Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality
Abstract
1. Introduction
2. Abiotic Stresses
2.1. Salinity and Alkalinity Stress
2.2. Water Stress
2.3. Heat Stress
2.4. A Combination of Water Deficit and Heat Stress
3. Biostimulants, Phytohormones, and Reflective Antitranspirants
3.1. The Effect of Foliar Applications Under Salinity and Alkalinity Stress
3.2. The Effect of Foliar Applications Under Water Stress
Country | Cultivar | Irrigation | Foliar Application | Results | Ref. |
---|---|---|---|---|---|
Italy (pot experiment) | Sangiovese | Well-watered, water deficit followed by re-watering | Kaolin (3%) | Water relations: ↑ WUE Photosynthesis and gas exchange: ↓ leaf temperature, protected leaf function, protected clusters from overheating and sunburn Quantity traits: − yield and berry weight Quality traits: − TSS, pH, TA, malic acid, and tartaric acid Secondary metabolites: ↑ anthocyanins and phenolics | [107] |
Italy (open-field experiment) | Merlot | Well-watered, water deficit (90% and 35% of estimated crop water demand (ETc)) | Kaolin-based reflective film (berries at pea size for 3 consecutive weeks at a dosage of 60 g/L in 950 L/ha) | Quantity traits: ↓ number of berries per cluster, ↑ berry fresh weight Quality traits: − TSS and TA Secondary metabolites: ↑ anthocyanins | [113] |
USA (pot experiment) | Pinot noir | Well-watered, water deficit followed by re-water | Foliar and soil application of Ascophyllum nodosum extract | Water relations: ↑ leaf water potential Photosynthesis and gas exchange: ↑ leaf gas exchange, stomatal conductance, photosynthesis, WUE Osmotic adjustment: ↑ sugar content Recovery after rewatering: Faster physiological recovery Foliar application: Best for rapid stress mitigation, especially in leaves and in photosynthesis Soil application: Better for long-term support, especially for roots and sustained drought adaptation | [108] |
Iran (open-field experiment) | Yaghouti | Well-watered, water deficit (irrigation after 60 and 100 mm of evaporation from early April to mid-October) | Amino acid, fulvic acid, and seaweed extract (0.5% AA, FA, and SE applied to millet-sized berries and 2 weeks later) and humic acid (20 g HA /vine at bud swelling and to millet-sized berries) | Chlorophyll and pigments: ↑ chlorophyll content Oxidative stress and antioxidants: ↓ H2O2 and MDA, ↑ activity of GPX and CAT Osmotic adjustment: ↑ proline, soluble carbohydrates, and proteins Mineral contents: ↑ N, P, K, Fe, and Zn in leaves Quality traits: ↑ weight of 20 berries and yield Quality traits: ↓ TSS and TA Effectiveness: SE was the most effective treatment | [42] |
Italy (pot experiment) | Pinot noir | Well-watered, water deficit post-veraison (90% and 40% of the maximum water availability) | Ascophyllum nodosum extract (3 g/L, 20 and 14 days before the expected harvest) | Water relations: ↑ leaf water potential Photosynthesis and gas exchange: ↑ photosynthetic rate and stomatal conductance Secondary metabolites: ↑ total phenolics, flavonoids, anthocyanins Upregulation of phenylpropanoid pathway genes related to stress defense | [109] |
Italy (pot experiment) | Montepulciano | Full irrigation followed by progressive water stress and then full irrigation restored | Vegetable-derived protein hydrolysates ‘Trainer’ (PH1) and ‘Stimtide’ (PH2) | Quantity traits: − yield Quality traits: ↓ TSS and pH, ↑ TA (only PH2) Secondary metabolism: − total anthocyanins and phenolics | [80] |
China (solar greenhouse experiment) | Red earth | Irrigation treatments (360, 300, 240, and 180 mm) | Melatonin (150 µmol L−1 at 0, 30, 60, and 90 days after flowering) | Oxidative stress and antioxidants: ↓ MDA, H2O2, and O2− ↑ activity of SOD, CAT, and POD Osmotic adjustment: ↑ proline, soluble sugars, and proteins Hormonal balance: ↓ ABA and SA, which ↑ under drought stress ↑ IAA, GA3, and ZT, which ↓under drought stress Quantity traits: ↑ berry weight and diameter Quality traits: − total soluble sugars, glucose, fructose, and sucrose in berries Secondary metabolism: Variable effect on total phenolics and vitamin C ↑ total flavonoids, ↓ tannins Interaction: Effective across varying water regimes, especially under low irrigation | [110] |
Turkey (pot experiment) | 1103 Paulsen rootstock | Well-watered, water deficit (70–80% and 30–40% of the field capacity) | Putrescine (0, 0.05, 0.1, and 0.2 mM six weeks after planting) | Water relations: ↑ relative water content Photosynthesis and gas exchange: ↑ stomatal conductance and photosynthetic rate Chlorophyll and pigments: ↑ chlorophyll content (SPAD) Cell membrane integrity: ↓ electrolyte leakage, improved membrane stability Morphological traits: ↑ shoot and root lengths, fresh and dry weights of shoots and roots, leaf area, and number of leaves ↓ drought index Optimal concentration of putrescine: 0.1 mM | [111] |
