Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition
Abstract
1. Introduction
2. Materials and Methods
2.1. Sanger Sequencing of Prolamin and Glutelin Genes in the EYI105 Cultivar
2.2. Designing and Assembly of CRISPR/Cas9 Constructs
2.3. Rice Transformation and Plant Growth Conditions
2.4. DNA Extraction and PCR Analysis
2.5. InDels Characterization
2.6. Polyacrylamide Gel Electrophoresis Analysis (PAGE)
2.7. Determination of Albumins and Globulins
2.8. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) of Prolamins and Glutelins
2.9. Statistical Analysis
3. Results
3.1. Multiplex Genome Editing of Rice Prolamins and Glutelins by CRISPR/Cas9
3.2. Genome Editing of Prolamin and Glutelin Genes Provides Distinctive Protein Profiles
3.3. Alterations in the Protein Profile Are Consequences of InDels in Prolamin and Glutelin Genes
3.4. Quantification of SSP Fractions in Edited Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPPs | Seed storage proteins |
RNAi | RNA of interference |
sgRNAs | Single-guided ARNs |
CDS | Coding Sequence |
MS | Murashige and Skoog |
InDels | Insertions and deletions |
DTT | Dithiothreitol |
RT | Room temperature |
BSA | Bovine serum albumin |
References
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Kawakatsu, T.; Takaiwa, F. 4—Rice proteins and essential amino acids. In Rice, 4th ed.; Bao, J.B.T.-R., Ed.; AACC International Press: St. Paul, MN, USA, 2019; pp. 109–130. ISBN 978-0-12-811508-4. [Google Scholar]
- Jayaprakash, G.; Bains, A.; Chawla, P.; Fogarasi, M.; Fogarasi, S. A Narrative Review on Rice Proteins: Current Scenario and Food Industrial Application. Polymers 2022, 14, 3003. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Huang, B.; Song, Z.; Zhang, Y.; Zhang, Y.; Chen, S.; Tong, L.; Wei, Z.; Yu, L.; Luo, X.; et al. Unique Glutelin Expression Patterns and Seed Endosperm Structure Facilitate Glutelin Accumulation in Polyploid Rice Seed. Rice 2021, 14, 61. [Google Scholar] [CrossRef]
- Balindong, J.L.; Liu, L.; Ward, R.M.; Barkla, B.J.; Waters, D.L.E. Optimisation and standardisation of extraction and HPLC analysis of rice grain protein. J. Cereal Sci. 2016, 72, 124–130. [Google Scholar] [CrossRef]
- Saito, Y.; Shigemitsu, T.; Yamasaki, R.; Sasou, A.; Goto, F.; Kishida, K.; Kuroda, M.; Tanaka, K.; Morita, S.; Satoh, S.; et al. Formation mechanism of the internal structure of type I protein bodies in rice endosperm: Relationship between the localization of prolamin species and the expression of individual genes. Plant J. 2012, 70, 1043–1055. [Google Scholar] [CrossRef]
- Long, X.; Guan, C.; Wang, L.; Jia, L.; Fu, X.; Lin, Q.; Huang, Z.; Liu, C. Rice Storage Proteins: Focus on Composition, Distribution, Genetic Improvement and Effects on Rice Quality. Rice Sci. 2023, 30, 207–221. [Google Scholar] [CrossRef]
- Kawakatsu, T.; Hirose, S.; Yasuda, H.; Takaiwa, F. Reducing Rice Seed Storage Protein Accumulation Leads to Changes in Nutrient Quality and Storage Organelle Formation. Plant Physiol. 2010, 154, 1842–1854. [Google Scholar] [CrossRef] [PubMed]
