A Tradeoff Between the Escape from N′-Mediated Resistance and Virulence in Pepper Mild Mottle Virus Through Reduced Virus Accumulation
Abstract
1. Introduction
2. Results
2.1. Isolation of PMMoV Mutants Escaping N′-Mediated Resistance
2.2. Minimal Mutations for Escaping N′-Mediated Resistance Reduce Virus Accumulation and Virulence in Pepper Plants
2.3. Reduced Accumulation Facilitates Escape from Different Resistance Genes
2.4. Systemic Infection of N. Benthamiana with NEMs with Attenuated Virulence
3. Discussion
3.1. Risk of N′-Mediated Resistance Breakage by PMMoV
3.2. Accumulation of Avr Protein and Recognition by R Proteins
3.3. Roles of Tobamovirus Coat Protein in Pathogenesis
4. Materials and Methods
4.1. Construction of Viral Clones, Mutant Library, and Expression Vectors
4.2. Plant Growth
4.3. Virus Inoculation and Agroinfiltration
4.4. Hammer Blot Immunoassay
4.5. Detection of HR
4.6. Virus Quantification by ELISA
4.7. Detection and Quantification of Viral RNA
4.8. Inhibitors and Autophagy Inducer Administration
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobayashi, K.; Sekine, K.-T.; Nishiguchi, M. Breakdown of plant virus resistance: Can we predict and extend the durability of virus resistance? J. Gen. Plant Pathol. 2014, 80, 327–336. [Google Scholar] [CrossRef]
- Farnham, G.; Baulcombe, D.C. Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc. Natl. Acad. Sci. USA 2006, 103, 18828–18833. [Google Scholar] [CrossRef]
- Boukema, I.W. Resistance to a new strain of TMV in Capsicum chacoense Hunz. Capsicum Newsl. 1982, 1, 49–51. [Google Scholar]
- Boukema, I.W. Resistance to TMV in Capsicum chacoense Hunz. is governed by allele of the L-locus. Capsicum Newsl. 1984, 3, 47–48. [Google Scholar]
- Boukema, I.W. Allelism of genes controlling resistance to TMV in Capsicum L. Euphytica 1980, 29, 433–439. [Google Scholar] [CrossRef]
- Tomita, R.; Sekine, K.-T.; Mizumoto, H.; Sakamoto, M.; Murai, J.; Kiba, A.; Hikichi, Y.; Suzuki, K.; Kobayashi, K. Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol. Plant-Microbe Interact. 2011, 24, 108–117. [Google Scholar] [CrossRef]
- Berzal-Herranz, A.; de la Cruz, A.; Tenllado, F.; Diaz-Ruiz, J.R.; Lopez, L.; Sanz, A.I.; Vaquero, C.; Serra, M.T.; Garcia-Luque, I. The Capsicum L3 gene-mediated resistance against the tobamoviruses is elicited by the coat protein. Virology 1995, 209, 498–505. [Google Scholar] [CrossRef]
- Gilardi, P.; Garcia-Luque, I.; Serra, M.T. The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum. J. Gen. Virol. 2004, 85, 2077–2085. [Google Scholar] [CrossRef]
- de la Cruz, A.; Lopez, L.; Tenllado, F.; Diaz-Ruiz, J.R.; Sanz, A.I.; Vaquero, C.; Serra, M.T.; Garcia-Luque, I. The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the tobamoviruses. Mol. Plant-Microbe Interact. 1997, 10, 107–113. [Google Scholar] [CrossRef]
- Matsumoto, K.; Sawada, H.; Matsumoto, K.; Hamada, H.; Yoshimoto, E.; Ito, T.; Takeuchi, S.; Tsuda, S.; Suzuki, K.; Kobayashi, K.; et al. The coat protein gene of tobamovirus P0 pathotype is a determinant for activation of temperature-insensitive L1a-gene-mediated resistance in Capsicum plants. Arch. Virol. 2008, 153, 645–650. [Google Scholar] [CrossRef]