China (pot experiment) | Cabernet Sauvignon | Well-watered, water deficit | Methyl jasmonate (100 μM of MeJA) | Water relations: − relative water content Photosynthesis and gas exchange: ↑ photosynthetic rate Chlorophyll and pigments: ↑ chlorophylls a and b and carotenoids Osmotic adjustment: ↑ proline and soluble sugars Oxidative stress and antioxidants: ↑ activity of SOD and CAT Carbon metabolism: ↑ activity of carbon assimilation enzymes Nitrogen metabolism: ↑ nitrate reductase and nitrogen assimilation | [114] |
China (pot experiment) | Cabernet Sauvignon | Well-watered, water deficit | Brassinolide 24-Epibrassinolide (0.2 μΜ of EBR) | Water relations: − relative water content ↑ leaf water potential Photosynthesis and gas exchange: ↑ photosynthetic capacity and stomatal conductance Chlorophyll and pigments: ↑ chlorophyll a, total chlorophyll, and carotenoids Oxidative stress and antioxidants: ↓ MDA, H2O2, and O2− ↑ activity of SOD, CAT, POD, and APX Hormonal balance: ↑ ABA, JA, − IAA, GA3 Cell membrane integrity: ↓ electrolyte leakage, improved membrane stability | [43] |
China (pot experiment) | Cabernet Sauvignon | 7% (w/v) polyethylene glycol to simulate drought conditions | Strigolactone rac-GR24 (1, 3, and 5 μM) | Water relations: ↑ relative water content Photosynthesis and gas exchange: ↓ stomatal opening ↑ transpiration rate, photosynthetic rate, and WUE Chlorophyll and pigments: ↑ chlorophylls a and b Oxidative stress and antioxidants: ↓ ROS and MDA ↓ activity of SOD, POD, CAT, and APX Cell membrane integrity: ↓ electrolyte leakage, improved membrane stability Hormonal balance: ↓ ABA in leaves and roots which ↑ under drought stress, ↑ MeJA in roots and ↓ in leaves − IAA in leaves and roots, which ↓ under drought stress | [112] |
Italy (pot experiment) | Pinot Nero | Well-watered, water deficit after veraison (90% and 40% of the maximum water availability) | Arthrospira platensis F&M-C256 extract (3 g L−1, 10 and 20 days before the expected harvest) | Photosynthesis and gas exchange: − photosynthesis, stomatal conductance, and WUE Quantity traits: ↑ berry weight Quality traits: − sugar content, TA, and pH Secondary metabolites: − total anthocyanins and total phenolics | [115] |
Iran (pot experiment) | Rashe (drought-tolerant), Fakhri (drought-sensitive) | Well-watered, water deficit (90%, 50% of field capacity) | Auxin (0, 50, and 200 mg L−1 NAA 25, 50, and 75 days after the onset of drought stress | NAA at 50 mg L−1 Water relations: ↑ relative water content Photosynthesis and gas exchange: ↑ photosynthesis, stomatal conductance, and intercellular CO2 concentration Chlorophyll and pigments: ↑ chlorophyll a and total chlorophylls, − chlorophyll b Oxidative stress and antioxidants: − MDA, H2O2, and O2- ↑ activity of SOD, CAT, POD, and APX Osmotic adjustment: ↑ proline and total soluble carbohydrates Cell membrane stability: − electrolyte leakage Hormonal balance: − ABA, ↑ IAA Cultivar interaction: NAA mitigated the adverse effects of drought stress, especially in the drought-sensitive cultivar | [41] |
Turkey (pot experiment) | Crimson Seedless | Well-watered, water deficit (90–100% and 40–50% of field capacity) | Silicon nanoparticles (0, 1, 10, and 100 ppm) | Water relations: ↑ relative water content Photosynthesis and gas exchange: ↑ stomatal conductance and photosynthetic rate Chlorophyll and pigments: ↑ chlorophyll content Osmotic adjustment: ↓ proline which ↑ under drought stress Oxidative stress and antioxidant defense: ↓ ROS and activity of SOD, CAT, and APX, which ↑ under drought stress Growth parameters: ↑ leaf number and area, shoot and root weights (fresh and dry) Secondary metabolites: ↓ total phenolics which ↑ under drought stress Optimal concentration: 10 ppm | [14] |
3.3. The Effect of Foliar Applications Under Heat Stress
3.4. The Effect of Foliar Applications Under Water Deficit and Heat Stress
3.5. Effect of Foliar Applications on Quality Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wen, J. Vitaceae. In Flowering Plants Eudicots. The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 9. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. State of the World Vine and Wine Sector in 2024. Available online: https://www.oiv.int/what-we-do/global-report?oiv (accessed on 2 July 2025).
