Temporal Transcriptome Analysis Reveals Core Pathways and Orphan Gene EARLY FLOWERING 1 Regulating Floral Transition in Chinese Cabbage
Abstract
1. Introduction
2. Results
2.1. Temporal Transcriptome Profiling of Floral Transition in Chinese Cabbage
2.2. GO Classification and KEGG Pathway Enrichment of DEGs
2.3. Transcriptional Dynamics of Core Flowering Pathway DEGs
2.4. Transcriptional Profiling of DEGs in Plant Hormone Signal Transduction
2.5. Expression Patterns of DEGs in MAPK Signaling Pathway
2.6. Expression Profiling of DEGs in the OGs Pathway
2.7. Orphan Gene EARLY FLOWERING 1 Positively Regulates Floral Initiation
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Total RNA Isolation, Library Preparation, Sequencing, and Transcriptome Assembly
4.3. Functional Characterization and Novel Gene Identification
4.4. Gene Expression Quantification, Differential Gene Expression Profiling, and Enrichment Analysis
4.5. Generation and Characterization of EF1-Overexpressing Transgenic Arabidopsis Plants
4.6. Quantitative Real-Time PCR Validation
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
BP | Biological process |
BR | Brassinosteroids |
BrOGs | Brassica rapa orphan genes |
BrOGsOE | BrOGs overexpression |
BS | Bolting stage |
BSGs | Brassica-specific genes |
CC | Cellular component |
CK | Cytokinins |
CSGs | Cruciferae-specific genes |
DEGs | Differentially expressed genes |
EF1 | EARLY FLOWERING 1 |
EF1OE | EF1 overexpression |
ET | Ethylene |
FPKM | Fragments per kilobase of exon per million mapped reads |
FS | Flowering stage |
GA | Gibberellin |
GO | Gene Ontology |
JA | Jasmonic acid |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MAPK | MITOGEN-ACTIVATED PROTEIN KINASE |
MF | Molecular function |
OE | Overexpression |
OGs | Orphan genes |
PBS | Pre-bolting stage |
PCA | Principal component analysis |
qRT-PCR | quantitative Real-Time PCR |
SA | Salicylic acid |
WT | Wild-type |
References
- Yuan, J.; Shen, C.; Chen, R.; Qin, Y.; Li, S.; Sun, B.; Feng, C.; Guo, X. BrCNGC12 and BrCNGC16 mediate Ca2+ absorption and transport to enhance resistance to tipburn in Chinese cabbage. Plant Biotechnol. J. 2025, 23, 2871–2887. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhan, Z.; Li, X.; Piao, Z. Construction and evaluation of Brassica rapa orphan genes overexpression library. Front. Plant Sci. 2025, 16, 1532449. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, Y.; Dai, Y.; Li, X.; Huang, C.; Zhang, S.; Li, F.; Zhang, H.; Li, G.; Sun, R.; et al. Identification of the MADS-Box Gene Family and the Key Role of BrAGL27 in the Regulation of Flowering in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Int. J. Mol. Sci. 2025, 26, 2635. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qu, G.; Sun, Y.; Chen, J.; Feng, H.; Gao, Y. Genome-wide identification of ADF gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis) and functional characterization of BrADF11 under heat stress. Plant Physiol. Biochem. 2025, 223, 109796. [Google Scholar]
- Liao, R.; Zhang, R.; Li, X.; Jiang, M. Construction of an Overexpression Library for Chinese Cabbage Orphan Genes in Arabidopsis and Functional Analysis of BOLTING RESISTANCE 4-Mediated Flowering Delay. Plants 2025, 14, 1947. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhang, S.; Guan, J.; Wang, S.; Zhang, H.; Li, G.; Sun, R.; Li, F.; Zhang, S. Single-cell transcriptomic analysis of flowering regulation and vernalization in Chinese cabbage shoot apex. Hortic. Res. 2024, 11, uhae214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cai, X.; Liang, J.; Liu, J.; Guo, J.; Yang, W.; Wang, X.; Wu, J. Time-resolved single-cell atlas identifies the spatiotemporal transcription dynamics in vernalization response in Brassica rapa. Cell Rep. 2025, 44, 115725. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, Y.; Xu, C. Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture. New Phytol. 2025, 245, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Hu, Y.; Hou, X. More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses. J. Integr. Plant. Biol. 2025, 67, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Shim, J.S.; Kinmonth-Schultz, H.A.; Imaizumi, T. Photoperiodic flowering: Time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 2015, 66, 441–464. [Google Scholar] [CrossRef] [PubMed]
- Maple, R.; Zhu, P.; Hepworth, J.; Wang, J.W.; Dean, C. Flowering time: From physiology, through genetics to mechanism. Plant Physiol. 2024, 195, 190–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W. Regulation of flowering time by the miR156-mediated age pathway. J. Exp. Bot. 2014, 65, 4723–4730. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Hua, C.; Shen, L.; Yu, H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. J. Integr. Plant. Biol. 2020, 62, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, S.; Boss, P.K.; Hadfield, J.; Dean, C. Additional targets of the Arabidopsis autonomous pathway members, FCA and FY. J. Exp. Bot. 2006, 57, 3379–3386. [Google Scholar] [CrossRef] [PubMed]
