Morphometric Analysis Reveals New Data in the History of Vitis Cultivars
Abstract
1. Introduction
2. Results
2.1. A New Model Based on the Outlines of Regina Dei Vigneti and Muscat Hamburg
2.2. Three Groups Resulting from the Analysis of Shape Similarity (J-Index)
2.3. Cultivars in Each Group
2.4. PCA with the Fourier Coefficients Highlights Differences Between the Groups
2.5. Relation Between the Fourier Coefficients and Curvature Measurements
2.6. Geometric Analysis of the Outlines in Representative Cultivars
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Photography
4.3. General Morphological Measures
4.4. Extraction of Fourier Coefficients from the Images with Momocs
4.5. Models and J-Index Measurements
4.6. Curvature Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Aspect Ratio (length-to-width ratio) |
EG | External Group (containing seeds from Vitis species other than V. vinifera and sylvestris cultivars) |
Appendix A
Group | Number | Cultivar | Group | Number | Cultivar |
---|---|---|---|---|---|
EG | 1 | Vitis amurensis | 2 | 33 | Sylvestris FR1.4 |
EG | 2 | Vitis candicans | 2 | 34 | Garnacha Blanca |
EG | 3 | Vitis californica | 2 | 35 | Vidadillo |
EG | 4 | Sylvestris NA2.4b | 2 | 36 | Mollar Cano 2020 |
EG | 5 | Sylvestris CA13.6 | 2 | 37 | Gewürztraminer |
EG | 6 | Sylvestris NA3.2b | 2 | 38 | Benedicto falso |
1 | 7 | Hebén 2020 | 2 | 39 | Albillo del Pozo |
1 | 8 | Zalema | 2 | 40 | Mollar Cano 2024 |
1 | 9 | Juan García 2024 | 2 | 41 | Bruñal |
1 | 10 | Merseguera 2024 | 2 | 42 | Listán Negro |
1 | 11 | Mantúo de Pilas | 2 | 43 | Moravia Dulce |
1 | 12 | Xarello 2020 | 2 | 44 | Chenin |
1 | 13 | Tortozona Tinta 2024 | 2 | 45 | Prieto Picudo |
1 | 14 | Planta Fina 2020 | 2 | 46 | Garnacha Roja |
1 | 15 | Terriza | 3 | 47 | Bobal |
1 | 16 | Jerónimo | 3 | 48 | Moravia Agria |
1 | 17 | Planta Nova | 3 | 49 | Mazuela |
1 | 18 | Heben 2024 | 3 | 50 | Cariñena Blanca |
1 | 19 | Merseguera 2020 | 3 | 51 | Rayada Melonera |
1 | 20 | Tortosí | 3 | 52 | Parduca |
1 | 21 | Verdejo | 3 | 53 | Regina de Vigneti |
2 | 22 | Tinto Velasco | 3 | 54 | Airén |
2 | 23 | Ratiño | 3 | 55 | Muscat Hamburg |
2 | 24 | Bastardo Negro | 3 | 56 | Corazón de Cabrito |
2 | 25 | Riesling | 3 | 57 | Bermejuela |
2 | 26 | Cayetana Blanca 2024 | 3 | 58 | Malvasía Volcánica |
2 | 27 | Tempranillo | 3 | 59 | Picapoll Tinto |
2 | 28 | Gualarido | 3 | 60 | Sabaté |
2 | 29 | Derechero | 3 | 61 | Semillon |
2 | 30 | Rojal Tinta | 3 | 62 | Borba (Riesling Itálico) |
2 | 31 | Torrontés | 3 | 63 | Red Globe |
2 | 32 | Tinto de la Pampana Blanca | 3 | 64 | De Cuerno |
Dim.1 | Dim.2 | |
---|---|---|
Solidity | 0.911 | 0.129 |
AR | −0.872 | 0.340 |
Round | 0.923 | −0.227 |
Circ. | 0.950 | −0.054 |
ApMax | −0.064 | −0.199 |
LatMin | 0.469 | 0.608 |
D1 | −0.933 | 0.177 |
D2 | 0.858 | 0.260 |
D3 | 0.717 | −0.545 |
D4 | −0.747 | −0.079 |
D5 | 0.795 | 0.302 |
A2 | 0.163 | 0.484 |
A3 | −0.920 | 0.185 |
A4 | 0.190 | 0.779 |
B3 | 0.007 | −0.422 |
B4 | 0.306 | −0.175 |
B5 | 0.075 | −0.616 |
References
- McGovern, P.; Jalabadze, M.; Batiuk, S.; Callahan, M.P.; Smith, K.E.; Hall, G.R.; Kvavadze, E.; Maghradze, D.; Rusishvili, N.; Bouby, L.; et al. Early Neolithic wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA 2017, 114, E10309–E10318. [Google Scholar] [CrossRef]
