Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Time and Place of Testing
2.2. Experimental Design
2.3. Determination of Indicators
2.4. Metabolite Testing and Data Analysis
2.5. Data Analysis of Physiological Indicators
3. Results
3.1. Growth Indices and Root Vigor
3.2. Leaf Biochemical Indicators of Salt Tolerance
3.3. Fruit and Plant Biomass, Nutrient Concentration, and Yield in Tomato
3.3.1. Biomass Production and Yield of Tomato Fruits and Plants
3.3.2. Plant and Fruit Nutrient Concentrations
3.4. Fruit Quality and DEMs Analysis
3.5. Soil Nutrients, pH, EC, and Soil Enzymes
3.5.1. Soil Nutrients, pH, and EC
3.5.2. Soil Enzyme Activities
3.5.3. Correlation Analysis of Soil Nutrients and Soil Enzymes
3.6. Comprehensive Evaluation of PCA
4. Discussion
4.1. Growth Indices and Root Vigor
4.2. Leaf Biochemical Indicators of Salt Tolerance
4.3. Fruit and Plant Biomass, Nutrient Concentration, and Yield in Tomato
4.4. Tomato Quality and Differential Metabolites
4.5. Analysis of the Effect of Different Levels of N, P, and K on Soil Indicators
5. Conclusions
- (1)
- N at 8 mmol·L−1 was able to further promote vegetative growth of plant and plant biomass accumulation by promoting the accumulation of aboveground nitrogen content but reduced single fruit weight and tomato quality indicators by promoting the vegetative growth of plants. At the same time, this concentration caused most of the soil nutrient concentration to decrease and soil EC and pH to increase, but it can promote soil enzyme activity. For leaf resistance indexes, this concentration was able to suppress MDA concentration while increasing Pro concentration.
- (2)
- Amounts of 0.67 mmol·L−1 of P and 12 mmol·L−1 of K were able to promote both the vegetative growth of plants and tomato quality formation; however, they were unfavorable to the accumulation of plant nutrients and biomass. The 1.33 mmol·L−1 of P promoted both plant nutrients and biomass, and for the index of resistance this concentration was able to promote POD, Pro, and CAT, although it did not inhibit MDA.
- (3)
- Although 0.67 mmol·L−1 of P increased soil EC, it was beneficial to soil nutrients, soil enzyme activities, and soil pH. Although 16 mmol·L−1 of K increased soil available potassium concentration it was inhibitory to most other nutrients and to soil peroxidase and urease, and it also led to an increase in soil EC. K at 16 mmol·L−1 had an inhibitory effect on the MDA concentration in the leaves, while being able to increase the Pro concentration, and this concentration had little effect on SOD, POD, and CAT.
- (4)
- From the metabolomics analysis it can be seen that the overall quality of the T2 treatment was higher than that of the T8 treatment due to the significant increase in the concentrations of Ferulic acid, Cinnamic acid, Caffeic acid, Coumarin, and (-)-Epigallocatechin, which are closely related to quality. And from PCA the T1 treatment had the best overall evaluation and the T5 treatment had the worst overall evaluation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Tian, W.; Zheng, W.; Shah, S.; Li, J.; Wang, X.; Zhang, X. Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis. Agric. Water Manag. 2023, 280, 108213. [Google Scholar] [CrossRef]