- Izawa, T. What is going on with the hormonal control of flowering in plants? Plant J. 2021, 105, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Jagadish, S.V.; Bahuguna, R.N.; Djanaguiraman, M.; Gamuyao, R.; Prasad, P.V.; Craufurd, P.Q. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants. Front. Plant Sci. 2016, 7, 913. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Kim, S.; Choi, S.J.; Joung, E.; Kwon, M.; Park, H.J.; Shim, J.S. Regulation of Flowering Time by Environmental Factors in Plants. Plants 2023, 12, 3680. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Ai, X.Y.; Zhang, J.Z. Genetic regulation of flowering time in annual and perennial plants. Wiley Interdiscip. Rev. RNA 2014, 5, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Bahadur, S.; Xia, W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023, 885, 147699. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Gao, Z.; Luo, L.; Wang, Y.; Chen, Q.; Yang, Y.; Kong, X.; Yang, Y. Divergence of the genetic contribution of FRIGIDA homologues in regulating the flowering time in Brassica rapa ssp. rapa. Gene 2021, 796–797, 145790. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Zhao, J.J.; Hou, X.L.; Basnet, R.K.; Carpio, D.P.; Zhang, N.W.; Bucher, J.; Lin, K.; Cheng, F.; Wang, X.W.; et al. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J. Exp. Bot. 2013, 64, 4503–4516. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Wei, K.; Gao, B.; Liu, J.; Liang, J.; Cheng, F.; Wang, X.; Wu, J. BrFLC5: A weak regulator of flowering time in Brassica rapa. Theor. Appl. Genet. 2018, 131, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wei, K.; Cheng, F.; Li, S.; Wang, Q.; Zhao, J.; Bonnema, G.; Wang, X. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol. 2012, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.X.; Wu, J.; Sun, R.F.; Zhang, X.W.; Xu, D.H.; Bonnema, G.; Wang, X.W. A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J. Exp. Bot. 2009, 60, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, C.; Chen, R.; Sun, B.; Li, D.; Guo, X.; Wu, C.; Khan, N.; Chen, B.; Yuan, J. Function of BrSOC1b gene in flowering regulation of Chinese cabbage and its protein interaction. Planta 2023, 258, 21. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, Y.; Luo, L.; Chen, Q.; Yang, T.; Yang, Y.; Qiao, Q.; Kong, X.; Yang, Y. The evolution and functional divergence of FT-related genes in controlling flowering time in Brassica rapa ssp. rapa. Plant Cell Rep. 2024, 43, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Meng, L.; Liu, B.; Hu, Y.; Cheng, F.; Liang, J.; Aarts, M.G.; Wang, X.; Wu, J. A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Sci. 2015, 241, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Ren, J.; Wang, L.; Ye, X.; Fu, W.; Zhang, J.; Qi, M.; Feng, H.; Liu, Z. A single amino acid residue substitution in BraA04g017190.3C, a histone methyltransferase, results in premature bolting in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). BMC Plant Biol. 2021, 21, 373. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Huang, S.; Gao, Y.; Zhang, M.; Qu, G.; Wang, N.; Liu, Z.; Feng, H. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). Theor. Appl. Genet. 2020, 133, 2937–2948. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, S.; Qu, G.; Fu, W.; Zhang, M.; Liu, Z.; Feng, H. The mutation of ent-kaurene synthase, a key enzyme involved in gibberellin biosynthesis, confers a non-heading phenotype to Chinese cabbage (Brassica rapa L. ssp. pekinensis). Hortic. Res. 2020, 7, 178. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Dong, X.; Lang, H.; Pang, W.; Zhan, Z.; Li, X.; Piao, Z. Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa. Int. J. Mol. Sci. 2018, 19, 2064. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-H.; Xu, Z.-H.; Bai, S.-N. OsFON879, an orphan gene, regulates floral organ homeostasis in rice. Plant Biotechnol. J. 2025, 23, 2888–2890. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Chen, S.; Heng, Y.; Chen, Z.; Yang, J.; Zhou, K.; Pei, J.; He, H.; Deng, X.W.; et al. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. USA 2017, 114, 12614–12619. [Google Scholar] [CrossRef] [PubMed]