- Rivera, D.; Walker, M.J. A review of paleobotanical findings of early Vitis in the Mediterranean and on the origin of cultivated grape-vines, with special reference to new pointers to prehistoric explotation in the Western Mediterranean. Rev. Palaeobot. Palynol. 1989, 61, 205–237. [Google Scholar]
- Ucchesu, M.; Depalmas, A.; Sarigu, M.; Gardiman, M.; Lallai, A.; Meggio, F.; Usai, A.; Bacchetta, G. Unearthing grape heritage: Morphological relationships between late bronze–iron age grape pips and modern cultivars. Plants 2024, 13, 1836. [Google Scholar] [CrossRef] [PubMed]
- Buxó, R. The agricultural consequences of colonial contacts on the Iberian Peninsula in the first millennium B.C. Veg. Hist. Archaeobot. 2008, 17, 145–154. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley, 3rd ed.; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- McGovern, P.E. Ancient Wine: The Search for the Origins of Viniculture; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Myles, S.; Boyko, A.R.; Owens, C.L.; Brown, P.J.; Grassi, F.; Aradhya, M.K.; Prins, B.; Reynolds, A.; Chia, J.M.; Ware, D.; et al. Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. USA 2011, 108, 3530–3535. [Google Scholar] [CrossRef]
- Mullins, M.G.; Bouquet, A.; Williams, L.E. Biology of the Grapevine; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Lacombe, T.; Boursiquot, J.M.; Laucou, V.; Di Vecchi-Staraz, M.; Péros, J.-P.; This, P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 2013, 126, 401–414. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; del Pozo, D.G.; Cabello Sáenz de Santamaría, F.; Muñoz-Organero, G.; Tocino, Á. Seed Morphology in Vitis Cultivars Related to Hebén. AgriEngineering 2025, 7, 62. [Google Scholar] [CrossRef]
- Galet, P. Dictionnaire Encyclopédique des Cépages; Hachette: Paris, France, 2000. [Google Scholar]
- Lacombe, T.; Audeguin, L.; Boselli, M.; Bucchetti, B.; Cabello, F.; Chatelet, P.; This, P. Grapevine European Catalogue: Towards a Comprehensive List. Vitis 2011, 50, 65–68. [Google Scholar]
- Negrul, A.M. Origin and classification of cultivated grape. In The Ampelography of the USSR; Baranov, A.K.Y., Lazarevski, M.A., Palibin, T.V., Prosmoserdov, N., Eds.; Pischepromizdat: Moscow, Russia, 1946; Volume 1, pp. 159–216. [Google Scholar]
- Sturtevant, A.H. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 1913, 14, 43–59. [Google Scholar] [CrossRef]
- Koornneef, M.; van Eden, J.; Hanhart, C.J.; Stam, P.; Braaksma, F.J.; Feenstra, W.J. Linkage map of Arabidopsis thaliana. J. Hered. 1983, 74, 265–272. [Google Scholar] [CrossRef]
- Thomas, M.R.; Scott, N.S. Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (STSs). Theor. Appl. Genet. 1993, 86, 985–990. [Google Scholar] [CrossRef]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M.; et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef]
- Vezzulli, S.; Dolligez, A.; Bellin, D. Chapter 7 Molecular mapping of grapevine genes. In The Grape Genome; Cantú, D., Walker, M.A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Tympakianakis, S.; Trantas, E.; Avramidou, E.V.; Ververidis, F. Vitis vinifera genotyping toolbox to highlight diversity and germplasm identification. Front. Plant Sci. 2023, 14, 1139647. [Google Scholar] [CrossRef]
- Lodhi, M.A.; Ye, G.-N.; Weeden, N.F.; Reisch, B.I.; Daly, M.J. A molecular marker-based linkage map of Vitis. Genome 1995, 38, 786–794. [Google Scholar] [CrossRef]