- Ma, J.; Li, Z.; Jiang, W.; Liu, J. Effects of Different Salinity Levels in Drip Irrigation with Brackish Water on Soil Water-Salt Transport and Yield of Protected Tomato (Solanum lycopersicum). Agronomy 2023, 13, 2442. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, P.; Li, J.; Cao, Y.; Xu, W.; Li, J. Transcriptional changes during tomato ripening and influence of brackish water irrigation on fruit transcriptome and sugar content. Plant Physiol. Biochem. 2019, 145, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Gao, Y.; Wang, H.; Cao, Y.; Li, J. Combined application of gasification filter cake and Portulaca oleracea to promote soil quality and tomato yields under irrigation with brackish water. Hortic. Plant J. 2025, 11, 1607–1620. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y.; Puig-Bargués, J.; Zhou, B.; Liu, Z.; Muhammad, T.; Liang, H.; Maitusong, M.; Wang, Z.; Li, Y. Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas. Agric. Water Manag. 2023, 289, 108544. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Zhan, H.; Yang, S. Effect of long-term saline mulched drip irrigation on soil-groundwater environment in arid Northwest China. Sci. Total Environ. 2022, 820, 153222. [Google Scholar] [CrossRef]
- Yang, H.; Shukla, M.K.; Du, T. Assessment of plant mineral nutrition concentrations of tomato irrigated with brackish water and RO concentrate. J. Plant Nutr. 2023, 46, 4639–4656. [Google Scholar] [CrossRef]
- Souguir, D.; Berndtsson, R.; Mzahma, S.; Filali, H.; Hachicha, M. Vicia–Micronucleus Test Application for Saline Irrigation Water Risk Assessment. Plants 2022, 11, 462. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Tavallali, V.; Esmaili, S.; Karimi, S. Nitrogen and potassium requirements of tomato plants for the optimization of fruit quality and antioxidative capacity during storage. J. Food Meas. Charact. 2018, 12, 755–762. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Z.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. Effects of nitrogen application level on the physiological characteristics, yield and fruit quality of blackberry. Sci. Hortic. 2023, 313, 111915. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Tang, Z.; Pei, S.; Zeng, H.; Zhang, C.; Dai, Y.; Li, Z.; et al. Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A global meta-analysis. Sci. Hortic. 2021, 290, 110553. [Google Scholar] [CrossRef]
- Liu, S.; Qiang, X.; Liu, H.; Han, Q.; Yi, P.; Ning, H.; Li, H.; Wang, C.; Zhang, X. Effects of Nutrient Solution Application Rates on Yield, Quality, and Water-Fertilizer Use Efficiency on Greenhouse Tomatoes Using Grown-in Coir. Plants 2024, 13, 893. [Google Scholar] [CrossRef]
- Derrick, M.; Oosterhuis, D.A.L.; Pettigrew, E.M.K.A.; Pettigrew, W.T. The Physiology of Potassium in Crop Production. Adv. Agron. 2014, 126, 203–233. [Google Scholar]
- Jiang, W.; Zhang, J.; Jia, Z.; Zhang, T.; Zhang, W.-J.; Wei, M. Physiological and Nutrient Responses to Nitrogen, Phosphorus, or Potassium Deficiency of Hydroponically Grown Strawberry. Hortscience 2023, 58, 628–634. [Google Scholar] [CrossRef]
- Almeselmani, M.; Pant, R.C.; Singh, B. Potassium Level and Physiological Response and Fruit Quality in Hydroponically Grown Tomato. Int. J. Veg. Sci. 2010, 16, 85–99. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Yao, C.; Feng, Y.; Wang, H.; Kong, Y.; Riaz, U.; Zaman, Q.U.; Sultan, K.; Fahad, S.; et al. The Correct Combination and Balance of Macronutrients Nitrogen, Phosphorus and Potassium Promote Plant Yield and Quality Through Enzymatic and Antioxidant Activities in Potato. J. Plant Growth Regul. 2024, 43, 4716–4734. [Google Scholar] [CrossRef]