- Bernardo, S.; Dinis, L.T.; Machado, N.; Moutinho-Pereira, J. Grapevine Abiotic Stress Assessment and Search for Sustainable Adaptation Strategies in Mediterranean-like Climates. A Review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef]
- Sassu, A.; Deidda, A.; Mercenaro, L.; Virgillito, B.; Gambella, F. Multisensor Analysis for Biostimulants Effect Detection in Sustainable Viticulture. Agriculture 2024, 14, 2221. [Google Scholar] [CrossRef]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a Biostimulant Derived from the Brown Seaweed Ascophyllum Nodosum on Ripening Dynamics and Fruit Quality of Grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Petoumenou, D.G. Enhancing Yield and Physiological Performance by Foliar Applications of Chemically Inert Mineral Particles in a Rainfed Vineyard under Mediterranean Conditions. Plants 2023, 12, 1444. [Google Scholar] [CrossRef] [PubMed]
- Luzio, A.; Bernardo, S.; Correia, C.; Moutinho-Pereira, J.; Dinis, L.T. Phytochemical Screening and Antioxidant Activity on Berry, Skin, Pulp and Seed from Seven Red Mediterranean Grapevine Varieties (Vitis vinifera L.) Treated with Kaolin Foliar Sunscreen. Sci. Hortic. 2021, 281, 109962. [Google Scholar] [CrossRef]
- Del Zozzo, F.; Barmpa, D.M.; Canavera, G.; Giordano, L.; Palliotti, A.; Battista, F.; Poni, S.; Frioni, T. Effects of Foliar Applications of a Proline-Rich Specific Yeast Derivative on Physiological and Productive Performances of Field-Grown Grapevines (Vitis vinifera L.). Sci. Hortic. 2024, 326, 112759. [Google Scholar] [CrossRef]
- Dinis, L.T.; Ferreira, H.; Pinto, G.; Bernardo, S.; Correia, C.M.; Moutinho-Pereira, J. Kaolin-Based, Foliar Reflective Film Protects Photosystem II Structure and Function in Grapevine Leaves Exposed to Heat and High Solar Radiation. Photosynthetica 2016, 54, 47–55. [Google Scholar] [CrossRef]
- Valentini, G.; Pastore, C.; Allegro, G.; Muzzi, E.; Seghetti, L.; Filippetti, I. Application of Kaolin and Italian Natural Chabasite-Rich Zeolite to Mitigate the Effect of Global Warming in Vitis vinifera L. cv. Sangiovese. Agronomy 2021, 11, 1035. [Google Scholar] [CrossRef]
- Colautti, A.; Golinelli, F.; Iacumin, L.; Tomasi, D.; Cantone, P.; Mian, G. Triacontanol (Long-Chain Alcohol) Positively Enhances the Microbial Ecology of Berry Peel in Vitis vinifera cv. ‘Glera’ yet Promotes the Must Total Soluble Sugars Content. OENO One 2023, 57, 477–488. [Google Scholar] [CrossRef]
- Teker, T. A Study of Kaolin Effects on Grapevine Physiology and Its Ability to Protect Grape Clusters from Sunburn Damage. Sci. Hortic. 2023, 311, 111824. [Google Scholar] [CrossRef]
- Allegro, G.; Valentini, G.; Sangiorgio, D.; Pastore, C.; Filippetti, I. Zeolite Application and Irrigation during Ripening Reduced Berry Sunburn Damage and Yield Loss in Cv. Sangiovese (Vitis vinifera L.). Front. Plant Sci. 2024, 15, 1427366. [Google Scholar] [CrossRef] [PubMed]
- Daler, S.; Kaya, O.; Canturk, S.; Korkmaz, N.; Kılıç, T.; Karadağ, A.; Hatterman-Valenti, H. Silicon Nanoparticles (SiO2 NPs) Boost Drought Tolerance in Grapevines by Enhancing Some Morphological, Physiological, and Biochemical Traits. Plant Mol. Biol. Report. 2024, 1–19. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, Y.; Wu, J.; Wei, B.; Li, S.; Nan, H.; Fang, Y.; Min, Z. Exogenous Strigolactone Alleviates Post-Waterlogging Stress in Grapevine. Plant Physiol. Biochem. 2024, 216, 109124. [Google Scholar] [CrossRef]
- Conde, A.; Pimentel, D.; Neves, A.; Dinis, L.T.; Bernardo, S.; Correia, C.M.; Gerós, H.; Moutinho-Pereira, J. Kaolin Foliar Application Has a Stimulatory Effect on Phenylpropanoid and Flavonoid Pathways in Grape Berries. Front. Plant Sci. 2016, 7, 1150. [Google Scholar] [CrossRef]