- Doligez, A.; Bouquet, A.; Danglot, Y.; Lahogue, F.; Riaz, S.; Meredith, C.P.; Edwards, K.J.; This, P. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet. 2002, 105, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Grando, M.S.; Bellin, D.; Edwards, K.J.; Pozzi, C.; Stefanini, M.; Velasco, R. Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor. Appl. Genet. 2003, 106, 1213–1224. [Google Scholar] [CrossRef]
- Doligez, A.; Adam-Blondon, A.F.; Cipriani, G.; Laucou, V.; Merdinoglu, D.; Meredith, C.P.; Riaz, S.; Roux, C.; This, P. An integrated SSR map of grapevine based on five mapping populations. Theor. Appl. Genet. 2006, 113, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Dangl, G.S.; Edwards, K.J.; Meredith, C.P. A microsatellite-based framework linkage map of Vitis vinifera L. Theor. Appl. Genet. 2004, 108, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Duan, S.; Xia, Q.; Liang, Z.; Dong, X.; Margaryan, K.; Musayev, M.; Goryslavets, S.; Zdunić, G.; Bert, P.-F.; et al. Dual domestications and origin of traits in grapevine evolution. Science 2021, 373, 1085–1092. [Google Scholar] [CrossRef]
- Barthlott, W. Epidermal and seed surface characters of plants: Systematic applicability and some evolutionary aspects. Nord. J. Bot. 1981, 1, 345–355. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Tocino, Á. Seed Geometry in the Vitaceae. Plants 2021, 10, 1695. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Ucchesu, M.; Bacchetta, G.; Cabello Sáenz de Santamaría, F.; Tocino, Á.; Cervantes, E. Seed morphology in the Vitaceae based on geometric models. Agronomy 2020, 10, 739. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Gutiérrez del Pozo, D.; Cabello Sáez de Santamaría, F.; Muñoz-Organero, G.; Tocino, Á.; Cervantes, E. Seed morphological analysis in species of Vitis and relatives. Horticulturae 2024, 10, 285. [Google Scholar] [CrossRef]
- Terral, J.F.; Tabard, E.; Bouby, L.; Ivorra, S.; Pastor, T.; Figueiral, I.; Picq, S.; Chevance, J.-B.; Jung, C.; Fabre, L.; et al. Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 2010, 105, 443–455. [Google Scholar] [CrossRef]
- Rivera, D.; Miralles, B.; Obón, C.; Carreño, E.; Palazón, J.A. Multivariate analysis of Vitis subgenus Vitis seed morphology. Vitis 2007, 46, 158–167. [Google Scholar]
- McLellan, T.; Endler, J.A. The relative success of some methods for measuring and describing the shape of complex objects. Syst. Biol. 1998, 47, 264–281. [Google Scholar] [CrossRef]
- Kuhl, F.P.; Giardina, C.R. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process 1982, 18, 236–258. [Google Scholar] [CrossRef]
- Ucchesu, M.; Ivorra, S.; Pastor, T.; Bouby, L. Comparison of image acquisition techniques and morphometric methods to distinguish between Vitis vinifera subspecies and cultivars. Veg. Hist. Archaeobot. 2024, 33, 695–704. [Google Scholar] [CrossRef]
- Bouby, L.; Bonhomme, V.; Bacilieri, R.; Ben Makhad, S.; Bonnaire, E.; Cabanis, M.; Derreumaux, M.; Dietsch-Sellami, M.F.; Durand, F.; Evin, A.; et al. Seed morphometrics unravels the evolutionary history of grapevine in France. Sci. Rep. 2024, 14, 22207. [Google Scholar] [CrossRef]
