Identification of Candidate Genes Related to the Husk Papillae in Foxtail Millet (Setaria italica (L.) P. Beauv)
Abstract
1. Introduction
2. Results
2.1. Analysis of Water Uptake and Germination of Seeds with and Without Papillae on the Husks
2.2. Genetic Analysis of Papillae on the Husk in Foxtail Millet
2.3. Loci of Papillae on the Husk Identified Based on BSA-Seq
2.4. BSA Co-Localization Analysis Based on Two F2 Populations
2.5. Expression Analysis of Candidate Genes for Papilla Density at Different Developmental Stages
2.6. Functional Prediction of Candidate Genes for Papilla Density
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Determination of Water Uptake and Germination of Seeds
4.3. Phenotypic Data Collection and Analysis
4.4. DNA Extraction and Quality Detection
4.5. BSA-Seq Analysis
4.6. RNA-Seq Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSA-Seq | Bulked Segregant Analysis Sequencing |
SNP | Single Nucleotide Polymorphism |
InDel | Insertion/Deletion |
SEM | Scanning Electron Microscopy |
FPKM | Fragments Per Kilobase of Transcript Per Million Mapped Reads |
References
- Hu, H.; Mauro-Herrera, M.; Doust, A.N. Domestication and improvement in the model C4 grass, Setaria. Front. Plant Sci. 2018, 9, 719. [Google Scholar] [CrossRef]
- Lee, G.A.; Crawford, G.W.; Liu, L.; Chen, X. Plants and people from the early nolithic to Shang periods in North China. Proc. Natl. Acad. Sci. USA 2007, 104, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, F.; Ahmad, Z.; Ul Hassan, M.; Wang, R.; Diao, X.; Li, X. Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses: A special perspective of responses to nitrogen and phosphate limitations. Front. Plant Sci. 2020, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Zhao, L.; Zhao, X.; Li, X.; Dong, S.; Zhang, L.; Guo, P.; Yuan, X.; Diao, X. The relationship between ecological factors and commercial quality of high-quality foxtail millet “Jingu 21”. Food Res. Int. 2023, 163, 112225. [Google Scholar] [CrossRef] [PubMed]
- Gu, S. Relationship between foxtail millet growth and environmental factors. In Foxtail Millet Cultivation and Production in China; Chinese Agricultural Press: Beijing, China, 1987; pp. 63–71. [Google Scholar]
- Yu, A.; Zhao, J.; Wang, Z.; Cheng, K.; Zhang, P.; Tian, G.; Liu, X.; Guo, E.; Du, Y.; Wang, Y. Transcriptome and metabolite analysis reveal the drought tolerance of foxtail millet significantly correlated with phenylpropanoids-related pathways during germination process under PEG stress. BMC Plant Biol. 2020, 20, 274. [Google Scholar] [CrossRef]
- Xie, J.; Li, Y.; Jiang, G.; Sun, H.; Liu, X.; Han, L. Seed color represents salt resistance of alfalfa seeds (Medicago sativa L.): Based on the analysis of germination characteristics, seedling growth and seed traits. Front. Plant Sci. 2023, 14, 1104948. [Google Scholar] [CrossRef]
- Zhu, M.; Dai, S.; Ma, Q.; Li, S. Identification of the initial water-site and movement in Gleditsia sinensis seeds and its relation to seed coat structure. Plant Methods 2021, 17, 55. [Google Scholar] [CrossRef]
- Koizumi, M.; Kikuchi, K.; Isobe, S.; Ishida, N.; Naito, S.; Kano, H. Role of seed coat in imbibing soybean seeds observed by micro-magnetic resonance imaging. Ann. Bot. 2008, 102, 343–352. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Sami, A.; Chen, Z.P.; Fatima, M.; Zheng, W.Y.; Xu, Q.Q.; Lei, Y.H.; Jin, X.Z.; Zhang, H.; Li, Y.; et al. Effects of microscopic testa color and morphologyon the water uptake ability and drought tolerance of germination-stage rapeseed (Brassica napus L.). Bioengineered 2021, 12, 9341–9355. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Wu, N.; Yang, X.; Diao, X. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). PLoS ONE 2011, 6, e19726. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, J.; Wu, N.; Liu, K.; Xu, D.; Li, Q. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE 2009, 4, e4448. [Google Scholar] [CrossRef]