- Dinis, L.T.; Bernardo, S.; Conde, A.; Pimentel, D.; Ferreira, H.; Félix, L.; Gerós, H.; Correia, C.M.; Moutinho-Pereira, J. Kaolin Exogenous Application Boosts Antioxidant Capacity and Phenolic Content in Berries and Leaves of Grapevine under Summer Stress. J. Plant Physiol. 2016, 191, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Piancatelli, S.; Potentini, R.; D’Ignazi, G.; Moumni, M. Applications of Chitosan Alone, Alternated or Combined with Copper for Grapevine Downy Mildew Management in Large Scale Trials. J. Clean. Prod. 2024, 451, 142131. [Google Scholar] [CrossRef]
- Pessenti, I.L.; Ayub, R.A.; Filho, J.L.M.; Clasen, F.C.; Rombaldi, C.V.; Botelho, R.V. Influence of Abscisic Acid, Ascophyllum nodosum and Aloe vera on the Phenolic Composition and Color of Grape Berry and Wine of “Cabernet Sauvignon” Variety. Cienc. E Tec. Vitivinic. 2022, 37, 1–12. [Google Scholar] [CrossRef]
- Filimon, R.M.; Rotaru, L.; Filimon, V.R. Effects of Exogenous Growth Regulators on Agrobiological, Technological and Physiological Characteristics of an Interspecific Grapevine Cultivar. Biol. Agric. Hortic. 2023, 39, 91–114. [Google Scholar] [CrossRef]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11, 396. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. Plants 2022, 11, 162. [Google Scholar] [CrossRef]
- Upadhyay, A.; Gaonkar, T.; Upadhyay, A.K.; Jogaiah, S.; Shinde, M.P.; Kadoo, N.Y.; Gupta, V.S. Global Transcriptome Analysis of Grapevine (Vitis vinifera L.) Leaves under Salt Stress Reveals Differential Response at Early and Late Stages of Stress in Table Grape Cv. Thompson Seedless. Plant Physiol. Biochem. 2018, 129, 168–179. [Google Scholar] [CrossRef]
- Heidarpour, S.; Abbaspour, N.; Mohammadkhani, N.; Rahmani, F. Understanding the Role of Silicon in Alleviating Salinity Stress in Grapevine: Insights into Physiological and Molecular Mechanisms. J. Plant Growth Regul. 2024, 44, 3093–3109. [Google Scholar] [CrossRef]
- El-Banna, M.F.; Al-Huqail, A.A.; Farouk, S.; Belal, B.E.A.; El-Kenawy, M.A.; El-Khalek, A.F.A. Morpho-Physiological and Anatomical Alterations of Salt-Affected Thompson Seedless Grapevine (Vitis vinifera L.) to Brassinolide Spraying. Horticulturae 2022, 8, 568. [Google Scholar] [CrossRef]
- Haider, M.S.; Jogaiah, S.; Pervaiz, T.; Yanxue, Z.; Khan, N.; Fang, J. Physiological and Transcriptional Variations Inducing Complex Adaptive Mechanisms in Grapevine by Salt Stress. Environ. Exp. Bot. 2019, 162, 455–467. [Google Scholar] [CrossRef]
- Qin, L.; Kang, W.H.; Qi, Y.L.; Zhang, Z.W.; Wang, N. The Influence of Silicon Application on Growth and Photosynthesis Response of Salt Stressed Grapevines (Vitis vinifera L.). Acta Physiol. Plant. 2016, 38, 1–9. [Google Scholar] [CrossRef]
- Gohari, G.; Panahirad, S.; Sadeghi, M.; Akbari, A.; Zareei, E.; Zahedi, S.M.; Bahrami, M.K.; Fotopoulos, V. Putrescine-Functionalized Carbon Quantum Dot (Put-CQD) Nanoparticles Effectively Prime Grapevine (Vitis vinifera cv. ‘Sultana’) against Salt Stress. BMC Plant Biol. 2021, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Ebrahimi, M.; Amerian, M. Abscisic Acid Mitigates NaCl Toxicity in Grapevine by Influencing Phytochemical Compounds and Mineral Nutrients in Leaves. Sci. Hortic. 2021, 288, 110336. [Google Scholar] [CrossRef]
- Han, N.; Li, L.; Wang, F.; Yang, Z.; He, X. Moderate Salt Spraying on Grapevine Canopy Induces Differential Modulation of Anthocyanin Synthesis Profiles during Early and Late Stages of Berry Ripening in Cabernet Sauvignon. Hortic. Environ. Biotechnol. 2024, 65, 71–81. [Google Scholar] [CrossRef]
- Zhao, K.; Lan, Y.; Shi, Y.; Duan, C.; Yu, K. Metabolite and Transcriptome Analyses Reveal the Effects of Salinity Stress on the Biosynthesis of Proanthocyanidins and Anthocyanins in Grape Suspension Cells. Front. Plant Sci. 2024, 15, 1351008. [Google Scholar] [CrossRef]
- Xu, J.; Sui, C.; Ge, J.; Ren, R.; Pang, Y.; Gan, H.; Du, Y.; Cao, H.; Sun, Q. Exogenous Spermidine Improved the Salinity-Alkalinity Stress Tolerance of Grapevine (Vitis vinifera) by Regulating Antioxidant System, Na+/K+ Homeostasis and Endogenous Polyamine Contents. Sci. Hortic. 2024, 326, 112725. [Google Scholar] [CrossRef]