- Espinosa-Roldán, F.E.; Rodríguez-Lorenzo, J.L.; Martín-Gómez, J.J.; Tocino, Á.; Ruiz Martínez, V.; Remón Elola, A.; Cabello Sáenz de Santamaría, F.; Martínez de Toda, F.; Cervantes, E.; Muñoz-Organero, G. Morphometric Analysis of Grape Seeds: Looking for the Origin of Spanish Cultivars. Seeds 2024, 3, 286–310. [Google Scholar] [CrossRef]
- Bonhomme, V.; Terral, J.F.; Zech-Matterne, V.; Ivorra, S.; Lacombe, T.; Deborde, G.; Kuchler, P.; Limier, B.; Pastor, T.; Rollet, P.; et al. Seed morphology uncovers 1500 years of vine agrobiodiversity before the advent of the Champagne wine. Sci. Rep. 2021, 11, 2305. [Google Scholar] [CrossRef]
- Pagnoux, C.; Bouby, L.; Ivorra, S.; Petit, C.; Valamoti, S.M.; Pastor, T.; Picq, S.; Terral, J.F. Inferring the Agrobiodiversity of Vitis vinifera L. (Grapevine) in Ancient Greece by Comparative Shape Analysis of Archaeological and Modern Seeds. Veg. Hist. Archaeobot. 2015, 24, 75–84. [Google Scholar] [CrossRef]
- Pagnoux, C.; Bouby, L.; Valamoti, S.M.; Bonhomme, V.; Ivorra, S.; Gkatzogia, E.; Karathanou, A.; Kotsachristou, D.; Kroll, H.; Terral, J.F. Local Domestication or Diffusion? Insights into Viticulture in Greece from Neolithic to Archaic Times, using Geometric Morphometric Analyses of Archaeological Grape Seeds. J. Archaeol. Sci. 2021, 125, 105263. [Google Scholar] [CrossRef]
- Bouby, L.; Figueiral, I.; Bouchette, A.; Rovira, N.; Ivorra, S.; Lacombe, T.; Pastor, T.; Picq, S.; Marinval, P.; Terral, J.F. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France. PLoS ONE 2013, 8, e6319. [Google Scholar] [CrossRef]
- Bouby, L.; Wales, N.; Jalabadze, M.; Rusishvili, N.; Bonhomme, V.; Ramos-Madrigal, J.; Evin, A.; Ivorra, S.; Lacombe, T.; Pagnoux, C.; et al. Tracking the history of grapevine cultivation in Georgia by combining geometric morphometrics and ancient DNA. Veget. Hist. Archaeobot. 2021, 30, 63–76. [Google Scholar] [CrossRef]
- Bonhomme, V.; Allen, S.E.; Pagnoux, C.; Valamoti, S.M.; Ivorra, S.; Bouby, L. Early viticulture in Neolithic and Bronze Age Greece: Looking for the best traditional morphometric method to distinguish wild and domestic grape pips. In Cooking with Plants in Prehistoric Europe and Beyond; Sidestone Press: Leiden, The Netherlands, 2022. [Google Scholar]
- Orrù, M.; Grillo, O.; Venora, G.; Bacchetta, G. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. Comptes Rendus Biol. 2012, 335, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, V.; Picq, S.; Gaucherel, C.; Claude, J. Momocs: Contour analysis using R. J. Stat. Softw. 2014, 56, 24. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Espinosa-Roldán, F.E.; de Santamaría, F.C.S.; Muñoz-Organero, G.; Tocino, Á.; Cervantes, E. Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars. Plants 2025, 14, 1522. [Google Scholar] [CrossRef]
- Gyulai, G.; Rovner, I.; Vinogradov, S.; Kerti, B.; Emödi, A.; Csákvári, E.; Kerekes, A.; Mravcsik, Z.; Gyulai, F. Digital seed morphometry of dioecious wild and crop plants—Development and usefulness of the seed diversity index. Seed Sci. Technol. 2015, 43, 492–506. [Google Scholar] [CrossRef]
- Jannah, R.M.; Ratnawati, S.; Suwarno, W.B.; Ardie, S.W. Digital phenotyping for robust seeds variability assessment in Setaria italica (L.) P. Beauv. J. Seed Sci. 2024, 46, e202446012. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Rodríguez-Lorenzo, J.L.; Tocino, Á.; Cervantes, E. Geometric Analysis of Seed Shape Diversity in the Cucurbitaceae. Seeds 2024, 3, 40–55. [Google Scholar] [CrossRef]