- Arbačauskas, J.; Vaišvila, Z.J.; Staugaitis, G.; Žičkienė, L.; Masevičienė, A.; Šumskis, D. The Influence of Mineral NPK Fertiliser Rates on Potassium Dynamics in Soil: Data from a Long-Term Agricultural Plant Fertilisation Experiment. Plants 2023, 12, 3700. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, M.; Liu, Z.; Zheng, W.; Zhu, Q.; Wan, Y. Maize yield and economic return with controlled-release urea. Nutr. Cycl. Agroecosyst. 2019, 115, 427–440. [Google Scholar] [CrossRef]
- Shirsekar, V.; Hegshetye, J.; Urunkar, S.; Masurkar, A. NPK and Oxygen Regulation System for Hydroponics; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Fozia; Yike, G.; Zahid, A.; Naveed, S.A.; Attia, K.A.; Mohammed, A.A.; Chishti, S.A.; Uzair, M. Exogenous application of salicylic acid and NPK promotes tomato growth parameters, yield, and nutraceutical quality under cold stress. Not. Bot. Horti Agrobot. 2024, 52, 13667. [Google Scholar] [CrossRef]
- Almeida Neta, M.N.; Mota, W.F.D.; Pegoraro, R.F.; Pacheco, M.C.; Batista, C.M.; Soares, M.d.C. Agronomic yield and quality of industrial tomatoes under NPK doses. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 59–64. [Google Scholar] [CrossRef]
- Imran. Growing of off-season tomato in high tunnel and its nutritional value augmentation with integrated nutrients management. J. Plant Nutr. 2023, 46, 1009–1018. [Google Scholar] [CrossRef]
- Raiesi Ardali, T.; Ma Mani, L.; Chorom, M.; Motamedi, E.; Gharebaba, M.F. A biocompatible NPK+Fe+Zn slow release fertilizer: Synthesis and its evaluation in tomato plant growth improvement. Sci. Rep. 2024, 14, 4640. [Google Scholar] [CrossRef] [PubMed]
- Elshayb, O.M.; Ghazy, H.A.; Wissa, M.T.; Farroh, K.Y.; Wasonga, D.O.; Seleiman, M.F. Chitosan-based NPK nanostructure for reducing synthetic NPK fertilizers and improving rice productivity and nutritional indices. Front. Sustain. Food Syst. 2024, 8, 1464021. [Google Scholar] [CrossRef]
- Li, W.; Lu, X.; Li, J. The effect of organic nutrient solution on flavor in ripe cherry tomato fruit—Transcriptome and metabolomic analyses. Environ. Exp. Bot. 2022, 194, 104721. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Z.; Luo, J.; Zhang, Y.; Jiang, N.; Khattak, W.A. Transcriptome analysis of sugar and acid metabolism in young tomato fruits under high temperature and nitrogen fertilizer influence. Front. Plant Sci. 2023, 14, 1197553. [Google Scholar] [CrossRef]
- Wu, Y. Measure the length and width of the leaves to calculate the leaf area of tomatoes. Bull. Agric. Sci. Technol. 1980, 12, 20–21. [Google Scholar]
- Gao, J. Experimental Guidance for Plant Physiology; Higher Education Press: Beijing, China, 2006; p. 59. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; Agricultural Publishing House: Beijing, China, 2005. [Google Scholar]
- Li, J.; Zhou, Z.; Gao, Y. Effects of Water Stress and Potassium Fertilizer on Yield and Quality of Cherry Tomatoes. J. Northeast. Agric. Univ. 2013, 44, 97–103. [Google Scholar] [CrossRef]
- Lawlor, D.W. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. J. Exp. Bot. 2002, 53, 773–787. [Google Scholar] [CrossRef]
- Yang, W.; Sigrimis, N.; Li, M. Detection and Diagnosis of Nutrient Elements in Greenhouse Cucumber Leaves Based on Multispectral Image Analysis. Spectrosc. Spect. Anal. 2010, 30, 210–213. [Google Scholar]
- Vos, J.; Putten, P.E.L.V.; Birch, C.J. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crop. Res. 2005, 93, 64–73. [Google Scholar] [CrossRef]
- Shu, Y.; Huang, G.; Zhang, Q.; Peng, S.; Li, Y. Reduction of photosynthesis under P deficiency is mainly caused by the decreased CO2 diffusional capacities in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2023, 198, 107680. [Google Scholar] [CrossRef]