- Lu, X.; Chen, G.; Ma, L.; Yan, H.; Zhang, C.; Nai, G.; Bao, J.; Liu, Y.; Lai, Y.; Li, S.; et al. Abscisic Acid Enhances Alkaline Stress Tolerance in Grapevines: Physiological and Transcriptional Profiling. Sci. Hortic. 2024, 336, 113368. [Google Scholar] [CrossRef]
- Moayedinezhad, A.; Mohammadparast, B.; Salekdeh, G.H.; Mohseni fard, E.; Nejatian, M.A. Impacts of Drought Stress on Some Physiological Features of Two Important Grapevine Cultivars (Vitis vinefera Cv; ‘Yaghuti’ and ‘Bidanesefid’). Erwerbs-Obstbau 2023, 65, 1899–1907. [Google Scholar] [CrossRef]
- Alatzas, A.; Theocharis, S.; Miliordos, D.E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development. Plants 2021, 10, 1947. [Google Scholar] [CrossRef]
- Candar, S.; Seçkin, G.U.; Kizildeniz, T.; Korkutal, İ.; Bahar, E. Variations of Chlorophyll, Proline, and Abscisic Acid (ABA) Contents in Grapevines (Vitis vinifera L.) Under Water Deficit Conditions. Erwerbs-Obstbau 2023, 65, 1965–1977. [Google Scholar] [CrossRef]
- Lin, Y.L.; Liu, S.; Fang, X.; Ren, Y.; You, Z.; Xia, J.; Hakeem, A.; Yang, Y.; Wang, L.; Fang, J.; et al. The Physiology of Drought Stress in Two Grapevine Cultivars: Photosynthesis, Antioxidant System, and Osmotic Regulation Responses. Physiol. Plant. 2023, 175, e14005. [Google Scholar] [CrossRef] [PubMed]
- Marta, A.E.; Slabu, C.; Covasa, M.; Motrescu, I.; Lungoci, C.; Jitareanu, C.D. Influence of Environmental Factors on Some Biochemical and Physiological Indicators in Grapevine from Copou Vineyard, Iasi, Romania. Agronomy 2023, 13, 886. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Intrigliolo, D.S. Grape Composition under Abiotic Constrains: Water Stress and Salinity. Front. Plant. Sci. 2017, 8, 851. [Google Scholar] [CrossRef]
- Zapata-García, S.; Temnani, A.; Berríos, P.; Marín-Durán, L.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes. Plants 2024, 13, 3424. [Google Scholar] [CrossRef]
- Khandani, Y.; Sarikhani, H.; Gholami, M.; Rad, A.C.; Yousefi, S.; Sodini, M.; Sivilotti, P. Exogenous Auxin Improves the Growth of Grapevine (Vitis vinifera L.) under Drought Stress by Mediating Physiological, Biochemical and Hormonal Modifications. J. Soil. Sci. Plant Nutr. 2024, 24, 3422–3440. [Google Scholar] [CrossRef]
- Irani, H.; ValizadehKaji, B.; Naeini, M.R. Biostimulant-Induced Drought Tolerance in Grapevine Is Associated with Physiological and Biochemical Changes. Chem. Biol. Technol. Agric. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Zeng, G.; Gao, F.; Li, C.; Li, D.; Xi, Z. Characterization of 24-Epibrassinolide-Mediated Modulation of the Drought Stress Responses: Morphophysiology, Antioxidant Metabolism and Hormones in Grapevine (Vitis vinifera L.). Plant Physiol. Biochem. 2022, 184, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; He, S.; Liu, Y.; Liu, B.; Ju, Y.; Kang, D.; Sun, X.; Fang, Y. Transcriptomics Integrated with Metabolomics Reveals the Effect of Regulated Deficit Irrigation on Anthocyanin Biosynthesis in Cabernet Sauvignon Grape Berries. Food Chem. 2020, 314, 126170. [Google Scholar] [CrossRef]
- Palliotti, A.; Silvestroni, O.; Petoumenou, D.; Vignaroli, S.; Berrios, J.G. Evaluation of Low-Energy Demand Adaptive Mechanisms in Sangiovese Grapevine During Drought. Int. Sci. Vigne Vin 2008, 42, 41–47. [Google Scholar] [CrossRef]
- Geng, K.; Hou, C.; Xue, X.; Li, D.; Wang, Z. Exploring the Evolution of Sugars and Volatile Compounds in Marselan Grape Berries under Water Stress. J. Food Compos. Anal. 2025, 137, 106983. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The Physiology of Drought Stress in Grapevine: Towards an Integrative Definition of Drought Tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Melloul, E.; Rocher, L.; Bischoff, A.; Gros, R.; Blight, O. Effects of Irrigation on Vegetation, Mesofauna and Organic Matter Decomposition in Mediterranean Vineyards. Agric. Ecosyst. Environ. 2025, 386, 109592. [Google Scholar] [CrossRef]