- Kawakatsu, T.; Yamamoto, M.P.; Hirose, S.; Yano, M.; Takaiwa, F. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J. Exp. Bot. 2008, 59, 4233–4245. [Google Scholar] [CrossRef]
- Takahashi, K.; Kohno, H.; Kanabayashi, T.; Okuda, M. Glutelin subtype-dependent protein localization in rice grain evidenced by immunodetection analyses. Plant Mol. Biol. 2019, 100, 231–246. [Google Scholar] [CrossRef]
- Katsube-Tanaka, T.; Duldulao, J.B.A.; Kimura, Y.; Iida, S.; Yamaguchi, T.; Nakano, J.; Utsumi, S. The two subfamilies of rice glutelin differ in both primary and higher-order structures. Biochim. Biophys. Acta 2004, 1699, 95–102. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.-S. Rice-Based Gluten-Free Foods and Technologies: A Review. Foods 2023, 12, 4110. [Google Scholar] [CrossRef]
- Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef]
- Kubota, M.; Saito, Y.; Masumura, T.; Watanabe, R.; Fujimura, S.; Kadowaki, M. In Vivo Digestibility of Rice Prolamin/Protein Body-I Particle Is Decreased by Cooking. J. Nutr. Sci. Vitaminol. 2014, 60, 300–304. [Google Scholar] [CrossRef]
- Lang, G.; Kagiya, Y.; Ohnishi-Kameyama, M.; Kitta, K. Evaluation of extraction solutions for biochemical analyses of the proteins in rice grains. Biosci. Biotechnol. Biochem. 2013, 77, 126–131. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-Y.; Yoon, U.-H.; Lim, S.-H.; Kim, Y.-M. Effects of reduced prolamin on seed storage protein composition and the nutritional quality of rice. Int. J. Mol. Sci. 2013, 14, 17073–17084. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, J.-Y.; Lee, T.; Lee, Y.-H.; Kim, S.-H.; Kang, S.-H.; Yoon, U.-H.; Ha, S.-H.; Lim, S.-H. The suppression of the glutelin storage protein gene in transgenic rice seeds results in a higher yield of recombinant protein. Plant Biotechnol. Rep. 2012, 6, 347–353. [Google Scholar] [CrossRef]
- Cho, K.; Lee, H.-J.; Jo, Y.-M.; Lim, S.-H.; Rakwal, R.; Lee, J.-Y.; Kim, Y.-M. RNA Interference-Mediated Simultaneous Suppression of Seed Storage Proteins in Rice Grains. Front. Plant Sci. 2016, 7, 1624. [Google Scholar] [CrossRef] [PubMed]
- Kusaba, M.; Miyahara, K.; Iida, S.; Fukuoka, H.; Takano, T.; Sassa, H.; Nishimura, M.; Nishio, T. Low glutelin content1: A Dominant Mutation That Suppresses the Glutelin Multigene Family via RNA Silencing in Rice. Plant Cell 2003, 15, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Maruta, Y.; Ueki, J.; Saito, H.; Nitta, N.; Imaseki, H. Transgenic rice with reduced glutelin content by transformation with glutelin A antisense gene. Mol. Breed. 2002, 8, 273–284. [Google Scholar] [CrossRef]
- Chandra, D.; Cho, K.; Pham, H.A.; Lee, J.-Y.; Han, O. Down-Regulation of Rice Glutelin by CRISPR-Cas9 Gene Editing Decreases Carbohydrate Content and Grain Weight and Modulates Synthesis of Seed Storage Proteins during Seed Maturation. Int. J. Mol. Sci. 2023, 24, 16941. [Google Scholar] [CrossRef] [PubMed]
- van der Oost, J.; Patinios, C. The genome editing revolution. Trends Biotechnol. 2023, 41, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Du, H.; Tao, Y.; Xu, Y.; Wang, F.; Li, B.; Zhu, Q.-H.; Niu, H.; Yang, J. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9. Plant Sci. 2022, 324, 111449. [Google Scholar] [CrossRef] [PubMed]
