Exploring the Interplay Between Soil and Plants Under Biochar Application to Enhance Plant Resilience in a Changing Environment
- (1)
- (2)
- (3)
- (4)
Author Contributions
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C. Biochar for Sustainable Farming and Recultivation. Agronomy 2023, 13, 2421. [Google Scholar] [CrossRef]
- Mehari, Z.H.; Elad, Y.; Rav-David, D.; Graber, E.R.; Harel, Y.M. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signalling. Plant Soil 2015, 395, 31–44. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Sherpa, K.; Bui, X.-T.; Nguyen, V.-T.; Vo, T.-D.; Ho, H.-T.; Chen, C.-W.; Dong, C.-D. Biochar for soil remediation: A comprehensive review of current research on pollutant removal. Environ. Pollut. 2023, 337, 122571. [Google Scholar] [CrossRef]
- Pan, G.; Bian, R.; Cheng, K. From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis. Sci. Technol. Rev. 2017, 35, 82–93. (In Chinese) [Google Scholar]
- Bolan, N.; Hoang, S.A.; Beiyuan, J.; Gupta, S.; Hou, D.; Karakoti, A.; Joseph, S.; Jung, S.; Kim, K.-H.; Kirkham, M.; et al. Multifunctional applications of biochar beyond carbon storage. Int. Mater. Rev. 2021, 67, 150–200. [Google Scholar] [CrossRef]
- Cheema, A.I.; Amina; Ullah, H.; Munir, M.A.M.; Rehman, A.; Sarma, H.; Pikoń, K.; Yousaf, B. Unraveling the mechanisms of free radicals-based transformation and accumulation of potentially toxic metal(loid)s in biochar- and compost-amended soil-plant systems. J. Clean. Prod. 2024, 449, 141767. [Google Scholar] [CrossRef]
- Zhuang, Q.-L.; Yuan, H.-Y.; Sun, M.; Deng, H.-G.; Zama, E.F.; Tao, B.-X.; Zhang, B.-H. Biochar-mediated remediation of low-density polyethylene microplastic-polluted soil-plant systems: Role of phosphorus and protist community responses. J. Hazard. Mater. 2025, 486, 137076. [Google Scholar] [CrossRef]
- Bolan, S.; Sharma, S.; Mukherjee, S.; Kumar, M.; Rao, C.S.; Nataraj, K.; Singh, G.; Vinu, A.; Bhowmik, A.; Sharma, H.; et al. Biochar modulating soil biological health: A review. Sci. Total Environ. 2023, 914, 169585. [Google Scholar] [CrossRef]
- Liu, C.; Xia, R.; Tang, M.; Liu, X.; Bian, R.; Yang, L.; Zheng, J.; Cheng, K.; Zhang, X.; Drosos, M.; et al. More microbial manipulation and plant defense than soil fertility for biochar in food production: A field experiment of replanted ginseng with different biochars. Front. Microbiol. 2022, 13, 1065313. [Google Scholar] [CrossRef]
- Liu, C.; Shang, S.; Wang, C.; Tian, J.; Zhang, L.; Liu, X.; Bian, R.; He, Q.; Zhang, F.; Chen, L.; et al. Biochar amendment increases peanut production through improvement of the extracellular enzyme activities and microbial community composition in replanted field. Plants 2025, 14, 922. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Bian, R.; Xin, X.; Cheng, K.; Liu, X.; Liu, Y.; Wang, P.; Li, Z.; Zheng, J.; Zhang, X.; et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil—A rice farm trial. Geoderma 2020, 376, 114567. [Google Scholar] [CrossRef]
- Joseph, S.; Graber, E.; Chia, C.; Munroe, P.; Donne, S.; Thomas, T.; Nielsen, S.; Marjo, C.; Rutlidge, H.; Pan, G.; et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 2013, 4, 323–343. [Google Scholar] [CrossRef]
- Noureen, S.; Iqbal, A.; Muqeet, H.A. Potential of drought tolerant rhizobacteria amended with biochar on growth promotion in wheat. Plants 2024, 13, 1183. [Google Scholar] [CrossRef] [PubMed]
- Rasse, D.P.; Weldon, S.; Joner, E.J.; Joseph, S.; Kammann, C.I.; Liu, X.; O’tOole, A.; Pan, G.; Kocatürk-Schumacher, N.P. Enhancing plant N uptake with biochar-based fertilizers: Limitation of sorption and prospects. Plant Soil 2022, 475, 213–236. [Google Scholar] [CrossRef]
- Zheng, J.; Han, J.; Liu, Z.; Xia, W.; Zhang, X.; Li, L.; Liu, X.; Bian, R.; Cheng, K.; Zheng, J.; et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agric. Ecosyst. Environ. 2017, 241, 70–78. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.; Ok, Y.S. Biochars and the plant-soil interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Bilotto, F.; Christie-Whitehead, K.M.; Barnes, N.; Harrison, M.T. Operationalising net-zero with biochar: Black gold or red herring? Trends Food Sci. Technol. 2024, 150, 104579. [Google Scholar] [CrossRef]
- Iacomino, G.; Cozzolino, A.; Idbella, M.; Amoroso, G.; Bertoli, T.; Bonanomi, G.; Motti, R. Potential of biochar as a peat substitute in growth media for Lavandula angustifolia, Salvia rosmarinus and Fragaria ananassa. Plants 2023, 12, 3689. [Google Scholar] [CrossRef]