- Whitcher, C.L.; Kent, M.W.; Reed, D.W. Phosphorus concentration affects new guinea impatiens and vinca in recirculating subirrigation. Hortscience 2005, 40, 2047–2051. [Google Scholar] [CrossRef]
- Kim, H.; Li, X. Effects of Phosphorus on Shoot and Root Growth, Partitioning, and Phosphorus Utilization Efficiency in Lantana. Hortscience 2016, 51, 1001–1009. [Google Scholar] [CrossRef]
- Chen, J.; Tan, L.; Yu, C.; Zhu, A.; Chen, P.; Wang, Y.; Zhu, T.; Xiong, H. Effects of Nitrogen Levels on Root Traits of Ramie Genotypes with Different Nitrogen Efficiencies. Pratacult. Sci. 2017, 34, 2316–2324. [Google Scholar]
- Li, C.; Yang, Z.; Zhang, C.; Luo, J.; Zhang, F.; Qiu, R. Effects of Nitrogen Application in Recovery Period after Different High Temperature Stress on Plant Growth of Greenhouse Tomato at Flowering and Fruiting Stages. Agronomy 2023, 13, 1439. [Google Scholar] [CrossRef]
- Lian, H.; Xie, X.; Li, X.; Huang, C.; Li, Y.; Li, X.; Ma, G. Effects of Phosphorus on Physiologically Active Substances in the Root System of Melon Seedlings. J. Nucl. Agric. Sci. 2015, 29, 1632–1639. [Google Scholar]
- Razmjooei, Z.; Etemadi, M.; Eshghi, S.; Ramezanian, A.; Abarghuei, F.M.; Alizargar, J. Potential Role of Foliar Application of Azotobacter on Growth, Nutritional Value and Quality of Lettuce under Different Nitrogen Levels. Plants 2022, 11, 406. [Google Scholar] [CrossRef]
- Pourranjbari Saghaiesh, S.; Souri, M.K.; Moghaddam, M. Characterization of nutrients uptake and enzymes activity in Khatouni melon (Cucumis melo var. inodorus) seedlings under different concentrations of nitrogen, potassium and phosphorus of nutrient solution. J. Plant Nutr. 2019, 42, 178–185. [Google Scholar] [CrossRef]
- Sardar, H.; Khalid, Z.; Ahsan, M.; Naz, S.; Nawaz, A.; Ahmad, R.; Razzaq, K.; Wabaidur, S.M.; Jacquard, C.; Širić, I.; et al. Enhancement of Salinity Stress Tolerance in Lettuce (Lactuca sativa L.) via Foliar Application of Nitric Oxide. Plants 2023, 12, 1115. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Wu, J.; Xu, G.; Chen, M.; Fu, G.; Li, Y. Effects of Different Nitrogen Levels on Physiological Characteristics of Flag Leaves and Yield of Wheat. Acta Pratacult. Sin. 2013, 22, 69–75. [Google Scholar]
- Chen, F. Effects of Potassium on Root Protective Enzymes and Photosynthetic Characteristics of Cucumber. J. Northwest AF Univ. Nat. Sci. Ed. 2015, 43, 127–132. [Google Scholar] [CrossRef]
- Astuti, D.; Suhartanto, B.; Umami, N.; Irawan, A. Effect of density between intercropped sorghum and stylosanthes on biomass production and quality under varying NPK fertilizer application rates. J. Crop Sci. Biotechnol. 2020, 3, 197–205. [Google Scholar] [CrossRef]
- Biemond, H. Nitrogen Nutrition Effects on Development, Growth and Nitrogen Accumulation of Vegetables; Landbouwuniversiteit Wageningen: Wageningen, The Netherlands, 1995. [Google Scholar]
- Hou, P.; Li, B.; Cao, E.; Liu, Z.; Li, Y.; Sun, Z.; Xiao, Y.; Ma, C. Optimizing Nitrogen and Phosphorus Fertilizer Application for Wheat Yield on Alkali Soils: Mechanisms and Effects. Agronomy 2025, 15, 734. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Tan, J.; Miao, H.; Wang, Q. Effects of Potassium Fertilizer on Yield of Summer Maize and Soil Potassium Balance in Sandy Fluvo-aquic Soil. J. Maize Sci. 2008, 04, 163–166. [Google Scholar]
- Frías-Moreno, M.N.; Espino-Díaz, M.; Dávila-Aviña, J.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F.; Molina-Corral, F.J.; Parra-Quezada, R.A.; Orozco, G.L.O. Preharvest nitrogen application affects quality and antioxidant status of two tomato cultivars. Bragantia 2020, 79, 134–144. [Google Scholar] [CrossRef]
