiaceae | Native | Erect | Annual | NA | NA |
3 | Alternanthera pungens Kunth | Amaranthaceae | Alien | Prostrate | Perennial | Anti-inflammatory and antioxidant | [29] |
4 | Alternanthera sessilis (L.) DC. | Amaranthaceae | Native | Decumbent | Perennial | Anti-asthmatic, anti-hypertensive, and anti-spasmodic | [30] |
5 | Amaranthus viridis L. | Amaranthaceae | Invasive | Erect | Annual | Antiallergic, antihepatotoxic, anti-inflammatory, antiulcer, and antiviral | [31] |
6 | Axonopus compressus (Sw.) Beauv. | Poaceae | Invasive | Stoloniferous | Perennial | Antibacterial, antifungal, and antioxidant | [32] |
7 | Bidens pilosa L. | Asteraceae | Invasive | Erect | Annual | Anti-allergy, anti-hypertensive, anti-inflammatory, anti-malarial, anti-microbial, and antioxidant | [33] |
8 | Boerhavia diandra L. | Nyctaginaceae | Alien | Prostrate | Annual | NA | NA |
9 | Boerhavia diffusa L. | Nyctaginaceae | Native | Decumbent | Annual | Anticancer, antidiabetic, anti-inflammation, antifibrinolytic, diuresis, and immunomodulation | [34] |
10 | Boerhavia repens L. | Nyctaginaceae | Native | Prostrate | Annual | Anticonvulsant, antifungal, anti-inflammatory, antiulcer, and anxiolytic | [35] |
11 | Bothriochloa ischaemum (L.) Keng | Poaceae | Native | Geniculate | Perennial | NA | NA |
12 | Cenchrus brownii Roem. & Schult. | Poaceae | Alien | Decumbent | Annual | NA | NA |
13 | Cenchrus echinatus L. | Poaceae | Alien | Geniculate | Annual | Anti-inflammatory and antiproliferative | [36] |
14 | Chloris barbata Sw. | Poaceae | Native | Stoloniferous | Perennial | Antibacterial, anti-diabetic, and antimicrobial | [37] |
15 | Chromolaena odorata (L.) R.M.King & H.Rob. | Asteraceae | Invasive | scandent | Perennial | Antibacterial, anti-inflammatory, antifungal, antioxidant, and cytotoxic | [38] |
16 | Cleome rutidosperma DC. | Cleomaceae | Invasive | Procumbent | Annual | Anti-inflammatory, anti-microbial, antioxidant, diuretic, laxative, and wound healing | [39] |
17 | Coccinia grandis (L.) Voigt | Cucurbitaceae | Native | Climbing | Perennial | Anti-inflammatory, antimicrobial, antioxidant, hepatoprotective, hypoglycemic, and mutagenic | [40] |
18 | Commelina benghalensis L. | Commelinaceae | Native | Decumbent | Annual | Anti-inflammatory, anti-urolithiasis, antimicrobial, antioxidant, antiviral, and hepato-protective, | [41] |
19 | Cyanthillium cinereum (L.) H.Rob. | Asteraceae | Native | Erect | Annual | Anti-inflammatory, antimicrobial, and antioxidant | [42] |
20 | Cynodon dactylon (L.) Pers. | Poaceae | Native | Stoloniferous | Perennial | Anti-inflammatory, antimicrobial, antiparasitic, antioxidant, antiviral, and wound healing | [43] |
21 | Cynodon nlemfuensis Vanderyst | Poaceae | Alien | Stoloniferous | Perennial | NA | NA |
22 | Cyperus compressus L. | Cyperaceae | Native | Tussock | Annual | Antidiabetic, antidiarrheal, antimalarial, antimicrobial, antioxidant, and hypotensive | [44] |
23 | Cyperus rotundus Linn. | Cyperaceae | Native | Tussock | Perennial | Analgesic, antibacterial, anticancer, antidiabetic, anti-inflammatory, antioxidant, and weight control | [45] |
24 | Dactyloctenium aegyptium (L.) Willd. | Poaceae | Native | Stoloniferous | Annual | Anticancer, anti-inflammatory, antioxidant, antipyretic properties, and gastrointestinal effects | [46] |
25 | Eclipta prostrata (L.) L. | Asteraceae | Alien | Erect | Annual | Antibacterial and antioxidant | [47] |
