Potential of the Use of Biostimulants in Lettuce Production
Abstract
1. Introduction
2. Biostimulants in Lettuce Cultivation
2.1. Humic Substances
2.2. Hydrolysates and Nitrogen Compounds
2.3. Algal Extracts and Chitosan
2.4. Inorganic Compounds
2.5. Fungi
3. Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsigiorgi, K.; Ntroumpogianni, G.C.; Katsifas, E.A.; Hatzinikolaou, D.G.; Chassapis, K.; Skampa, E.; Stefi, A.L.; Christodoulakis, N.S. Lettuce (Lactuca sativa L.) Cultures and the Bioactivity of Their Root Microflora Are Affected by Amended Soil. Plants 2024, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Geelen, D. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef]
- He, S.; Huo, G.; Ge, G.; Du, L.; Long, D.; Luo, L.; Long, P.; Wei, S. Identification and Preliminary Functional Analysis of Responsive Genes to Short-term Heat Stress in Lettuce. J. Am. Soc. Hortic. Sci. 2024, 149, 327–336. [Google Scholar] [CrossRef]
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards Sustainable Agriculture—Agronomic and Economic Effects of Biostimulant Use in Common Bean Cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef]
- Velasco-Clares, D.; Navarro-León, E.; Izquierdo-Ramos, M.J.; Blasco, B.; Ruiz, J.M. Enhancing Drought Tolerance in Lettuce: The Efficacy of the Seaweed-Derived Biostimulant Cytolan® Stress Applied at Different Growth Stages. Horticulturae 2025, 11, 157. [Google Scholar] [CrossRef]
- Zuzunaga-Rosas, J.; Calone, R.; Mircea, D.M.; Shakya, R.; Ibáñez-Asensio, S.; Boiscaiu, M.; Fita, A.; Moreno-Ramón, H.; Vicente, O. Mitigation of salt stress in lettuce by a biostimulant that protects the root absorption zone and improves biochemical responses. Front. Plant Sci. 2024, 15, 1341714. [Google Scholar] [CrossRef]
- Singh, M.; Subahan, G.M.; Sharma, S.; Singh, G.; Sharma, N.; Sharma, U.; Kumar, V. Enhancing Horticultural Sustainability in the Face of Climate Change: Harnessing Biostimulants for Environmental Stress Alleviation in Crops. Stresses 2025, 5, 23. [Google Scholar] [CrossRef]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous application of amino acids improves lettuce growth and yield by increasing photosynthetic assimilation and nutrient availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef]
- Abdelkader, M.; Oliveira, L.; Oliveira, L.; Oliveira, O.; Oliveira, M.; Puchkov, M.; Oliveira, E.; Amantayev, B.; Kipshakbaeva, A.; Arinov, B. Biostimulants-Based Amino Acids Augment Physio-Biochemical Responses and Promote Salinity Tolerance of Lettuce Plants (Lactuca sativa L.). Horticulturae 2023, 9, 807. [Google Scholar] [CrossRef]
- Keskin, B.; Akhoundnejad, Y.; Dasgan, H.Y.; Gruda, N.S. Fulvic Acid, Amino Acids, and Vermicompost Enhanced Yield and Improved Nutrient Profile of Soilless Iceberg Lettuce. Plants 2025, 14, 609. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Atero-Calvo, S.; Magro, F.; Masetti, G.; Navarro-León, E.; Rios, J.J.; Ruiz, J.M. Assaying the Use of a Leonardite-Suspension Concentrate-Based Product as a Potential Biostimulant to Enhance Growth, NPK Use Efficiency, and Antioxidant Capacity in Lactuca sativa L. Agronomy 2024, 14, 64. [Google Scholar] [CrossRef]
- Meirelles, A.F.M.; Baldotto, M.A.; Baldotto, L.E.B. Productivity of lettuce (Lactuca sativa L.) in response to the application of humic acids and diazotrophic bacteria, under field conditions. Rev. Ceres 2017, 64, 5. [Google Scholar] [CrossRef]