- Wakasa, Y.; Kawakatsu, T.; Ishimaru, K.; Ozawa, K. Generation of major glutelin-deficient (GluA, GluB, and GluC) semi-dwarf Koshihikari rice line. Plant Cell Rep. 2024, 43, 51. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shen, Z.; Li, Y.; Xu, C.; Xia, H.; Zhuang, H.; Sun, S.; Guo, M.; Yan, C. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J. Integr. Plant Biol. 2022, 64, 1860–1865. [Google Scholar] [CrossRef]
- Pham, H.A.; Cho, K.; Tran, A.D.; Chandra, D.; So, J.; Nguyen, H.T.; Sang, H.; Lee, J.-Y.; Han, O. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice. Int. J. Mol. Sci. 2024, 25, 6579. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 4. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Li, C.; Buell, C.R. The rice genome annotation project: An updated database for mining the rice genome. Nucleic Acids Res. 2025, 53, D1614–D1622. [Google Scholar] [CrossRef]
- Čermák, T.; Curtin, S.J.; Gil-Humanes, J.; Čegan, R.; Kono, T.J.Y.; Konečná, E.; Belanto, J.J.; Starker, C.G.; Mathre, J.W.; Greenstein, R.L.; et al. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. Plant Cell 2017, 29, 1196–1217. [Google Scholar] [CrossRef]
- Tian, L.; Xing, Y.; Fukuda, M.; Li, R.; Kumamaru, T.; Qian, D.; Dong, X.; Qu, L.Q. A conserved motif is essential for the correct assembly of proglutelins and for their export from the endoplasmic reticulum in rice endosperm. J. Exp. Bot. 2018, 69, 5029–5043. [Google Scholar] [CrossRef] [PubMed]
- Baysal, C.; Burén, S.; He, W.; Jiang, X.; Capell, T.; Rubio, L.M.; Christou, P. Functional expression of the nitrogenase Fe protein in transgenic rice. Commun. Biol. 2022, 5, 1006. [Google Scholar] [CrossRef]
- Pistón, F.; Marín, S.; Hernando, A.; Barro, F. Analysis of the activity of a γ-gliadin promoter in transgenic wheat and characterization of gliadin synthesis in wheat by MALDI-TOF during grain development. Mol. Breed. 2009, 23, 655–667. [Google Scholar] [CrossRef]
- Farre, G.; Naqvi, S.; Sanahuja, G.; Bai, C.; Zorrilla-López, U.; Rivera, S.M.; Canela, R.; Sandman, G.; Twyman, R.M.; Capell, T.; et al. Combinatorial Genetic Transformation of Cereals and the Creation of Metabolic Libraries for the Carotenoid Pathway. In Transgenic Plants: Methods and Protocols; Dunwell, J.M., Wetten, A.C., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 419–435. ISBN 978-1-61779-558-9. [Google Scholar]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed]
- Ozuna, C.V.; Barro, F. Characterization of gluten proteins and celiac disease-related immunogenic epitopes in the Triticeae: Cereal domestication and breeding contributed to decrease the content of gliadins and gluten. Mol. Breed. 2018, 38, 22. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kawagoe, Y.; Suzuki, K.; Tasaki, M.; Yasuda, H.; Akagi, K.; Katoh, E.; Nishizawa, N.K.; Ogawa, M.; Takaiwa, F. The Critical Role of Disulfide Bond Formation in Protein Sorting in the Endosperm of Rice. Plant Cell 2005, 17, 1141–1153. [Google Scholar] [CrossRef]
- Sakai, H.; Lee, S.S.; Tanaka, T.; Numa, H.; Kim, J.; Kawahara, Y.; Wakimoto, H.; Yang, C.; Iwamoto, M.; Abe, T.; et al. Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics. Plant Cell Physiol. 2013, 54, e6. [Google Scholar] [CrossRef]