- Garcia-Luque, I.; Ferrero, M.L.; Rodriquez, J.M.; Alonso, E.; de la Cruz, A.; Sanz, A.I.; Vaquero, C.; Serra, M.T.; Diaz-Ruiz, J.R. The nucleotide sequence of the coat protein genes and 3′ non-coding regions of two resistance-breaking tobamoviruses in pepper shows that they are different viruses. Arch. Virol. 1993, 131, 75–88. [Google Scholar] [CrossRef]
- Hamada, H.; Takeuchi, S.; Kiba, A.; Tsuda, S.; Hikichi, Y.; Okuno, T. Amino acid changes in pepper mild mottle virus coat protein that affect L3 gene-mediated resistance in pepper. J. Gen. Plant. Pathol. 2002, 68, 155–162. [Google Scholar] [CrossRef]
- Hamada, H.; Tomita, R.; Iwadate, Y.; Kobayashi, K.; Munemura, I.; Takeuchi, S.; Hikichi, Y.; Suzuki, K. Cooperative effect of two amino acid mutations in the coat protein of pepper mild mottle virus overcomes L3-mediated resistance in Capsicum plants. Virus Genes 2007, 34, 205–214. [Google Scholar] [CrossRef]
- Tsuda, S.; Kirita, M.; Watanabe, Y. Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking italian isolate. Mol. Plant-Microbe Interact. 1998, 11, 327–331. [Google Scholar] [CrossRef]
- Antignus, Y.; Lachman, O.; Pearlsman, M.; Maslenin, L.; Rosner, A. A New Pathotype of pepper mild mottle virus (PMMoV) overcomes the L4 resistance genotype of pepper cultivars. Plant Dis. 2008, 92, 1033–1037. [Google Scholar] [CrossRef]
- Genda, Y.; Kanda, A.; Hamada, H.; Sato, K.; Ohnishi, J.; Tsuda, S. Two amino acid substitutions in the coat protein of pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp. Phytopathology 2007, 97, 787–793. [Google Scholar] [CrossRef]
- Saito, T.; Meshi, T.; Takamatsu, N.; Okada, Y. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc. Natl. Acad. Sci. USA 1987, 84, 6074–6077. [Google Scholar] [CrossRef] [PubMed]
- Culver, J.N.; Dawson, W.O. Tobacco mosaic virus coat protein: An elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology 1989, 173, 755–758. [Google Scholar] [CrossRef]
- Sekine, K.-T.; Tomita, R.; Takeuchi, S.; Atsumi, G.; Saitoh, H.; Mizumoto, H.; Kiba, A.; Yamaoka, N.; Nishiguchi, M.; Hikichi, Y.; et al. Functional differentiation in the leucine-rich repeat domains of closely related plant virus-resistance proteins that recognize common avr proteins. Mol. Plant-Microbe Interact. 2012, 25, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Janzac, B.; Fabre, F.; Palloix, A.; Moury, B. Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. Mol. Plant. Pathol. 2009, 10, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Burdon, J.J.; Barrett, L.G.; Rebetzke, G.; Thrall, P.H. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 2014, 7, 609–624. [Google Scholar] [CrossRef]
- Grimsley, N.; Hohn, B.; Hohn, T.; Walden, R. “Agroinfection,” an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA 1986, 83, 3282–3286. [Google Scholar] [CrossRef]
- Idehara, K.; Tomita, R.; Sekine, K.-T.; Nishiguchi, M.; Kobayashi, K. Random mutagenesis of virus gene for the experimental evaluation of the durability of NB-LRR class plant virus resistance gene. Methods Mol. Biol. 2019, 2028, 97–113. [Google Scholar]
- Zheng, X.; Li, Y.; Liu, Y. Plant immunity against tobamoviruses. Viruses 2024, 16, 530. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Waliullah, S.; Kosaka, N.; Yaeno, T.; Ali, M.E.; Sekine, K.-T.; Atsumi, G.; Yamaoka, N.; Nishiguchi, M.; Takahashi, H.; Kobayashi, K. Cauliflower mosaic virus Tav protein induces leaf chlorosis in transgenic tobacco through a host response to virulence function of Tav. J. Gen. Plant. Pathol. 2015, 81, 261–270. [Google Scholar] [CrossRef]