26 | Eleusine indica (L.) Gaertn. | Poaceae | Native | Geniculate | Annual | Antibacterial, antifungal, anti-inflammatory, antioxidant, antiviral, and hepatoprotective | [48] |
27 | Emilia sonchifolia (L.) DC. | Asteraceae | Native | Ascending | Annual | Anti-inflammatory, anti-ulcer, antioxidant, immunomodulatory, and wound healing | [49] |
28 | Eragrostis tenella (L.) P.Beauv. ex Roem. & Schult. | Poaceae | Native | Geniculate | Annual | NA | NA |
29 | Erigeron floribundus (Kunth) Sch. Bip. | Asteraceae | Invasive | Erect | Annual | Anti-inflammatory and immunomodulatory | [50] |
30 | Euphorbia bifida (Hook. & Arn.) | Euphorbiaceae | Native | Erect | Annual | NA | NA |
31 | Euphorbia hirta L. | Euphorbiaceae | Invasive | Erect or prostrate | Annual | Antibacterial, anti-inflammatory, antifungal, antioxidant, and wound healing | [51,52] |
32 | Euphorbia thymifolia L. | Euphorbiaceae | Alien | Prostrate | Perennial | Antibacterial, antifungal, anti-inflammatory, antimicrobial, antioxidant, and larvicidal | [53] |
33 | Evolvulus nummularius (L.) L. | Convolvulaceae | Invasive | Prostrate | Perennial | Antibacterial, anticonvulsant, antihelminthics, antioxidant, and wound healing | [54] |
34 | Gomphrena celosioides Mart. | Amaranthaceae | Invasive | Prostrate | Perennial | Antiarthritic and antihyperalgesic | [55] |
35 | Grona triflora (L.) H.Ohashi & K.Ohashi | Fabaceae | Native | Prostrate | Perennial | Antiproliferative and antioxidant | [56] |
36 | Indigofera hendecaphylla Jacq. | Fabaceae | Native | Prostrate | Perennial | NA | NA |
37 | Ipomoea cairica (L.) Sweet | Convolvulaceae | Native | Climbing | Perennial | Anti-inflammatory, antioxidant, antiviral, and highly potent against malaria | [57] |
38 | Ipomoea obscura (L.) Ker Gawl. | Convolvulaceae | Native | Climbing | Perennial | Anti-inflammatory, antibacterial, and anti-tumor | [58,59] |
39 | Leptopetalum pteritum (Blume) Neupane & N.Wikstr. | Rubiaceae | Native | Ascending | Annual | NA | NA |
40 | Malvastrum coromandelianum (L.) Garcke | Malvaceae | Alien | Erect | Annual | Analgesic, antibacterial, anti-inflammatory, and antinociceptive | [60] |
41 | Melochia corchorifolia L. | Malvaceae | Native | Decumbent | Annual | Anticancer, antibacterial, antioxidant, antiurolithiatic, CNS stimulant, and diuretic | [61] |
42 | Oldenlandia corymbosa L. | Rubiaceae | Native | Erect or procumbent | Annual | Abortifacient effects, antioxidant, cytotoxic, hepatoprotective, and antimicrobial | [62] |
43 | Oxalis corniculata L. | Oxalidaceae | Invasive | Ascending | Perennial | Anticancer, antidiabetic, antinociceptive, hepatoprotective, and hypolipidemic | [63] |
44 | Passiflora foetida L. | Passifloraceae | Invasive | Climbing | Annual | Antibacterial | [64] |
45 | Phyllanthus amarus Schumach. & Thonn. | Phyllanthaceae | Invasive | Erect | Annual | Anticancer, anti-inflammatory, antimicrobial, antiplasmodial, antibacterial, antioxidant, antiviral, and nephroprotective | [65] |
46 | Physalis angulata L. | Solanaceae | Alien | Erect | Annual | Anticancer, antidiabetic, anti-inflammatory, antifibrotic, antibacterial, and antiparasitic | [66] |
47 | Pilea microphylla (L.) Liebm. | Urticaceae | Alien | Ascending | Annual | Antibacterial and antioxidant | [67,68] |
48 | Portulaca oleracea L. | Portulacaceae | Alien | Prostrate | Annual | Anti-fertility, antiulcerogenic, antimicrobial, antioxidant, and bronchodilator | [69] |