- Wu, C.; Han, X.; Cheng, Y.; Wang, X.; Wang, W. Impact of “3414” fertilization on the yield and quality of greenhouse tomatoes. Open Life Sci. 2024, 19, 20220893–20220897. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tang, J.; Huang, S.E. Effects of Balanced Management of Nitrogen, Phosphorus and Potassium on Yield and Nutrient Uptake of Autumn-Winter Crop Tomatoes in Substrate Cultivation in Solar Greenhouses on Gobi Desert. Soils Fertil. China 2015, 02, 49–56. [Google Scholar]
- Wright, D.H.; Harris, N.D. Effect of Nitrogen and Potassium Fertilization on Tomato Flavor. J. Agric. Food Chem. 1985, 3, 355–358. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Cui, W.; Guan, C.; Mao, W.; Zhang, Z. Improvement in Fruit Quality by Overexpressing miR399a in Woodland Strawberry. J. Agric. Food Chem. 2017, 65, 7361–7370. [Google Scholar] [CrossRef]
- Ma, Y.; Tian, J.; Yin, X.E. Effects of Nitrogen, Phosphorus and Potassium Ratios on the Quality of Greenhouse Tomatoes. North. Hortic. 2011, 18, 57–60. [Google Scholar]
- Zhao, Y.; Sun, C.; Wang, S.; Zhang, M.; Li, Y.; Xue, Q.; Guo, Q.; Lai, H. Widely targeted metabolomic, transcriptomic, and metagenomic profiling reveal microbe-plant-metabolic reprogramming patterns mediated by Streptomyces pactum Act12 enhance the fruit quality of Capsicum annuum L. Food Res. Int. 2023, 166, 112587. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.Y.; Zhao, Y.Q.; Jia, W.B.; Niu, L.; Bouphun, T.; Li, P.-W.; Chen, S.-X.; Chen, W.; Tang, D.-D.; Zhao, Y.-L.; et al. Untargeted metabolomics and quantification analysis reveal the shift of chemical constituents between instant dark teas individually liquid-state fermented by Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. Front. Microbiol. 2023, 14, 1124546. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Huang, Y.; Feng, S.; Ge, Y.; Zhang, W.; He, X.; Wang, K. Soil organic carbon mineralization with fresh organic substrate and inorganic carbon additions in a red soil is controlled by fungal diversity along a pH gradient. Geoderma 2018, 321, 79–89. [Google Scholar] [CrossRef]
- Yang, D.; Tang, L.; Cui, Y.; Ge, Y.; Zhang, W.; He, X.; Wang, K. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities. Ecotoxicology 2022, 31, 1356–1368. [Google Scholar] [CrossRef]
- Gao, D.F.; Fish, E.N. A Study of the Influence of the Type of Land Use on the Enzymatic Activity of Soils in Southwestern China. Cytokine 2014, 70, 41. [Google Scholar] [CrossRef]
Treatments | Nutrient Concentrations (Unit: mmol·L−1) | ||
---|---|---|---|
N | P | K | |
T1 | 2.00 | 0.67 | 8.00 |
T2 | 2.00 | 1.33 | 12.00 |
T3 | 2.00 | 2.00 | 16.00 |
T4 | 4.00 | 0.67 | 12.00 |
T5 | 4.00 | 1.33 | 16.00 |
T6 | 4.00 | 2.00 | 8.00 |
T7 | 8.00 | 0.67 | 16.00 |
T8 | 8.00 | 1.33 | 8.00 |
T9 | 8.00 | 2.00 | 12.00 |
Reproductive Period | Date | Number of Irrigations | Time per Irrigation (min) |
---|---|---|---|
Seedling stage | 22 August 2022–18 September 2022 | 13 | 10 |
Flowering and fruiting period | 18 September 2022–2 October 2022 | 14 | 7 |
Fruiting stages | 2 October 2022–1 January 2023 | 24 | 7 |
Sample | Physicochemical Property | Nutrient Concentration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | EC (mS·cm−1) | Bulk Weight (g·cm−3) | Total Porosity (%) | Total N (g·kg−1) | Available N (mg·kg−1) | Total P (g·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) | Organic Matter (g·kg−1) | |
Soil | 7.84 | 0.67 | 1.01 | 61.89 | 0.35 | 15.60 | 0.88 | 54.78 | 163.5 | 20.74 |
Treatments | Plant Height (cm) | Stem Thickness (mm) | Leaf Area (cm2) | Root Vigor (µg·g−1·h−1) |