- Zapata-García, S.; Berríos, P.; Temnani, A.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Combined Use of Biostimulation and Deficit Irrigation Improved the Fruit Quality in Table Grape. Plants 2025, 14, 485. [Google Scholar] [CrossRef]
- Vilanova, M.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Yuste, J. Influence of Water Regime on Yield Components, Must Composition and Wine Volatile Compounds of Vitis vinifera cv. Verdejo. Aust. J. Grape Wine Res. 2019, 25, 83–91. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Leaf Eco-Physiological Profile and Berries Technological Traits on Potted Vitis vinifera L. cv Pinot Noir Subordinated to Zeo-Lite Treatments under Drought Stress. Plants 2022, 11, 1735. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Litskas, V.; Stavrinides, M.; Heyman, L.; Demeestere, K.; Höfte, M.; Tzortzakis, N. Assessing the Impact of Drought Stress and Soil Cultivation in Chardonnay and Xynisteri Grape Cultivars. Agronomy 2020, 10, 670. [Google Scholar] [CrossRef]
- Griesser, M.; Weingart, G.; Schoedl-Hummel, K.; Neumann, N.; Becker, M.; Varmuza, K.; Liebner, F.; Schuhmacher, R.; Forneck, A. Severe Drought Stress Is Affecting Selected Primary Metabolites, Polyphenols, and Volatile Metabolites in Grapevine Leaves (Vitis vinifera cv. Pinot Noir). Plant Physiol. Biochem. 2015, 88, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Šikuten, I.; Tomaz, I.; Zovko, M.; Romić, D.; Pavlović, M.; Maletić, E.; Kontić, J.K.; Preiner, D. Adaptive Response of Babić Grape Berry Skin Polyphenols to Elevated Temperatures and Irrigation Regimes. J. Food Compos. Anal. 2025, 142, 107513. [Google Scholar] [CrossRef]
- Antoniou, C.; Panagi, E.; Georgiadou, E.C.; Gohari, G.; Panahirad, S.; Theodorou, N.; Manganaris, G.A.; Koundouras, S.; Fotopoulos, V. The Effect of Recurring Drought Conditions on Anthocyanins Biosynthesis of ‘Syrah’ Grapes: A Physiological, Biochemical, and Molecular Approach. South Afr. J. Bot. 2025, 182, 226–235. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, B.; He, S.; Tu, T.; Min, Z.; Fang, Y.; Sun, X. Anthocyanin Accumulation and Biosynthesis Are Modulated by Regulated Deficit Irrigation in Cabernet Sauvignon (Vitis vinifera L.) Grapes and Wines. Plant Physiol. Biochem. 2019, 135, 469–479. [Google Scholar] [CrossRef]
- Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Romero, E.; Gómez-Alonso, S.; García-Navarro, F.J.; Jiménez-Ballesta, R. Effects of Water Stress on the Phenolic Compounds of ‘Merlot’ Grapes in a Semi-Arid Mediterranean Climate. Horticulturae 2021, 7, 161. [Google Scholar] [CrossRef]
- Pinasseau, L.; Vallverdú-Queralt, A.; Verbaere, A.; Roques, M.; Meudec, E.; Le Cunff, L.; Péros, J.P.; Ageorges, A.; Sommerer, N.; Boulet, J.C.; et al. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics. Front. Plant Sci. 2017, 8, 1826. [Google Scholar] [CrossRef] [PubMed]
- Dinis, L.T.; Pereira, S.; Fraga, I.; Rocha, S.M.; Costa, C.; Martins, C.; Vilela, A.; Arrobas, M.; Moutinho-Pereira, J. Kaolin Foliar Spray Induces Positive Modifications in Volatile Compounds and Fruit Quality of Touriga-Nacional Red Wine. OENO One 2024, 58, 1–18. [Google Scholar] [CrossRef]
- Garcia-Tejera, O.; Bonada, M.; Petrie, P.R.; Nieto, H.; Bellvert, J.; Sadras, V.O. Viticulture Adaptation to Global Warming: Modelling Gas Exchange, Water Status and Leaf Temperature to Probe for Practices Manipulating Water Supply, Canopy Reflectance and Radiation Load. Agric. For. Meteorol. 2023, 331, 109351. [Google Scholar] [CrossRef]
- Carvalho, A.; Dinis, L.T.; Luzio, A.; Bernardo, S.; Moutinho-Pereira, J.; Lima-Brito, J. Cytogenetic and Molecular Effects of Kaolin’s Foliar Application in Grapevine (Vitis vinifera L.) under Summer’s Stressful Growing Conditions. Genes 2024, 15, 747. [Google Scholar] [CrossRef]