- Szymanski, D.B.; Lloyd, A.M.; Marks, M.D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 2000, 5, 214–219. [Google Scholar] [CrossRef]
- Yang, C.; Ye, Z. Trichomes as models for studying plant cell differentiation. Cell Mol. Life Sci. 2013, 70, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Liu, G.; Shi, F.; Jones, A.D.; Beaudry, R.M.; Howe, G.A. The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Cell Physiol. 2010, 154, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Maes, L.; Nieuwerburgh, F.V.; Zhang, Y.; Reed, D.W.; Pollier, J.; Casteele, S.V.; Inzé, D.; Covello, P.S.; Deforce, D.L.; Goossens, A. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol. 2011, 189, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Pang, M.; Nah, G.; Shi, X.; Ye, W.; Stelly, D.M.; Chen, Z. MiR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 2014, 5, 3050. [Google Scholar] [CrossRef]
- Brown, G.D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010, 15, 7603–7698. [Google Scholar] [CrossRef]
- Pattanaik, S.; Patra, B.; Singh, S.K.; Yuan, L. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front. Plant Sci. 2014, 5, 259. [Google Scholar] [CrossRef]
- Tominagawada, R.; Nukumizu, Y.; Sato, S.; Kato, T.; Tabata, S.; Wada, T. Functional divergence of MYB-related genes, WEREWOLF and AtMYB23 in Arabidopsis. Biosci. Biotechnol Biochem. 2012, 76, 883–887. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Zhu, D.; Cui, S.; Li, X.; Cao, Y.; Ma, L. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. J. Biol. Chem. 2012, 287, 14109–14121. [Google Scholar] [CrossRef]
- Walker, A.R.; Davison, P.A.; Bolognesi-Winfield, A.C.; James, C.M.; Srinivasan, N.; Blundell, T.L.; Esch, J.J.; Marks, M.D.; Gray, J.C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 1999, 11, 1337–1350. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, J. Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of GLABRA2. Plant Cell Physiol. 2008, 49, 1792–1804. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Chen, M.; Shen, Q.; Li, L.; Fu, X.; Pan, Q.; Tang, Y.; Shi, P.; Lv, Z.; Jiang, W.; et al. HOMEODOMAIN PROTEIN1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytol. 2017, 213, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Kay, Q.; Daoud, H.S.; Stirton, C.H. Pigment distribution, light reflection and cell structure in petals. Bot. J. Linn. Soc. 1981, 83, 57–84. [Google Scholar] [CrossRef]
- Baumann, K.; Perez-Rodriguez, M.; Bradley, D.; Venail, J.; Bailey, P.; Jin, H.; Koes, R.; Roberts, K.; Martin, C. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 2007, 134, 1691–1701. [Google Scholar] [CrossRef]
- Noda, K.; Glover, B.J.; Linstead, P.; Martin, C. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 1994, 369, 661–664. [Google Scholar] [CrossRef]
- Whitney, H.M.; Bennett, K.M.; Dorling, M.; Sandbach, L.; Prince, D.; Chittka, L.; Glover, B.J. Why do so many petals have conical epidermal cells? Ann. Bot. 2011, 108, 609–616. [Google Scholar] [CrossRef]
- Gorton, H.L.; Vogelmann, T.C. Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol. 1996, 112, 879–888. [Google Scholar] [CrossRef]
- Spaethe, J.; Tautz, J.; Chittka, L. Visual constraints in foraging bumble bees: Flower size and colour affect search time and flight behavior. Proc. Natl. Acad. Sci. USA 2001, 98, 3898–3903. [Google Scholar] [CrossRef]
- Perez-Rodriguez, M.; Jaffe, F.W.; Butelli, E.; Glover, B.J.; Martin, C. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 2005, 132, 359–370. [Google Scholar] [CrossRef]
- Van-Houwelingen, A.; Souer, E.; Spelt, K.; Kloos, D.; Mol, J.; Koes, R. Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J. 1998, 13, 39–50. [Google Scholar] [CrossRef]