- Gutiérrez del Pozo, D.; Martín-Gómez, J.J.; Reyes Tomala, N.I.; Tocino, Á.; Cervantes, E. Seed Geometry in Species of the Nepetoideae (Lamiaceae). Horticulturae 2025, 11, 315. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; del Pozo, D.G.; Tocino, Á. Curvature Analysis of Seed Silhouettes in the Euphorbiaceae. Seeds 2024, 3, 608–638. [Google Scholar] [CrossRef]
- Boissier, E. Flora Orientalis; Georg, H., Ed.; Bibliopolam: Basel, Switzerland, 1867; Volume 1, pp. 567–656. [Google Scholar]
- Jafari, F.; Zarre, S.; Gholipour, A.; Eggens, F.; Rabeler, R.K.; Oxelman, B. A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae). Taxon 2020, 69, 337–368. [Google Scholar] [CrossRef]
- Grassi, F.; Labra, M.; Imazio, S.; Rubio, R.O.; Failla, O.; Scienza, A.; Sala, F. Phylogeographical structure and conservation genetics of wild grapevine. Conserv. Genet. 2006, 7, 837–845. [Google Scholar] [CrossRef]
- Regner, F.; Stadlhuber, A.; Eisenheld, C.; Kaserer, H. Considerations about the evolution of grapevine and the role of Traminer. Acta Hortic. 2000, 528, 179–184. [Google Scholar] [CrossRef]
- Stummer, A. Zur Urgeschichte der Rebe und desWeinbaumes. Mitt. Anthrop. Ges. Wien. 1911, 41, 283–296. [Google Scholar]
- Ocete, R.; Arnold, C.; Failla, O.; Lovicu, G.; Biagini, B.; Imazio, S.; Lara, M.; Maghradze, D.; Lopez, M.A. Considerations on the European wild grapevine (Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi) and Phylloxera infestation. Vitis 2011, 50, 97–98. [Google Scholar]
- Rivera, D.; Valera, J.; Maghradze, D.; Kikvadze, M.; Nebish, A.; Ocete, R.; Ocete, C.Á.; Arnold, C.; Laguna, E.; Alcaraz, F.; et al. Heterogeneity in Seed Samples from Vineyards and Natural Habitats Along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization. Horticulturae 2025, 11, 92. [Google Scholar] [CrossRef]
- Di Cecco, V.; Manzi, A.; Zulli, C.; Di Musciano, M.; D’Archivio, A.A.; Di Santo, M.; Palmerini, G.; Di Martino, L. Study of Grapevine (Vitis vinifera L.) Seed Morphometry and Comparison with Archaeological Remains in Central Apennines. Seeds 2024, 3, 311–323. [Google Scholar] [CrossRef]
- Cosmo, I. Principali Vitigni da Vino Coltivati in Italia; Ministero dell’Agricoltura e Foreste: Roma, Italy, 1952–1966; Volume 1–5. [Google Scholar]
- D’Onofrio, C.; Tumino, G.; Gardiman, M.; Crespan, M.; Bignami, C.; de Palma, L.; Barbagallo, M.G.; Muganu, M.; Morcia, C.; Novello, V.; et al. Parentage Atlas of Italian Grapevine Varieties as Inferred from SNP Genotyping. Front. Plant Sci. 2020, 11, 605934. [Google Scholar] [CrossRef] [PubMed]
- Viala, P.; Vermorel, V. Traité Général de Viticulture, Ampélographie; Masson et Compagnie: Paris, France, 1905–1910; Volume 3, p. 105. [Google Scholar]
- Cho, K.H.; Bae, K.M.; Noh, J.H.; Shin, I.S.; Kim, S.H.; Kim, J.H.; Kim, D.-Y.; Hwang, H.S. Genetic diversity and identification of Korean grapevine cultivars using SSR markers. Korean J. Breed. Sci. 2011, 43, 422–429. [Google Scholar]
- Ferreira, T.; Rasband, W. ImageJ User Guide-Ij1.46r, 186 p. 2012. Available online: https://imagej.net/ (accessed on 12 June 2024).
- Cervantes, E.; Tocino, A. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development. J. Plant Physiol. 2005, 162, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2021. Available online: https://www.R-project.org (accessed on 20 November 2024).