- Guo, R.; Lin, L.; Huang, G.; Shi, X.; Wei, R.; Han, J.; Zhou, S.; Zhang, Y.; Xie, T.; Bai, X.; et al. Transcriptome Analysis of ‘Kyoho’ Grapevine Leaves Identifies Heat Response Genes Involved in the Transcriptional Regulation of Photosynthesis and Abscisic Acid. Agronomy 2022, 12, 2591. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, H.; Ma, Y.; Bai, S.; Yadav, V.; Zhang, C.; Zhang, F.; Shi, W.; Abudureheman, R.; Wang, X. Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress. Horticulturae 2024, 10, 269. [Google Scholar] [CrossRef]
- Qiu, Q.; Sun, Y.; Guo, D.; Wang, L.; Pagay, V.; Wang, S. Heat Stress Downregulates Photosystem I Redox State on Leaf Photosynthesis in Grapevine. Agronomy 2025, 15, 948. [Google Scholar] [CrossRef]
- Andreotti, C.; Benyahia, F.; Petrillo, M.; Lucchetta, V.; Volta, B.; Cameron, K.; Targetti, G.; Tagliavini, M.; Zanotelli, D. Comparing Defoliation and Canopy Sprays to Delay Ripening of Sauvignon Blanc Grapes. Sci. Hortic. 2024, 326, 112736. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive Capacity of Winegrape Varieties Cultivated in Greece to Climate Change: Current Trends and Future Projections. OENO One 2020, 54, 1201–1219. [Google Scholar] [CrossRef]
- Arrizabalaga, M.; Morales, F.; Oyarzun, M.; Delrot, S.; Gomès, E.; Irigoyen, J.J.; Hilbert, G.; Pascual, I. Tempranillo Clones Differ in the Response of Berry Sugar and Anthocyanin Accumulation to Elevated Temperature. Plant Sci. 2018, 267, 74–83. [Google Scholar] [CrossRef]
- Dominguez, D.L.E.; Cirrincione, M.A.; Deis, L.; Martínez, L.E. Impacts of Climate Change-Induced Temperature Rise on Phenology, Physiology, and Yield in Three Red Grape Cultivars: Malbec, Bonarda, and Syrah. Plants 2024, 13, 3219. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Forestan, C.; Ravazzolo, L.; Hugueney, P.; Baltenweck, R.; Rasori, A.; Cardillo, V.; Carraro, P.; Malagoli, M.; Brizzolara, S.; et al. Metabolic and Molecular Rearrangements of Sauvignon Blanc (Vitis vinifera L.) Berries in Response to Foliar Applications of Specific Dry Yeast. Plants 2023, 12, 3423. [Google Scholar] [CrossRef]
- Mikami, N.; Konya, M.; Enoki, S.; Suzuki, S. Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport. Plants 2022, 11, 1694. [Google Scholar] [CrossRef]
- Ryu, S.; Han, J.H.; Cho, J.G.; Jeong, J.H.; Lee, S.K.; Lee, H.J. High Temperature at Veraison Inhibits Anthocyanin Biosynthesis in Berry Skins during Ripening in ‘Kyoho’ Grapevines. Plant Physiol. Biochem. 2020, 157, 219–228. [Google Scholar] [CrossRef]
- Matsuda, K.; Gao–Takai, M.; Date, A.; Suzuki, T. Suppression of Red Color Development Associated with Anthocyanin Accumulation in the Epicarp of Grape (Vitis labrusca × Vinifera Cv. Ruby Roman) Berries Caused by Air Temperature in Daylight Periods Higher than 33°C during Maturation. Sci. Hortic. 2021, 288, 110381. [Google Scholar] [CrossRef]
- Müller, K.; Keller, M.; Stoll, M.; Friedel, M. Wind Speed, Sun Exposure and Water Status Alter Sunburn Susceptibility of Grape Berries. Front. Plant Sci. 2023, 14, 1145274. [Google Scholar] [CrossRef] [PubMed]
- Botton, A.; Girardi, F.; Ruperti, B.; Brilli, M.; Tijero, V.; Eccher, G.; Populin, F.; Schievano, E.; Riello, T.; Munné-Bosch, S.; et al. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. Plants 2022, 11, 3574. [Google Scholar] [CrossRef]
- Hewitt, S.; Hernández-Montes, E.; Dhingra, A.; Keller, M. Impact of Heat Stress, Water Stress, and Their Combined Effects on the Metabolism and Transcriptome of Grape Berries. Sci. Rep. 2023, 13, 1–14. [Google Scholar] [CrossRef]
- du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Popescu, G.C.; Popescu, M. Yield, Berry Quality and Physiological Response of Grapevine to Foliar Humic Acid Application. Bragantia 2018, 77, 273–282. [Google Scholar] [CrossRef]
- Cirillo, C.; Arena, C.; Rouphael, Y.; Caputo, R.; Amitrano, C.; Petracca, F.; De Francesco, S.; Vitale, E.; Erbaggio, A.; Bonfante, A.; et al. Counteracting the Negative Effects of Copper Limitations Through the Biostimulatory Action of a Tropical Plant Extract in Grapevine Under Pedo-Climatic Constraints. Front. Environ. Sci. 2021, 9, 587550. [Google Scholar] [CrossRef]