---|---|---|---|---|
T1 | 132.2 ± 0.4 abc | 12.05 ± 0.15 b | 1278.6 ± 46.28 ab | 270.3 ± 1.5 ab |
T2 | 131.43 ± 0.35 bc | 11.7 ± 0.15 c | 1245.41 ± 50.55 abc | 304.09 ± 9.28 a |
T3 | 119.83 ± 0.22 d | 11.96 ± 0.14 bc | 1206.2 ± 47.34 abcd | 197.63 ± 9.85 c |
T4 | 134.63 ± 0.73 a | 12.44 ± 0.12 a | 1168.46 ± 16.01 bcde | 233.07 ± 6.4 bc |
T5 | 130.2 ± 0.66 c | 11.91 ± 0.14 bc | 1068.98 ± 11.68 de | 191.29 ± 7.34 c |
T6 | 132.8 ± 0.89 abc | 11.81 ± 0.14 bc | 1131.93 ± 23.14 cde | 240.22 ± 7.61 abc |
T7 | 131.8 ± 0.31 abc | 12.09 ± 0.13 b | 1310.58 ± 58.98 a | 204.99 ± 9.82 bc |
T8 | 131.97 ± 0.97 abc | 11.18 ± 0.13 d | 1201.75 ± 61.45 abcd | 173.52 ± 12.62 cd |
T9 | 133.7 ± 0.68 ab | 11.83 ± 0.09 bc | 1054.51 ± 35 e | 119.13 ± 5.28 d |
Treatments | MDA µmol/g FW | SOD U·mg−1·min−1 | POD U·(gF·min−1)−1 | Pro % (Pro) | CAT U·g−1·min−1 |
---|---|---|---|---|---|
T1 | 0.81 ± 0.03 b | 0.34 ± 0.02 a | 1450 ± 17.35 d | 0.025 ± 0.001 ef | 1910.78 ± 15.94 ab |
T2 | 0.81 ± 0.01 b | 0.30 ± 0.02 ab | 1558.33 ± 12.73 c | 0.024 ± 0.002 ef | 1938.25 ± 24.58 a |
T3 | 0.8 ± 0.04 b | 0.29 ± 0.03 ab | 1466.67 ± 8.33 d | 0.03 ± 0.003 cde | 1910.02 ± 28.13 ab |
T4 | 0.94 ± 0.02 a | 0.26 ± 0.03 b | 958.33 ± 8.33 g | 0.023 ± 0.001 f | 1880.05 ± 33.49 abc |
T5 | 0.76 ± 0.02 b | 0.27 ± 0.01 ab | 1447.22 ± 5.56 d | 0.061 ± 0.002 a | 1851.88 ± 9.96 bcd |
T6 | 0.91 ± 0.01 a | 0.29 ± 0.03 ab | 1830.56 ± 7.35 b | 0.038 ± 0.001 b | 1720.3 ± 8.4 e |
T7 | 0.76 ± 0.01 b | 0.30 ± 0.00 ab | 1175 ± 9.62 f | 0.034 ± 0.003 bc | 1735.95 ± 21.61 e |
T8 | 0.8 ± 0.02 b | 0.26 ± 0.01 ab | 2727.78 ± 36.11 a | 0.033 ± 0.002 bcd | 1805.98 ± 8.41 d |
T9 | 0.78 ± 0.03 b | 0.29 ± 0.04 ab | 1275 ± 8.33 e | 0.027 ± 0.002 def | 1829.77 ± 14.05 cd |
Treatments | Single Fruit Weight (g) | Yield Per Plant (kg) | Yield Per Hectare (kg/ha) | Fresh Weight (g/Plant) | Mass Fraction of Dry Matter % | |||||
---|---|---|---|---|---|---|---|---|---|---|
Leaf | Stem | Root | Fruit | Leaf | Stem | Root | ||||
T1 | 93.16 ± 3.81 ab | 1.58 ± 0.13 a | 45,526.56 ± 3648.98 a | 514.02 ± 52.07 b | 267.6 ± 18.98 ab | 22.21 ± 0.32 ab | 6.1 ± 0.07 bc | 9.87 ± 0.02 cd | 9.2 ± 0.45 b | 13.45 ± 0.38 a |
T2 | 93.39 ± 3.25 ab | 1.51 ± 0.12 a | 43,449.52 ± 3379.82 a | 621.56 ± 63 ab | 279.88 ± 16.12 ab | 20.31 ± 1.23 b | 6.82 ± 0.23 a | 10.02 ± 0.33 bcd | 9.66 ± 0.36 ab | 15.55 ± 0.96 a |
T3 | 93.7 ± 2.55 ab | 1.71 ± 0.06 a | 49,334.46 ± 1663.47 a | 445.98 ± 41.78 b | 209.6 ± 29.26 b | 21.44 ± 1.59 ab | 5.2 ± 0.17 d | 11.68 ± 0.42 a | 10.89 ± 0.75 ab | 13.79 ± 1.07 a |
T4 | 90.79 ± 8.11 ab | 1.46 ± 0.11 a | 41,992.71 ± 3096.49 a | 441.76 ± 63.67 b | 199.0 ± 4.37 b | 21.53 ± 2.41 ab | 5.9 ± 0.04 bc | 10.3 ± 0.62 abcd | 9.66 ± 0.3 ab | 14.12 ± 0.47 a |
T5 | 85.91 ± 4.44 b | 1.57 ± 0.08 a | 45,387.13 ± 2268.99 a | 584.61 ± 30.7 b | 265.28 ± 2.48 ab | 28.6 ± 2.28 a | 5.77 ± 0.44 bcd | 10.74 ± 0.39 abc | 10.7 ± 0.36 ab | 15.27 ± 0.58 a |
T6 | 101.13 ± 8.72 ab | 1.65 ± 0.13 a | 47,733.41 ± 3700.26 a | 622.82 ± 82.28 ab | 281.75 ± 32.5 ab | 23.07 ± 0.06 ab | 6.23 ± 0.09 ab | 10.85 ± 0.2 abc | 9.95 ± 0.3 ab | 13.5 ± 0.26 a |
T7 | 106.21 ± 4.92 a | 1.65 ± 0.11 a | 47,699.75 ± 3051.58 a | 596.65 ± 39.66 ab | 267.38 ± 45.39 ab | 28.22 ± 3 a | 5.62 ± 0.27 bcd | 11.47 ± 0.82 ab | 11.08 ± 0.44 ab | 15.0 ± 0.39 a |
T8 | 102.61 ± 0.78 ab | 1.54 ± 0.13 a | 44,329.38 ± 3659.12 a | 517.98 ± 29.72 b | 219.87 ± 28.02 b | 24.09 ± 2.03 ab | 6.11 ± 0.17 bc | 11.63 ± 0.61 a | 11.08 ± 1.04 ab | 16.09 ± 1.37 a |