- Huang, L.; Rojas-Pierce, M. Rapid depletion of target proteins in plants by an inducible protein degradation system. Plant Cell 2024, 36, 3145–3161. [Google Scholar] [CrossRef]
- Jiao, Y.; An, M.; Li, X.; Yu, M.; Zhao, X.; Xia, Z.; Wu, Y. Transcriptomic and functional analyses reveal an antiviral role of autophagy during pepper mild mottle virus infection. BMC Plant Biol. 2020, 20, 495. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, H.; Choi, Y.E.; Chung, T. Autophagy inducers lead to transient accumulation of autophagosomes in arabidopsis roots. Plant Cell Rep. 2022, 41, 463–471. [Google Scholar] [CrossRef]
- Takatsuka, C.; Inoue, Y.; Matsuoka, K.; Moriyasu, Y. 3-methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol. 2004, 45, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Fabre, F.; Bruchou, C.; Palloix, A.; Moury, B. Key determinants of resistance durability to plant viruses: Insights from a model linking within- and between-host dynamics. Virus Res. 2009, 141, 140–149. [Google Scholar] [CrossRef]
- Kumari, N.; Sharma, V.; Patel, P.; Sharma, P.N. Pepper mild mottle virus: A formidable foe of Capsicum production—A review. Front. Virol. 2023, 3, 1208853. [Google Scholar] [CrossRef]
- Moffett, P. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res. 2009, 75, 1–33. [Google Scholar] [CrossRef]
- Saito, T.; Yamanaka, K.; Okada, Y. Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology 1990, 176, 329–336. [Google Scholar] [CrossRef]
- Venturuzzi, A.L.; Rodriguez, M.C.; Conti, G.; Leone, M.; Caro, M.D.P.; Montecchia, J.F.; Zavallo, D.; Asurmendi, S. Negative modulation of SA signaling components by the capsid protein of tobacco mosaic virus is required for viral long-distance movement. Plant J. 2021, 106, 896–912. [Google Scholar] [CrossRef]
- Yu, M.; Bi, X.; Huang, Y.; Chen, Y.; Wang, J.; Zhang, R.; Lei, Y.; Xia, Z.; An, M.; Wu, Y. Chimeric tobamoviruses with coat protein exchanges modulate symptom expression and defence responses in Nicotiana tabacum. Front. Microbiol. 2020, 11, 587005. [Google Scholar] [CrossRef]
- Kurihara, Y.; Inaba, N.; Kutsuna, N.; Takeda, A.; Tagami, Y.; Watanabe, Y. Binding of tobamovirus replication protein with small RNA duplexes. J. Gen. Virol. 2007, 88, 2347–2352. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Tsuda, S.; Tamai, A.; Meshi, T. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J. Virol. 2003, 77, 11016–11026. [Google Scholar] [CrossRef] [PubMed]
- Vogler, H.; Akbergenov, R.; Shivaprasad, P.V.; Dang, V.; Fasler, M.; Kwon, M.-O.; Zhanybekova, S.; Hohn, T.; Heinlein, M. Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J. Virol. 2007, 81, 10379–10388. [Google Scholar] [CrossRef]