- Kopta, T.; Sękara, A.; Kalisz, A.; Poniedziałek, M.; Hura, T. Effect of bacterial-algal biostimulant on the yield and internal quality of lettuce (Lactuca sativa L.) produced for spring and summer crop. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Wang, L.; Song, G.; Ni, L.; Xu, M.; Nie, C.; Li, B.; Bai, Y. Analysis of the molecular composition of humic substancesand their effects on physiological metabolism in maize based on untar-geted metabolomics. Front. Plant Sci. 2023, 14, 1122621. [Google Scholar] [CrossRef]
- Sorrentino, M.; De Luca, G.; Rouphael, Y.; Colla, G.; Francini, A.; Marabottini, R.; De Palma, M.; Paradisi, D.; Lucini, L.; Canale, A.; et al. Integration of phenomics and metabolomics datasets reveals different mode of action of biostimulants based on protein hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. under salinity. Front. Plant Sci. 2022, 12, 1150964. [Google Scholar] [CrossRef]
- Zahra, A.M.; Sinaga, A.N.K.; Nugroho, B.D.A.; Masithoh, R.E. Effect of Plant Biostimulants on Red and Green Romaine Lettuce (Lactuca sativa) Growth in Indoor Farming. IOP Conf. Ser. Earth Environ. Sci. 2024, 1297, 012008. [Google Scholar] [CrossRef]
- Atero-Calvo, S.; Magro, F.; Masetti, G.; Navarro-León, E.; Albacete, A.; Ruiz, J.M. The effects of humic substances application on thephytohormone profile in Lactuca sativa L. Ann. Appl. Biol. 2024, 42, 115–124. [Google Scholar] [CrossRef]
- Bonini, P.; Rouphael, Y.; Miras-Moreno, B.; Lee, B.; Cardarelli, M.; Erice, G.; Cirino, V.; Lucini, L.; Colla, G. A Microbial-Based Biostimulant Enhances Sweet Pepper Performance by Metabolic Reprogramming of Phytohormone Profile and Secondary Metabolism. Front. Plant Sci. 2020, 11, 567388. [Google Scholar] [CrossRef]
- Clément, J.; Delisle-Houde, M.; Nguyen, T.T.A.; Dorais, M.; Tweddell, R.J. Effect of Biostimulants on Leafy Vegetables (Baby Leaf Lettuce and Batavia Lettuce) Exposed to Abiotic or Biotic Stress under Two Different Growing Systems. Agronomy 2023, 13, 879. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Garcia-Perez, P.; Cardarelli, M.; Senizza, B.; Miras-Moreno, B.; Colla, G.; Lucini, L. Plant biostimulants from seaweeds or vegetal proteins enhance the salinity tolerance in greenhouse lettuce by modulating plant metabolism in a distinctive manner. Sci. Hortic. 2022, 305, 111368. [Google Scholar] [CrossRef]
- Navarro-León, E.; Lópes-Moreno, F.J.; Borda, E.; Marín, C.; Blasco, N.S.B.; Ruiz, J.M. Effect of L-amino acid-based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. J. Sci. Food Agric. 2022, 102, 15. [Google Scholar] [CrossRef]
- Tamburino, R.; Docimo, T.; Sannino, L.; Gualtieri, L.; Palomba, F.; Valletta, A.; Ruocco, M.; Scotti, N. Enzyme-Based Biostimulants Influence Physiological and Biochemical Responses of Lactuca sativa L. Biomolecules 2023, 13, 1765. [Google Scholar] [CrossRef]
- Yassen, A.A.; Hájos, M.T. The potential role of moringa leaf extract as bio-stimulant to improve some quality parameters of different lettuce (Lactuca sativa L.) genotypes. Sarhad J. Agric. 2021, 37, 4. [Google Scholar] [CrossRef]