T9 | 105.18 ± 7.81 a | 1.76 ± 0.07 a | 50,661.46 ± 2151.2 a | 858.15 ± 49.74 a | 317.79 ± 20.76 a | 28.37 ± 2.92 a | 5.48 ± 0.13 cd | 8.99 ± 0.4 d | 11.15 ± 0.58 a | 16.17 ± 1.08 a |
Part | Treatments | N (g·kg−1) | P (g·kg−1) | K (g·kg−1) |
---|---|---|---|---|
Underground part | T1 | 20.31 ± 0.06 d | 0.26 ± 0.01 ef | 21.63 ± 0.17 bc |
T2 | 19.05 ± 0.30 e | 0.28 ± 0 de | 22.2 ± 0.3 ab | |
T3 | 18.24 ± 0.31 ef | 0.22 ± 0.00 g | 22.4 ± 0.34 a | |
T4 | 21.91 ± 0.16 c | 0.23 ± 0.01 fg | 20.36 ± 0.24 de | |
T5 | 27.35 ± 0.15 a | 0.43 ± 0.01 a | 21.4 ± 0.24 c | |
T6 | 25.49 ± 0.53 b | 0.36 ± 0.01 b | 18.64 ± 0.14 f | |
T7 | 18.12 ± 0.23 f | 0.22 ± 0.01 g | 20.61 ± 0.23 d | |
T8 | 19.01 ± 0.32 ef | 0.32 ± 0.00 c | 19.87 ± 0.19 e | |
T9 | 18.98 ± 0.19 ef | 0.31 ± 0.03 cd | 18.71 ± 0.1 f | |
Aboveground part | T1 | 26.28 ± 0.56 cd | 0.28 ± 0.01 cd | 31.69 ± 0.15 a |
T2 | 23.93 ± 0.97 e | 0.37 ± 0.01 b | 31.49 ± 0.23 a | |
T3 | 22.4 ± 0.13 f | 0.29 ± 0.01 cd | 30.44 ± 0.07 b | |
T4 | 25.46 ± 0.07 cde | 0.38 ± 0.00 b | 25.76 ± 0.32 f | |
T5 | 26.54 ± 0.32 bc | 0.29 ± 0.00 c | 25.63 ± 0.62 f | |
T6 | 24.94 ± 0.17 de | 0.25 ± 0.01 d | 26.04 ± 0.14 ef | |
T7 | 25.38 ± 0.24 cde | 0.28 ± 0.01 cd | 26.81 ± 0.24 e | |
T8 | 28.56 ± 0.68 a | 0.26 ± 0.01 cd | 27.71 ± 0.17 d | |
T9 | 27.96 ± 0.45 ab | 0.43 ± 0.01 a | 29.44 ± 0.18 c | |
Fruit | T1 | 31.27 ± 0.32 c | 0.53 ± 0.02 c | 34.91 ± 0.1 c |
T2 | 29.82 ± 0.04 d | 0.53 ± 0.01 c | 35.77 ± 0.15 b | |
T3 | 34.48 ± 0.04 a | 0.59 ± 0.00 a | 36.57 ± 0.13 a | |
T4 | 29.22 ± 0.33 d | 0.45 ± 0.01 e | 34.88 ± 0.26 c | |
T5 | 32.39 ± 0.34 b | 0.55 ± 0.02 bc | 35.47 ± 0.31 bc | |
T6 | 25.46 ± 0.19 f | 0.48 ± 0.01 de | 36.96 ± 0.3 a | |
T7 | 31.08 ± 0.36 c | 0.51 ± 0.01 cd | 32.77 ± 0.09 e | |
T8 | 25.29 ± 0.10 f | 0.52 ± 0.02 c | 34.72 ± 0.5 c | |
T9 | 27.19 ± 0.23 e | 0.58 ± 0.01 ab | 33.84 ± 0.22 d |
Treatments | Soluble Solid/(%) | Vitamin C/(mg·100g−1·FW) | Total Soluble Sugar/(%) | Titratable Acid/(%) | Combined PCA Values | Comprehensive Ranking |
---|---|---|---|---|---|---|
T1 | 6.80 ± 0.1 c | 18 ± 0.45 abcd | 10.13 ± 0.33 bcd | 0.57 ± 0.01 a | 0.34 | 4 |
T2 | 7.97 ± 0.03 a | 19.39 ± 0.25 a | 12.66 ± 0.29 a | 0.57 ± 0.02 a | 1.92 | 1 |
T3 | 6.50 ± 0.06 de | 16.57 ± 0.18 de | 9.48 ± 0.54 d | 0.55 ± 0.02 ab | −0.46 | 7 |
T4 | 7.43 ± 0.07 b | 18.55 ± 0.84 abc | 11.1 ± 0.36 b | 0.55 ± 0.02 ab | 0.9 | 2 |
T5 | 6.60 ± 0.1 cd | 16.90 ± 0.35 cde | 9.97 ± 0.2 cd | 0.50 ± 0.01 bc | −0.6 | 8 |
T6 | 6.40 ± 0.1 de | 19.41 ± 0.73 a | 12.74 ± 0.24 a | 0.50 ± 0.01 cd | 0.45 | 3 |
T7 | 6.67 ± 0.07 cd | 18.74 ± 0.83 ab | 10.82 ± 0.22 bc | 0.44 ± 0.01 d | −0.42 | 6 |
T8 | 5.57 ± 0.12 f | 15.29 ± 0.22 e | 8.30 ± 0.22 e | 0.49 ± 0.01 c | −2.03 | 9 |
T9 | 6.27 ± 0.09 e | 17.15 ± 0.4 bcd | 10.15 ± 0.32 bcd | 0.58 ± 0.01 a | −0.09 | 5 |
Treatments | Total N (g·kg−1) | Total P (g·kg−1) | Available N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) | Organic Matter (g·kg−1) | EC (ms/cm) | pH |
---|---|---|---|---|---|---|---|---|
T1 | 0.42 ± 0 bc | 0.9 ± 0.04 b | 15.98 ± 0.67 bc | 747.42 ± 8.85 cd | 269.62 ± 2.38 c | 27.65 ± 0.2 c | 0.25 ± 0.01 b | 7.88 ± 0.01 d |
T2 | 0.36 ± 0.01 d | 0.74 ± 0.01 e | 15.8 ± 0.37 bc | 759.12 ± 10.52 bcd | 271.73 ± 10.46 c | 23.11 ± 0.34 d | 0.24 ± 0.01 b | 7.86 ± 0.03 d |
T3 | 0.36 ± 0.01 d | 0.85 ± 0 c | 14.5 ± 0.65 c | 762.81 ± 5.57 bcd | 324.6 ± 3.59 a | 27.62 ± 0 c | 0.26 ± 0 b | 7.93 ± 0.01 c |
T4 | 0.41 ± 0.01 c | 0.8 ± 0.01 d | 18.6 ± 0.19 a | 815.9 ± 4.75 a | 221.36 ± 5.6 de | 32.99 ± 0.2 a | 0.3 ± 0.02 a | 7.84 ± 0 d |
T5 | 0.34 ± 0 e | 0.38 ± 0.01 f | 16.92 ± 0.67 ab | 593.08 ± 3.03 f | 233.63 ± 3.24 d | 29.04 ± 0.34 b | 0.26 ± 0.01 b | 7.86 ± 0.01 d |