- Hirai, K.; Kubota, K.; Mochizuki, T.; Tsuda, S.; Meshi, T. Antiviral RNA silencing is restricted to the marginal region of the dark green tissue in the mosaic leaves of tomato mosaic virus-infected tobacco plants. J. Virol. 2008, 82, 3250–3260. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, S.; Rahman, H.; Yamanaka, N.; Ishizaki, C.; Islam, S.; Aiso, T.; Hirata, S.; Yamamoto, M.; Kobayashi, K.; Kaya, H. A simple heat treatment increases SpCas9-mediated mutation efficiency in Arabidopsis. Plant Cell Physiol. 2021, 62, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.; Matsumura, H.; Tomita, R.; Terauchi, R.; Suzuki, K.; Kobayashi, K. SuperSAGE revealed different classes of early resistance response genes in Capsicum chinense plants harboring L3-resistance gene infected with pepper mild mottle virus. J. Gen. Plant Pathol. 2008, 74, 313–321. [Google Scholar] [CrossRef]
- Waliullah, S.; Mochizuki, T.; Sekine, K.-T.; Atsumi, G.; Ali, M.E.; Yaeno, T.; Yamaoka, N.; Nishiguchi, M.; Kobayashi, K. Artificial induction of a plant virus protein in transgenic tobacco provides a synchronous system for analyzing the process of leaf chlorosis. Physiol. Mol. Plant Pathol. 2014, 88, 43–51. [Google Scholar] [CrossRef]
Clones a | Amino Acid Substitutions b | No. c | Mode d | Accum. e | R-Escape f | Systemic Infectivity | ||
---|---|---|---|---|---|---|---|---|
Nsyl g | Cann h | Nben i | ||||||
NEM-01 | S5P L23I T54A P63S I94V N140S | 6 | S+V+S+V+S+S | + | N′, L3, L4 | − | − | + |
NEM-02 | L13I R41S K68N F87L I125M | 5 | V+V+V+S+S | ++ | (N′), L3, L4 | − | − | + |
NEM-03 | Y12C F35S Q45R N73S S148R | 5 | S+S+S+S+V | + | N′, L3, L4 | − | − | + |
NEM-04 | N25D C27R Q36H V51A F70S M129K | 6 | S+S+V+S+S+V | + | N′, L3, L4 | − | − | + |
NEM-05 | Y12S F62N | 2 | V+(V+V) | + | N′, L3, L4 | − | − | + |
NEM-06 | T57S T103S R122G Y139D | 4 | V+V+S+V | + | N′, L3, L4 | − | − | + |
NEM-07 | C27R N130I | 2 | S+V | + | N′, L3, L4 | − | − | + |
NEM-08 | N101D L128H F144Y W152R | 4 | S+V+V+S | + | N′, L3, L4 | − | − | + |
NEM-09 | N25H Q38R Q46P Q141H | 4 | V+S+V+V | + | N′, L3, L4 | − | − | + |
NEM-11 | Y2N N8K S49P S78P V114A | 5 | V+V+S+S+S | ++ | N′, L3, L4 | − | − | + |
NEM-12 | F35L R41G F62L F70S | 4 | S+S+S+S | ++ | N′, L3, L4 | − | − | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdayanty; Idehara, K.; Sekine, K.-T.; Atsumi, G.; Sekine, R.; Tateda, C.; Yaeno, T.; Kaya, H.; Kobayashi, K. A Tradeoff Between the Escape from N′-Mediated Resistance and Virulence in Pepper Mild Mottle Virus Through Reduced Virus Accumulation. Plants 2025, 14, 2471. https://doi.org/10.3390/plants14162471
Hamdayanty, Idehara K, Sekine K-T, Atsumi G, Sekine R, Tateda C, Yaeno T, Kaya H, Kobayashi K. A Tradeoff Between the Escape from N′-Mediated Resistance and Virulence in Pepper Mild Mottle Virus Through Reduced Virus Accumulation. Plants. 2025; 14(16):2471. https://doi.org/10.3390/plants14162471
Chicago/Turabian StyleHamdayanty, Kengo Idehara, Ken-Taro Sekine, Go Atsumi, Reiko Sekine, Chika Tateda, Takashi Yaeno, Hidetaka Kaya, and Kappei Kobayashi. 2025. "A Tradeoff Between the Escape from N′-Mediated Resistance and Virulence in Pepper Mild Mottle Virus Through Reduced Virus Accumulation" Plants 14, no. 16: 2471. https://doi.org/10.3390/plants14162471
APA StyleHamdayanty, Idehara, K., Sekine, K.-T., Atsumi, G., Sekine, R., Tateda, C., Yaeno, T., Kaya, H., & Kobayashi, K. (2025). A Tradeoff Between the Escape from N′-Mediated Resistance and Virulence in Pepper Mild Mottle Virus Through Reduced Virus Accumulation. Plants, 14(16), 2471. https://doi.org/10.3390/plants14162471