- Romero, I.; Fuertes, A.; Benito, M.J.; Malpica, J.M.; Leyva, A.; Paz-Ares, J. More than 80 R2R3 MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J. 1998, 14, 273–284. [Google Scholar] [CrossRef]
- Martin, C.; Bhatt, K.; Baumann, K.; Jin, H.L.; Zachgo, S.; Roberts, K.; Schwarz-Sommer, Z.; Glover, B.; Perez-Rodrigues, M. The mechanics of cell fate determination in petals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2002, 357, 809–813. [Google Scholar] [CrossRef]
- Kou, J.; Bai, X.L.; Fen, C.; Ren, D.M.; Zhang, L.; Fu, A. Light microscope observation of leaf papillae and mammillae in pottiaceae and their taxonomic sense. Acta Bot. Boreal.-Occident. Sin. 2012, 32, 2224–2231. [Google Scholar]
- Yoo, J.H.; Park, J.H.; Cho, S.H.; Yoo, S.C.; Li, J.; Zhang, H.; Kim, K.S.; Koh, H.J.; Paek, N.C. The rice bright green leaf (bgl) locus encodes Osropgef10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol. Biol. 2011, 77, 631–641. [Google Scholar] [CrossRef]
- Rashid, N.; Zafar, M.; Ahmad, M.; Malik, K.; Haq, I.U.; Shah, S.N.; Mateen, A.; Ahmed, T. Intraspecific variation in seed morphology of tribe vicieae (Papilionoidae) using scanning electron microscopy techniques. Microsc. Res. Tech. 2018, 81, 298–307. [Google Scholar] [CrossRef]
- Wu, Y.H.; Cheng, J.Q.; Feng, H.Y.; An, L.Z.; Gao, Q.; Cheng, G.D. Advances of research on desiccation-tolerant moss. J. Desert Res. 2004, 24, 25–31. [Google Scholar]
- Chang, J.; Yu, T.; Gao, S.; Xiong, C.; Xie, Q.; Li, H.; Ye, Z.; Yang, C. Fine mapping of the dialytic gene that controls multicellular trichome formation and stamen development in tomato. Theor. Appl. Genet. 2016, 129, 1531–1539. [Google Scholar] [CrossRef]
- Gou, J.Y.; Wang, L.J.; Chen, S.P.; Hu, W.L.; Chen, X.Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007, 17, 422–434. [Google Scholar] [CrossRef]
- Wang, L.; Cook, A.; Patrick, J.W.; Chen, X.Y.; Ruan, Y.L. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by sup-pressing a cohort of regulatory genes via sugar signaling. Plant J. 2014, 78, 686–696. [Google Scholar] [CrossRef]
- Mølhøj, M.; Jørgensen, B.; Ulvskov, P.; Borkhardt, B. Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1,4-beta-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells. Plant Mol. Biol. 2001, 46, 263–275. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Sami, A.; Xu, Q.Q.; Wu, L.L.; Zheng, W.Y.; Chen, Z.P.; Jin, X.Z.; Zhang, H.; Li, Y.; Yu, Y.; et al. Effects of seed priming treatments on the germination and development of two rapeseed (Brassica napus L.) varieties under the co-influence of low temperature and drought. PLoS ONE 2021, 16, e0257236. [Google Scholar] [CrossRef]
- Aliyev, R.T.; Coskunçelebi, K.; Beyazoğlu, O.; Hacieva, S.I. Alterations in the genome of wheat seedlings grown under drought stress and the effect of gibberellic acid on these alterations. Riv. Biol. 2000, 93, 183–189. [Google Scholar]
- Porter, S.S. Adaptive divergence in seed color camouflage in contrasting soil environments. New Phytol. 2013, 197, 1311–1320. [Google Scholar] [CrossRef]
- Thompson, S.E.; Assouline, S.; Chen, L.; Trahktenbrot, A.; Svoray, T.; Katul, G.G. Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development. Mov Ecol. 2014, 2, 7. [Google Scholar] [CrossRef]
- Maurel, C.; Verdoucq, L.; Luu, D.T.; Santoni, V. Plant aquaporins: Membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 2008, 59, 595–624. [Google Scholar] [CrossRef]
- Lee, J.J.; Woodward, A.W.; Chen, Z.J. Gene expression changes and early events in cotton fibre development. Ann. Bot. 2007, 100, 1391–1401. [Google Scholar] [CrossRef]
- Chardon, F.; Bedu, M.; Calenge, F.; Klemens, P.A.; Spinner, L.; Clement, G.; Chietera, G.; Léran, S.; Ferrand, M.; Lacombe, B.; et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr. Biol. 2013, 23, 697–702. [Google Scholar] [CrossRef]