- Al-Doury, M.K.W.; Hettiarachchy, N.S.; Horax, R. Rice-Endosperm and Rice-Bran Proteins: A Review. J. Am. Oil Chem. Soc. 2018, 95, 943–956. [Google Scholar] [CrossRef]
- Chung, C.-H.; Allen, A.G.; Sullivan, N.T.; Atkins, A.; Nonnemacher, M.R.; Wigdahl, B.; Dampier, W. Computational Analysis Concerning the Impact of DNA Accessibility on CRISPR-Cas9 Cleavage Efficiency. Mol. Ther. 2020, 28, 19–28. [Google Scholar] [CrossRef]
- Chakrabarti, A.M.; Henser-Brownhill, T.; Monserrat, J.; Poetsch, A.R.; Luscombe, N.M.; Scaffidi, P. Target-Specific Precision of CRISPR-Mediated Genome Editing. Mol. Cell 2019, 73, 699–713.e6. [Google Scholar] [CrossRef]
- Shigemitsu, T.; Saito, Y.; Morita, S.; Satoh, S.; Masumura, T. Separation and identification of rice prolamins by two-dimensional gel electrophoresis and amino acid sequencing. Biosci. Biotechnol. Biochem. 2012, 76, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, K.; Sharma, S.G.; Bagchi, T.B.; Molla, K.A.; Sarkar, S.; Marndi, B.C.; Sarkar, A.; Dash, S.K.; Singh, O.N. Development of recombinant high yielding lines with improved protein content in rice (Oryza sativa L.). J. Agric. Sci. 2018, 156, 241–257. [Google Scholar] [CrossRef]
Vector ID | sgRNA ID | Protospacer Sequence (5′→3′) | Length (bp) | PAM | Target |
---|---|---|---|---|---|
pSSLPro13-3 | sgPro13a-1 | GTGTTGCCAACAGCTCAGGC | 20 | TGG | Pro13a |
sgPro13b-1 | GAAAACATCAAACTGCGCAG | 20 | TGG | Pro13b | |
pSSLGluA-3 | sgGluA-1 | GCAAACTGTGAAGAAAACTA | 20 | TGG | GluA |
sgGluA-2 | GAATGGCAAAGTTCTCGCCG | 20 | TGG | GluA | |
pSSLGluA-4 | sgGluA-3 | GCTCGTCGTGGAAGTCCGAG | 20 | AGG | GluA |
sgGluA-4 | GATGTCACTGATCTCAACAA | 20 | CGG | GluA |
Edited Lines | Analyzed Lines | Cas9-Positive Lines | Generation | Target | Plasmid |
---|---|---|---|---|---|
27 | 36 | 118 | T0 | Pro13b/Pro13a | pSSLPro13-3 |
21 | 27 | 83 | T0 | GluA | pSSLGluA-3 |
5 | 5 | 5 | T0 | GluA | pSSLGluA-4 |
Edited Lines | Analyzed Lines | Lines | Generation | Target | Plasmid |
---|---|---|---|---|---|
9 | 9 | 27 Cas9-positives | T1 | Pro13b/Pro13a | pSSLPro13-3 |
6 | 6 | 15 Cas9-negative | |||
6 | 6 | 13 Cas9-positive | T1 | GluA | pSSLGluA-3 |
5 | 5 | 5 Cas9-negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-López, M.H.; Sánchez-León, S.; Marín-Sanz, M.; Barro, F. Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition. Plants 2025, 14, 2355. https://doi.org/10.3390/plants14152355
Guzmán-López MH, Sánchez-León S, Marín-Sanz M, Barro F. Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition. Plants. 2025; 14(15):2355. https://doi.org/10.3390/plants14152355
Chicago/Turabian StyleGuzmán-López, María H., Susana Sánchez-León, Miriam Marín-Sanz, and Francisco Barro. 2025. "Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition" Plants 14, no. 15: 2355. https://doi.org/10.3390/plants14152355
APA StyleGuzmán-López, M. H., Sánchez-León, S., Marín-Sanz, M., & Barro, F. (2025). Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition. Plants, 14(15), 2355. https://doi.org/10.3390/plants14152355