- Alou, D.; Kalleli, F.; Abid, G.; Karmous, C.; Manaa, M.; M’ Hamdi, M.M. Marine Algal extract as a biostimulant to improve tolerance to salinity in lettuce plants. Emir. J. Food Agric. 2023, 35, 1–18. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Anastasiou, M.; Pantelides, I.; Tzortzakis, N. Effects of Ascophyllum nodosum seaweed extracts on the growth, physiology, and storage of minimally cut salads under potassium deficiency. J. Sci. Food Agric. 2018, 98, 5861–5872. [Google Scholar] [CrossRef] [PubMed]
- Ramdin, T.M.; Ali, O.; Ramsubhag, A.; Jayaraman, J. Sargassum spp. and Ascophyllum nodosum seaweed extract formulations improve plant growth and alter the bacterial dynamics in hydroponically cultivated lettuce. J. Appl. Phycol. 2024, 36, 3769–3782. [Google Scholar] [CrossRef]
- Sandepogu, M.; Shukla, P.S.; Asiedu, S.; Yurgel, S.; Prithiviraj, B. Combination of Ascophyllum nodosum Extract and Humic Acid Improve Early Growth and Reduces Post-Harvest Loss of Lettuce and Spinach. Agriculture 2019, 9, 240. [Google Scholar] [CrossRef]
- Oliveira, L.F.C.; Pereira, B.A.; Silva, T.M.L.E.G. Adsorption of metal ions in red seaweed Lithothamnium calcareum in the treatment of industrial effluents. Eng. Sanitária E Ambient. 2021, 26, 2. [Google Scholar]
- Ramos, E.P.; Ferreira, T.R.; Aguiar, D.B.; Alves, F.L.; Dousseau-Arantes, S. Lithothamnion sp. as biostimulant in plant cultivation. Pesq. Agropec. Trop. 2023, 53, e76273. [Google Scholar] [CrossRef]
- Ovali, G.; Özdamar Ünlü, H.O. Effects of Chitosan Application on the Yield and Quality of Lettuce. BioResources 2024, 19, 985–997. [Google Scholar] [CrossRef]
- Dávila Rangel, I.E.; Trejo Téllez, L.I.; Ortega Ortiz, H.; Juárez Maldonado, A.; González Morales, S.; Companioni González, B.; Cabrera De la Fuente, M.; Benavides Mendoza, A. Comparison of Iodide, Iodate, and Iodine-Chitosan Complexes for the Biofortification of Lettuce. Appl. Sci. 2020, 10, 2378. [Google Scholar] [CrossRef]
- Lyalina, T.; Shagdarova, B.; Zhuikova, Y.; Il’ina, A.; Lunkov, A.; Varlamov, V. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters. Molecules 2023, 28, 1915. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Wu, K.; Zhang, Q.; Feng, Y.; Miao, Y.; Yan, Z. Exogenous Application of Chitosan Alleviate Salinity Stress in Lettuce (Lactuca sativa L.). Horticulturae 2021, 7, 342. [Google Scholar] [CrossRef]
- Treviño-Ruiz, K.S.; Ortega-Ortiz, H.; Benavides-Mendoza, A.; González-Morales, S. Effect of nanochitosan-iodine application in lettuce on biofortification, growth and yield. Ecosist. Recur. Agropec. 2024, 11, 3615. [Google Scholar] [CrossRef]
- Carneiro, P.B.M.; Silva, A.C.; Souza, R.L.; Fernandes, M.T.; Oliveira, J.F.; Santos, P.H. Structure, growth and production of CaCO3 in a shallow bed of rhodoliths of a highly energetic siliciclastic-carbonate coast in the equatorial southwest of the Atlantic Ocean. Mar. Environ. Res. 2021, 166, 105280. [Google Scholar] [CrossRef]
- Villa e Vila, V.; Oliveira, P.A.A.; Gomes, T.M.; Oliveira, A.F.; Oliveira, V.G.; Wenneck, G.S.; Franco, L.B. Deficit Irrigation with Silicon Application as Strategy to Increase Yield, Photosynthesis and Water Productivity in Lettuce Crops. Plants 2024, 13, 1029. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Colla, G.; Fiorentino, N.; Sabatino, L.; El-Nakhel, C.; Giordano, M.; Carvalho, A.; Cirillo, V.; Shabani, E.; et al. Evaluation of Combined Applications of Trichoderma virens and a Biopolymer-Based Biostimulant in Agronomic, Physiological and Qualitative Properties of Lettuce under Variable N Regimes. Agronomy 2020, 10, 196. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Pannico, A.; Giordano, M.; Colla, G.; Rouphael, Y. Foliar and Root Applications of Vegetal-Derived Protein Hydrolysates Differentially Enhance the Yield and Qualitative Attributes of Two Lettuce Cultivars Grown in Floating System. Agronomy 2021, 11, 1194. [Google Scholar] [CrossRef]