- Klemens, P.A.W.; Patzke, K.; Trentmann, O.; Poschet, G.; Büttner, M.; Schulz, A.; Marten, I.; Hedrich, R.; Neuhaus, H.E. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytol. 2014, 202, 188–197. [Google Scholar] [CrossRef]
- Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef]
- Doyle, J.; Doyle, J.L. Isolation of Plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
Population | Total Plants | Papilla Plants | Non-Papilla Plants | Observed Segregation Ratio | Expected Segregation Ratio | Chi-Square Test (χ2) | p |
---|---|---|---|---|---|---|---|
JG36 | 15 | 15 | 0 | - | - | - | - |
HJ3 | 15 | 0 | 15 | - | - | - | - |
F1 | 15 | 15 | 0 | - | - | - | - |
F2 (JG36 × HJ3) | 164 | 128 | 36 | 3.6:1 | 3:1 | 0.813 | 0.367 |
Population | Total Plants | Papilla Plants | Non-Papilla Plants | Observed Segregation Ratio | Expected Segregation Ratio | Chi-Square Test (χ2) | p |
---|---|---|---|---|---|---|---|
JG28 | 15 | 15 | 0 | - | - | - | - |
HJK2 | 15 | 0 | 15 | - | - | - | - |
F1 | 15 | 15 | 0 | - | - | - | - |
F2 (JG28 × HJK2) | 182 | 139 | 43 | 3.2:1 | 3:1 | 0.183 | 0.669 |
Samples | Raw Bases (Gb) | Clean Bases (Gb) | Q30 (%) | Mapped Reads | Mapping Rate (%) | Number of SNPs | Number of InDels |
---|---|---|---|---|---|---|---|
1-P1 (JG36, papillae) | 31.7 | 30.7 | 94.50 | 196,594,755 | 96.17 | 2,002,017 | 255,095 |
1-P2 (HJ3, non-papillae) | 31.1 | 29.7 | 94.48 | 192,911,451 | 97.29 | 719,803 | 98,418 |
1-papillae_bulk | 53.6 | 51.2 | 94.67 | 331,208,868 | 97.00 | 2,113,196 | 283,084 |
1-non-papillae_bulk | 53.6 | 52.1 | 94.75 | 337,187,736 | 97.04 | 2,092,266 | 281,108 |
2-P1 (JG28, papillae) | 53.9 | 52.9 | 94.79 | 343,561,941 | 97.43 | 2,339,553 | 294,988 |
2-P2 (HJK2, non-papillae) | 54.1 | 48.7 | 92.00 | 308,643,536 | 95.05 | 1,297,415 | 172,874 |
2-papillae_bulk | 51.0 | 49.9 | 94.30 | 322,903,543 | 97.04 | 2,567,165 | 340,174 |
2-non-papillae_bulk | 53.4 | 52.0 | 94.17 | 334,905,576 | 96.61 | 2,537,469 | 338,819 |
Gene ID | Gene Names | Homologous Gene | Function Annotation of Homologous Genes |
---|---|---|---|
Seita.5G007300 | SiTIP4;2.1 | LOC_Os01g13130 | Promoting the development of multicellular hairy bodies in tomatoes [39] and the elongation of cotton fibers [40]. |
Seita.5G007400 | SiTIP4;2.2 | LOC_Os01g13130 | |
Seita.5G007500 | SiTIP4;2.3 | LOC_Os01g13130 | |
Seita.5G021600 | SiSWEET16 | LOC_Os03g22200 | Regulating vacuolar sugar homeostasis (if sugar transport) affects the initiation and elongation of cotton fibers (through sugar signaling) [41]. |
Seita.5G022400 | SiGH9B16 | LOC_Os08g02220 | Participating in cell wall remodeling (such as cellulose synthesis) and promoting the thickening and strengthening of the secondary wall of cotton fibers [42]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.; Yang, Y.; Chen, Z.; Gong, X.; Ma, F.; Duan, M.; Wang, L.; Han, Y. Identification of Candidate Genes Related to the Husk Papillae in Foxtail Millet (Setaria italica (L.) P. Beauv). Plants 2025, 14, 2535. https://doi.org/10.3390/plants14162535
Tan M, Yang Y, Chen Z, Gong X, Ma F, Duan M, Wang L, Han Y. Identification of Candidate Genes Related to the Husk Papillae in Foxtail Millet (Setaria italica (L.) P. Beauv). Plants. 2025; 14(16):2535. https://doi.org/10.3390/plants14162535
Chicago/Turabian StyleTan, Meixia, Yang Yang, Zhe Chen, Xiangyuan Gong, Fangfang Ma, Ming Duan, Lidong Wang, and Yuanhuai Han. 2025. "Identification of Candidate Genes Related to the Husk Papillae in Foxtail Millet (Setaria italica (L.) P. Beauv)" Plants 14, no. 16: 2535. https://doi.org/10.3390/plants14162535
APA StyleTan, M., Yang, Y., Chen, Z., Gong, X., Ma, F., Duan, M., Wang, L., & Han, Y. (2025). Identification of Candidate Genes Related to the Husk Papillae in Foxtail Millet (Setaria italica (L.) P. Beauv). Plants, 14(16), 2535. https://doi.org/10.3390/plants14162535