- Zhang, K.; Han, X.; Fu, Y.; Zhou, Y.; Khan, Z.; Bi, J.; Hu, L.; Luo, L. Biochar coating as a cost-effective delivery approach to promoting seed quality, rice germination, and seedling establishment. Plants 2023, 12, 3896. [Google Scholar] [CrossRef]
- Shani, M.Y.; Ahmad, S.; Ashraf, M.Y.; Nawaz, M.; Arshad, I.; Anjum, A.; De Mastro, F.; Cocozza, C.; Khan, Z.; Gul, N.; et al. Nano-biochar suspension mediated alterations in growth, physio-biochemical activities and nutrient content in wheat (Triticum aestivum L.) at the vegetative stage. Plants 2024, 13, 2347. [Google Scholar] [CrossRef] [PubMed]
- Mon, W.W.; Ueno, H. Short-term effect of the combined application of rice husk biochar and organic and inorganic fertilizers on radish growth and nitrogen use efficiency. Plants 2024, 13, 2376. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, S.; Ahmed, W.; Jiang, T.; Mei, F.; Hu, X.; Liu, W.; Abbas, F.M.; Xue, R.; Peng, X.; et al. Exploring the relationship between biochar pore structure and microbial community composition in promoting tobacco growth. Plants 2024, 13, 2952. [Google Scholar] [CrossRef]
- Huang, L.; Chen, W.; Wei, L.; Li, X.; Huang, Y.; Huang, Q.; Liu, C.; Liu, Z. Biochar blended with alkaline mineral can better inhibit lead and cadmium uptake and promote the growth of vegetables. Plants 2024, 13, 1934. [Google Scholar] [CrossRef]
- Ma, W.; Luo, P.; Ahmed, S.; Hayat, H.S.; Anjum, S.A.; Nian, L.; Wu, J.; Wei, Y.; Ba, W.; Haider, F.U.; et al. Synergistic effect of biochar, phosphate fertilizer, and phosphorous solubilizing bacteria for mitigating cadmium (Cd)stress and improving maize growth in Cd-contaminated soil. Plants 2024, 13, 3333. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Xiong, H.; Wang, T.; Yang, J.; Wang, W.; Al-Khalaf, A.A.; Wang, Z.; Ahmed, W. Biochar and trehalose co-application: A sustainable strategy for alleviating lead toxicity in rice. Plants 2025, 14, 878. [Google Scholar] [CrossRef]
- Tripti; Kumar, A.; Maleva, M.; Borisova, G.; Rajkumar, M. Amaranthus biochar-based microbial cell composites for alleviation of drought and cadmium stress: A novel bioremediation approach. Plants 2023, 12, 1973. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Usman, M.; Zaman, Q.U.; Deng, G.; Chen, S.; Alwahibi, M.S.; Rizwana, H.; Iqbal, J.; Ahmad, S.; et al. Protective effects of multiple-chemical engineered biochar on hormonal signalling, antioxidant pathways and secondary metabolites in Lavender exposed to chromium and fluoride toxicity. J. Crop. Health 2025, 77, 64. [Google Scholar] [CrossRef]
- Jing, J.; Chen, S.; Wang, Y.; Zhao, Z. Organic and inorganic composition of three typical pyrolitic liquids and their effect on capsicium growth with foliar fertilization. Chin. J. Agric. Resour. Environ. 2024, 41, 1111–1121. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, C.; Yan, M.; Pan, G. Understanding and enhancing soil conservation of water and life. Soil Sci. Environ. 2023, 2, 9. [Google Scholar] [CrossRef]
- Azeem, M.; Wang, J.; Kubwimana, J.J.; Kazmi, S.S.; Khan, Z.H.; He, K.; Han, R. Biochar-derived dissolved organic matter (BDOM) shifts fungal community composition: BDOM-soil DOM interaction. Appl. Soil Ecol. 2025, 207, 105916. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, G.; Joseph, S.; Schmidt, H.P. Exploring the Interplay Between Soil and Plants Under Biochar Application to Enhance Plant Resilience in a Changing Environment. Plants 2025, 14, 2181. https://doi.org/10.3390/plants14142181
Pan G, Joseph S, Schmidt HP. Exploring the Interplay Between Soil and Plants Under Biochar Application to Enhance Plant Resilience in a Changing Environment. Plants. 2025; 14(14):2181. https://doi.org/10.3390/plants14142181
Chicago/Turabian StylePan, Genxing, Stephen Joseph, and Hans Peter Schmidt. 2025. "Exploring the Interplay Between Soil and Plants Under Biochar Application to Enhance Plant Resilience in a Changing Environment" Plants 14, no. 14: 2181. https://doi.org/10.3390/plants14142181
APA StylePan, G., Joseph, S., & Schmidt, H. P. (2025). Exploring the Interplay Between Soil and Plants Under Biochar Application to Enhance Plant Resilience in a Changing Environment. Plants, 14(14), 2181. https://doi.org/10.3390/plants14142181