- Porras, R.C.S.; Ghoreishi, G.; Sánchez, A.; Barrena, R.; Font, X.; Ballardo, C.; Artola, A. Solid-state fermentation of green waste for the production of biostimulants to enhance lettuce (Lactuca sativa L.) cultivation under water stress: Closing the organic waste cycle. Chemosphere 2025, 370, 143919. [Google Scholar] [CrossRef]
- Gutiérrez-Chávez, A.; Robles-Hernández, L.; Guerrero, B.I.; González-Franco, A.C.; Medina-Pérez, G.; Acevedo-Barrera, A.A.; Hernández-Huerta, J. Potential of Trichoderma asperellum as a Growth Promoter in Hydroponic Lettuce Cultivated in a Floating-Root System. Plants 2025, 14, 382. [Google Scholar] [CrossRef]
Class | Product | Authors | Effects on Lettuce |
---|---|---|---|
Humic and Fulvic Acids | BLACKJAK® | [12] | Increased biomass, antioxidant. |
Humic and Fulvic acids | [18,20,28] | Nutrient absorption, stress resistance. | |
Protein Hydrolysates | Trainer®,, Vegamin® Viva®, Radifarm®, Megafol® PHs | [16,17] [16,39] | Leaf area, number of leaves, shoot fresh weight (SFW), and chlorophyll content. |
Antioxidant activity and secondary metabolites. Shoot fresh weight, dry weight, leaf area, and yield. | |||
Algal Extracts | Ascophyllum nodosum Sargassum spp. Lithothamnium sp. | [26,27,28] [27] [30] | Increase in quality, shelf life, protective enzymes, and biomass under salt stress. |
Accumulated dry biomass. | |||
Root development. | |||
Bacteria + Microalgae | PGPR + Chlorella vulgaris | [13,14] | Shoot biomass and carotenoid content under heat stress. Lettuce yield. |
Enzymes | Β-glucosidase + xylanase | [23] | Increase in fresh and dry biomass and bioactive compounds. |
Plant Extracts | Moringa Leaf Extract (MLE) | [26] | Increase in head size and number of leaves. |
Fungi-based | Trichoderma spp. | [19,38,40,41] | Increase in biomass, antioxidants, ascorbic acid, morphological and biomass parameters. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.M.L.d.; Pires, J.S.B.; Oliveira, V.d.S.; Jeveaux Machado, A.J.C.; Fernandes, A.A.; Arantes, L.d.O.; Dousseau-Arantes, S. Potential of the Use of Biostimulants in Lettuce Production. Plants 2025, 14, 2416. https://doi.org/10.3390/plants14152416
Oliveira TMLd, Pires JSB, Oliveira VdS, Jeveaux Machado AJC, Fernandes AA, Arantes LdO, Dousseau-Arantes S. Potential of the Use of Biostimulants in Lettuce Production. Plants. 2025; 14(15):2416. https://doi.org/10.3390/plants14152416
Chicago/Turabian StyleOliveira, Talys Moratti Lemos de, Janyne Soares Braga Pires, Vinicius de Souza Oliveira, Ana Júlia Câmara Jeveaux Machado, Adriano Alves Fernandes, Lúcio de Oliveira Arantes, and Sara Dousseau-Arantes. 2025. "Potential of the Use of Biostimulants in Lettuce Production" Plants 14, no. 15: 2416. https://doi.org/10.3390/plants14152416
APA StyleOliveira, T. M. L. d., Pires, J. S. B., Oliveira, V. d. S., Jeveaux Machado, A. J. C., Fernandes, A. A., Arantes, L. d. O., & Dousseau-Arantes, S. (2025). Potential of the Use of Biostimulants in Lettuce Production. Plants, 14(15), 2416. https://doi.org/10.3390/plants14152416