T6 | 0.37 ± 0.01 d | 0.81 ± 0 cd | 16.55 ± 0.81 b | 736.7 ± 6.07 d | 203.17 ± 3.59 f | 29.04 ± 0.34 b | 0.26 ± 0 b | 7.78 ± 0 e |
T7 | 0.38 ± 0 d | 0.79 ± 0.01 d | 17.29 ± 0.32 ab | 686.81 ± 14.54 e | 287.68 ± 0.35 b | 27.46 ± 0.2 c | 0.32 ± 0.01 a | 7.85 ± 0.01 d |
T8 | 0.45 ± 0.01 a | 0.97 ± 0.01 a | 17.48 ± 0.49 ab | 778.36 ± 10.13 b | 187.88 ± 3.31 g | 32.2 ± 0.39 a | 0.21 ± 0.01 c | 8.02 ± 0 a |
T9 | 0.44 ± 0 ab | 0.79 ± 0.01 d | 16.36 ± 0.99 bc | 765.3 ± 3.37 bc | 209.89 ± 3.84 ef | 27.06 ± 0.2 c | 0.25 ± 0.01 b | 7.98 ± 0.01 b |
Treatments | CAT (mg·g−1) | Urease (mg·g−1) | Phosphatase (mg·g−1) | Sucrase (mg·g−1) |
---|---|---|---|---|
T1 | 0.87 ± 0 cde | 6.52 ± 0.15 b | 0.95 ± 0.05 e | 11.31 ± 0.15 c |
T2 | 0.75 ± 0.06 e | 3.88 ± 0.27 e | 1.08 ± 0.11 de | 9.99 ± 0.09 d |
T3 | 0.81 ± 0.06 de | 5.97 ± 0.15 bc | 1.14 ± 0.09 cde | 10.18 ± 0.04 cd |
T4 | 1.1 ± 0.06 b | 5.7 ± 0.36 cd | 1.5 ± 0.11 a | 18.05 ± 0.8 b |
T5 | 0.98 ± 0.06 bc | 4.29 ± 0.03 e | 1.4 ± 0.01 abc | 10.73 ± 0.1 cd |
T6 | 0.92 ± 0.06 cd | 5.6 ± 0.03 cd | 1.27 ± 0.07 abcd | 7.98 ± 0.38 e |
T7 | 0.98 ± 0.06 bc | 5.2 ± 0.21 d | 1.44 ± 0.03 ab | 19.62 ± 0.41 a |
T8 | 1.45 ± 0.06 a | 7.05 ± 0.1 a | 1.47 ± 0.1 a | 7.66 ± 0.2 e |
T9 | 0.87 ± 0 cde | 4.4 ± 0.18 e | 1.19 ± 0.1 bcde | 7.74 ± 0.68 e |
Principal Component | Initial Eigen Value | Extract Sum of Squares and Load | ||||
---|---|---|---|---|---|---|
Total | Variance | Accumulation | Total | Variance | Accumulation | |
1 | 8.107 | 26.152 | 26.152 | 8.107 | 26.152 | 26.152 |
2 | 5.496 | 17.730 | 43.882 | 5.496 | 17.730 | 43.882 |
3 | 5.101 | 16.453 | 60.335 | 5.101 | 16.453 | 60.335 |
4 | 3.696 | 11.922 | 72.257 | 3.696 | 11.922 | 72.257 |
5 | 3.502 | 11.295 | 83.553 | 3.502 | 11.295 | 83.553 |
6 | 2.385 | 7.694 | 91.247 | 2.385 | 7.694 | 91.247 |
7 | 1.502 | 4.847 | 96.093 | 1.502 | 4.847 | 96.093 |
8 | 1.211 | 3.907 | 100.000 | 1.211 | 3.907 | 100.000 |
Treatments | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F | Sort |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 3.24 | 1.32 | 0.87 | 0.74 | 1.43 | −0.24 | −0.35 | −2.34 | 1.35 | 1 |
T2 | 4.36 | −1.15 | 0.96 | −1.32 | 0.47 | 1.27 | 1.88 | 0.98 | 1.22 | 2 |
T3 | 2.02 | 2.70 | −2.96 | 1.94 | 0.54 | 0.07 | −1.13 | 1.40 | 0.82 | 3 |
T4 | 0.02 | −1.68 | 3.39 | 0.80 | −2.08 | 1.23 | −1.81 | 0.35 | 0.15 | 4 |
T5 | −1.83 | −3.23 | −3.87 | −0.95 | 0.12 | 1.57 | −0.33 | −0.78 | −1.72 | 9 |
T6 | −1.12 | −2.54 | 0.92 | −0.51 | 2.51 | −2.77 | −0.47 | 0.68 | −0.58 | 8 |
T7 | −1.03 | −0.61 | −0.61 | 2.60 | −2.75 | −1.56 | 1.63 | −0.31 | −0.53 | 7 |
T8 | −5.01 | 2.45 | 1.60 | 0.53 | 1.77 | 1.48 | 0.87 | 0.12 | −0.19 | 5 |
T9 | −0.65 | 2.74 | −0.30 | −3.83 | −2.03 | −1.05 | −0.29 | −0.10 | −0.52 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, L.; Li, J.; Tian, Y.; Wu, L.; Gao, Y.; Cao, Y. Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation. Plants 2025, 14, 2496. https://doi.org/10.3390/plants14162496
Jing L, Li J, Tian Y, Wu L, Gao Y, Cao Y. Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation. Plants. 2025; 14(16):2496. https://doi.org/10.3390/plants14162496
Chicago/Turabian StyleJing, Lanqi, Jianshe Li, Yongqiang Tian, Longguo Wu, Yanming Gao, and Yune Cao. 2025. "Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation" Plants 14, no. 16: 2496. https://doi.org/10.3390/plants14162496
APA StyleJing, L., Li, J., Tian, Y., Wu, L., Gao, Y., & Cao, Y. (2025). Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation. Plants, 14(16), 2496. https://doi.org/10.3390/plants14162496