49 | Portulaca pilosa L. | Portulacaceae | Alien | Prostrate or ascending | Annual | Analgesic, anti-inflammatory, anti-ulcerogenic, antibacterial, antioxidant, and wound healing | [70] |
50 | Rivina humilis L. | Petiveriaceae | Invasive | Erect | Annual | Antimicrobial and antioxidant | [71] |
51 | Ruellia prostrata Poir. | Acanthaceae | Alien | Procumbent | Perennial | Antibacterial, anti-inflammatory, antioxidant | [72] |
52 | Ruellia tuberosa L. | Acanthaceae | Invasive | Erect | Perennial | Anti-inflammatory, antifungal, hypoglycemic, hypolipidemic, antimicrobial, and wound healing | [73] |
53 | Setaria flavida (Retz.) Veldkamp | Poaceae | Native | Geniculate | Perennial | Antioxidant | [74] |
54 | Spermacoce remota Lam. | Rubiaceae | Invasive | Erect | Perennial | NA | NA |
55 | Sporobolus diandrus (Retz.) P.Beauv. | Poaceae | Native | Tussock | Perennial | NA | NA |
56 | Synedrella nodiflora (L.) Gaertn. | Asteraceae | Invasive | Erect | Annual | Analgesic, anti-inflammatory, antimicrobial, antioxidant, and antipyretic | [75] |
57 | Talinum fruticosum (L.) Juss. | Talinaceae | Invasive | Erect | Annual | Anti-bacterial, anti-inflammatory, anti-tumor, anticarcinogenic, antioxidant, and antiviral | [76] |
58 | Tribulus terrestris L. | Zygophyllaceae | Native | Prostrate | Annual | Anti-inflammatory, anti-tumor, anti-urolithic, antidiabetic, and antioxidant | [77] |
59 | Tridax procumbens L. | Asteraceae | Invasive | Procumbent | Perennial | Anti-inflammatory, anti-tumor, anti-urolithic, antidiabetic, and antioxidant | [78] |
60 | Turnera ulmifolia L. | Turneraceae | Invasive | Erect | Perennial | Anti-inflammatory and antimicrobial | [79,80] |
61 | Urochloa distachyos (L.) T.Q.Nguyen | Poaceae | Native | Stoloniferous | Perennial | Anthelmintic | [81] |
62 | CF-USV7 * | Poaceae | Unknown | Stoloniferous | Unknown | Unknown | Unknown |
63 | CF-USV9 * | Poaceae | Unknown | Erect | Unknown | Unknown | Unknown |
Growth Habit Category | Characteristics | Example of Growth Habits |
---|---|---|
Lying flat |
| Procumbent, decumbent, prostrate, stoloniferous, rhizomatous, rosette. |
Upright |
| Ascending, erect, tussock, scandent, virgate, intricate, divaricate, suckers, coppice shoots. |
Climbing |
| |
Other | Irregular growth. | Geniculate. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoenlertthanakit, N.; Inta, A.; Shannon, D.P.; Boonsuk, B.; Tiansawat, P. Greens in the Gaps: Diversity and the Ecological Potential of Urban Spontaneous Vegetation in Sidewalk Ecosystems. Plants 2025, 14, 2542. https://doi.org/10.3390/plants14162542
Charoenlertthanakit N, Inta A, Shannon DP, Boonsuk B, Tiansawat P. Greens in the Gaps: Diversity and the Ecological Potential of Urban Spontaneous Vegetation in Sidewalk Ecosystems. Plants. 2025; 14(16):2542. https://doi.org/10.3390/plants14162542
Chicago/Turabian StyleCharoenlertthanakit, Nadchawan, Angkhana Inta, Dia Panitnard Shannon, Boonchuang Boonsuk, and Pimonrat Tiansawat. 2025. "Greens in the Gaps: Diversity and the Ecological Potential of Urban Spontaneous Vegetation in Sidewalk Ecosystems" Plants 14, no. 16: 2542. https://doi.org/10.3390/plants14162542
APA StyleCharoenlertthanakit, N., Inta, A., Shannon, D. P., Boonsuk, B., & Tiansawat, P. (2025). Greens in the Gaps: Diversity and the Ecological Potential of Urban Spontaneous Vegetation in Sidewalk Ecosystems. Plants, 14(16), 2542. https://doi.org/10.3390/plants14162542