- Ni, F.; Qi, J.; Hao, Q.; Lyu, B.; Luo, M.C.; Wang, Y.; Chen, F.; Wang, S.; Zhang, C.; Epstein, L.; et al. Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat. Commun. 2017, 8, 15121. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Choi, I.; Shahzad, Z.; Brandizzi, F.; Rouached, H. Nutrient cues control flowering time in plants. Trends Plant Sci. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Rahim, M.A.; Zhao, Y.; Yang, S.; Wang, Z.; Su, H.; Li, L.; Niu, L.; Harun-Ur-Rashid, M.; Yuan, Y.; et al. Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage (Brassica rapa). Front. Genet. 2021, 12, 590830. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Dent, C.; Liang, H.; Lv, J.; Shang, G.; Liu, Y.; Feng, F.; Wang, F.; Pang, J.; Li, X.; et al. CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing. Nat. Commun. 2022, 13, 7045. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Kim, S.Y.; Susila, H.; Nasim, Z.; Youn, G.; Ahn, J.H. FLOWERING LOCUS M isoforms differentially affect the subcellular localization and stability of SHORT VEGETATIVE PHASE to regulate temperature-responsive flowering in Arabidopsis. Mol. Plant 2022, 15, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
- Bertran Garcia de Olalla, E.; Cerise, M.; Rodríguez-Maroto, G.; Casanova-Ferrer, P.; Vayssières, A.; Severing, E.; López Sampere, Y.; Wang, K.; Schäfer, S.; Formosa-Jordan, P.; et al. Coordination of shoot apical meristem shape and identity by APETALA2 during floral transition in Arabidopsis. Nat. Commun. 2024, 15, 6930. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Jung, H.; Park, H.J.; Jo, S.H.; Jung, M.; Kim, Y.S.; Cho, H.S. Their C-termini divide Brassica rapa FT-like proteins into FD-interacting and FD-independent proteins that have different effects on the floral transition. Front. Plant Sci. 2022, 13, 1091563. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Kim, S.B.; Jung, J.H. Analysis of temperature effects on the protein accumulation of the FT-FD module using newly generated Arabidopsis transgenic plants. Plant Direct 2023, 7, e552. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, C.; Lan, C.; Tao, Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. J. Exp. Bot. 2024, 75, 4180–4194. [Google Scholar] [CrossRef] [PubMed]
- Porri, A.; Torti, S.; Romera-Branchat, M.; Coupland, G. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 2012, 139, 2198–2209. [Google Scholar] [CrossRef] [PubMed]
- Youfa, C.; Yunde, Z. A Role for Auxin in Flower Development. J. Integr. Plant. Biol. 2007, 49, 99–104. [Google Scholar]
- Yamaguchi, N.; Jeong, C.W.; Nole-Wilson, S.; Krizek, B.A.; Wagner, D. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis. Plant Physiol. 2016, 170, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, Y. Roles of Brassinosteroids in Plant Reproduction. Int. J. Mol. Sci. 2020, 21, 872. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, X.; Chen, W.; Xu, Z.; Chen, M.; Wang, H.; Yu, D. The emerging role of jasmonate in the control of flowering time. J. Exp. Bot. 2022, 73, 11–21. [Google Scholar] [CrossRef] [PubMed]
- D’Aloia, M.; Bonhomme, D.; Bouché, F.; Tamseddak, K.; Ormenese, S.; Torti, S.; Coupland, G.; Périlleux, C. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011, 65, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K.; Jaggi, M.; Raghuram, B.; Tuteja, N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 2011, 6, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, S. Mitogen-activated protein kinase cascades in plant signaling. J. Integr. Plant. Biol. 2022, 64, 301–341. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, H.; Hong, J.; Ye, X.; Wang, J.; Chen, Y.; Zhang, L.; Su, Z.; Yang, Z. Chlorate-induced molecular floral transition revealed by transcriptomes. Open Life Sci. 2023, 18, 20220612. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhang, Y.; Yang, X.; Li, X.; Lang, H. Brassica rapa orphan gene BR1 delays flowering time in Arabidopsis. Front. Plant Sci. 2023, 14, 1135684. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, H.; Zhang, Y.; Zhao, S.; Li, K.; Li, X.; Jiang, M. Temporal Transcriptome Analysis Reveals Core Pathways and Orphan Gene EARLY FLOWERING 1 Regulating Floral Transition in Chinese Cabbage. Plants 2025, 14, 2236. https://doi.org/10.3390/plants14142236
Lang H, Zhang Y, Zhao S, Li K, Li X, Jiang M. Temporal Transcriptome Analysis Reveals Core Pathways and Orphan Gene EARLY FLOWERING 1 Regulating Floral Transition in Chinese Cabbage. Plants. 2025; 14(14):2236. https://doi.org/10.3390/plants14142236
Chicago/Turabian StyleLang, Hong, Yuting Zhang, Shouhe Zhao, Kexin Li, Xiaonan Li, and Mingliang Jiang. 2025. "Temporal Transcriptome Analysis Reveals Core Pathways and Orphan Gene EARLY FLOWERING 1 Regulating Floral Transition in Chinese Cabbage" Plants 14, no. 14: 2236. https://doi.org/10.3390/plants14142236
APA StyleLang, H., Zhang, Y., Zhao, S., Li, K., Li, X., & Jiang, M. (2025). Temporal Transcriptome Analysis Reveals Core Pathways and Orphan Gene EARLY FLOWERING 1 Regulating Floral Transition in Chinese Cabbage. Plants, 14(14), 2236. https://doi.org/10.3390/plants14142236