Group | N | J-Index Hebén | J-Index Chenin | J-Index Regina | Solidity | AR | Roundness | Circularity |
---|---|---|---|---|---|---|---|---|
EG | 6 | 87.0 a (3.3) | 87.8 a (2.4) | 84.3 a (2.3) | 994 c (0.1) | 1.35 a (8.2) | 0.74 c (7.7) | 0.83 c (3.1) |
Hebén | 15 | 96.6 d (0.5) | 95.1 c (0.5) | 93.1 b (0.8) | 975 b (0.3) | 1.56 b (5.7) | 0.64 b (5.8) | 0.74 b (2.2) |
Chenin | 25 | 95.1 c (0.5) | 96.5 d (0.3) | 93.5 b (1.0) | 958 a (0.6) | 1.61 b (6.0) | 0.62 b (5.9) | 0.73 b (2.3) |
Regina | 18 | 92.8 b (1.5) | 92.9 b (1.4) | 95.6 c (1.4) | 953 a (0.9) | 1.82 c (10.9) | 0.56 a (9.7) | 0.68 a (4.8) |
Group | N | ApMax | ApMin | ApAve | ApRatio | LatMax | LatMin | LatAve | LatRatio |
---|---|---|---|---|---|---|---|---|---|
EG | 6 | 1.91 ab (21.9) | 0.26 a (22.8) | 0.50 a (13.1) | 3.84 b (23.6) | 0.59 b (5.8) | −0.19 c (60.2) | 0.19 d (17.9) | 3.12 a (15.7) |
Hebén | 15 | 1.92 ab (16.6) | 0.37 a (83.3) | 0.83 b (11.2) | 2.30 a (13.0) | 0.45 a (14.9) | −0.63 b (20.6) | 0.10 c (20.9) | 4.85 b (21.5) |
Chenin | 25 | 1.90 a (22.7) | 0.85 b (31.8) | 0.80 b (12.8) | 2.39 a (21.2) | 0.50 a (18.1) | −0.74 a (15.9) | 0.08 b (30.4) | 6.61 c (29.6) |
Regina | 18 | 2.06 b (14.2) | 0.77 ab (69.3) | 0.88 b (24.7) | 2.43 a (27.4) | 0.49 a (18.7) | −0.55 b (21.5) | 0.05 a (26.6) | 9.66 d (24.1) |
Hebén | Chenin | Regina |
---|---|---|
7. Hebén 2020 | 27. Tempranillo | 55. Muscat Hamburg |
8. Zalema | 31. Torrontés | 57. Bermejuela |
12. Xarello 2020 | 32. Tinto de la Pampana Blanca | 59. Picapoll Tinto |
17. Planta Nova | 35. Vidadillo | |
19. Merseguera 2020 | 36. Mollar Cano 2020 | |
20. Tortosí. | 39. Albillo del Pozo | |
21. Verdejo | 40. Mollar Cano 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Espinosa-Roldán, F.E.; Cabello Sáenz de Santamaría, F.; Muñoz-Organero, G.; Tocino, Á.; Cervantes, E. Morphometric Analysis Reveals New Data in the History of Vitis Cultivars. Plants 2025, 14, 2481. https://doi.org/10.3390/plants14162481
Martín-Gómez JJ, Rodríguez-Lorenzo JL, Espinosa-Roldán FE, Cabello Sáenz de Santamaría F, Muñoz-Organero G, Tocino Á, Cervantes E. Morphometric Analysis Reveals New Data in the History of Vitis Cultivars. Plants. 2025; 14(16):2481. https://doi.org/10.3390/plants14162481
Chicago/Turabian StyleMartín-Gómez, José Javier, José Luis Rodríguez-Lorenzo, Francisco Emmanuel Espinosa-Roldán, Félix Cabello Sáenz de Santamaría, Gregorio Muñoz-Organero, Ángel Tocino, and Emilio Cervantes. 2025. "Morphometric Analysis Reveals New Data in the History of Vitis Cultivars" Plants 14, no. 16: 2481. https://doi.org/10.3390/plants14162481
APA StyleMartín-Gómez, J. J., Rodríguez-Lorenzo, J. L., Espinosa-Roldán, F. E., Cabello Sáenz de Santamaría, F., Muñoz-Organero, G., Tocino, Á., & Cervantes, E. (2025). Morphometric Analysis Reveals New Data in the History of Vitis Cultivars. Plants, 14(16), 2481. https://doi.org/10.3390/plants14162481