- Mian, G.; Belfiore, N.; Musetti, R.; Tomasi, D.; Cantone, P.; Lovat, L.; Lupinelli, S.; Iacumin, L.; Celotti, E.; Golinelli, F. Effect of a Triacontanol-Rich Biostimulant on the Ripening Dynamic and Wine Must Technological Parameters in Vitis vinifera cv. Ribolla Gialla. Plant Physiol. Biochem. 2022, 188, 60–69. [Google Scholar] [CrossRef]
- Bavaresco, L.; Lucini, L.; Squeri, C.; Zamboni, M.; Frioni, T. Protein Hydrolysates Modulate Leaf Proteome and Metabolome in Water-Stressed Grapevines. Sci. Hortic. 2020, 270, 109413. [Google Scholar] [CrossRef]
- Alvarez, I.Z.; Ahmed, M.; McSorley, G.; Dunlop, M.; Lucas, I.; Hu, Y. An Overview of Biostimulant Activity and Plant Responses under Abiotic and Biotic Stress Conditions. Syst. Microbiol. Biomanuf. 2024, 4, 39–55. [Google Scholar] [CrossRef]
- Meggio, F.; Trevisan, S.; Manoli, A.; Ruperti, B.; Quaggiotti, S. Systematic Investigation of the Effects of a Novel Protein Hydrolysate on the Growth, Physiological Parameters, Fruit Development and Yield of Grapevine (Vitis vinifera L., cv Sauvignon Blanc) under Water Stress Conditions. Agronomy 2020, 10, 1785. [Google Scholar] [CrossRef]
- Boselli, M.; Bahouaoui, M.A.; Lachhab, N.; Sanzani, S.M.; Ferrara, G.; Ippolito, A. Protein Hydrolysates Effects on Grapevine (Vitis vinifera L., cv. Corvina) Performance and Water Stress Tolerance. Sci. Hortic. 2019, 258, 108784. [Google Scholar] [CrossRef]
- Johnson, R.; Joel, J.M.; Puthur, J.T. Biostimulants: The Futuristic Sustainable Approach for Alleviating Crop Productivity and Abiotic Stress Tolerance. J. Plant Growth Regul. 2024, 43, 659–674. [Google Scholar] [CrossRef]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine Growth, Yield, Berry Quality Attributes and Leaf Nutrient Content of Grapevines as Influenced by Seaweed Extract (Ascophyllum nodosum) and Nanosize Fertilizer Pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Rajesaheb, K.S.; Subramanian, S.; Boominathan, P.; Thenmozhi, S.; Gnanachitra, M. Bio-Stimulant in Improving Crop Yield and Soil Health. Commun. Soil Sci. Plant Anal. 2024, 56, 458–493. [Google Scholar] [CrossRef]
- de Carvalho, R.P.; Pasqual, M.; de Oliveira Silveira, H.R.; de Melo, P.C.; Bispo, D.F.A.; Laredo, R.R.; de Aguiar Saldanha Lima, L. “Niágara Rosada” Table Grape Cultivated with Seaweed Extracts: Physiological, Nutritional, and Yielding Behavior. J. Appl. Phycol. 2019, 31, 2053–2064. [Google Scholar] [CrossRef]
- Olaetxea, M.; Garnica, M.; Erro, J.; Sanz, J.; Monreal, G.; Zamarreño, A.M.; García-Mina, J.M. The Plant Growth-Promoting Effect of an Ascophyllum nodosum (L.) Extract Derives from the Interaction of Its Components and Involves Salicylic-, Auxin- and Cytokinin-Signaling Pathways. Chem. Biol. Technol. Agric. 2024, 11, 1–16. [Google Scholar] [CrossRef]
- Velasco-Clares, D.; Navarro-León, E.; Izquierdo-Ramos, M.J.; Blasco, B.; Ruiz, J.M. Enhancing Drought Tolerance in Lettuce: The Efficacy of the Seaweed-Derived Biostimulant Cytolan® Stress Applied at Different Growth Stages. Horticulturae 2025, 11, 157. [Google Scholar] [CrossRef]
- Kanojia, A.; Lyall, R.; Sujeeth, N.; Alseekh, S.; Martínez-Rivas, F.J.; Fernie, A.R.; Gechev, T.S.; Petrov, V. Physiological and Molecular Insights into the Effect of a Seaweed Biostimulant on Enhancing Fruit Yield and Drought Tolerance in Tomato. Plant Stress 2024, 14, 100692. [Google Scholar] [CrossRef]
- Tchouakeu Betnga, P.F.; Poggesi, S.; Darnal, A.; Longo, E.; Rudari, E.; Boselli, E. Terroir Dynamics: Impact of Vineyard and Canopy Treatment with Chitosan on Anthocyanins, Phenolics, and Volatile and Sensory Profiles of Pinot Noir Wines from South Tyrol. Molecules 2024, 29, 1916. [Google Scholar] [CrossRef]
- Tessarin, P.; Chinnici, F.; Donnini, S.; Liquori, E.; Riponi, C.; Rombolà, A.D. Influence of Canopy-Applied Chitosan on the Composition of Organic Cv. Sangiovese and Cabernet Sauvignon Berries and Wines. Food Chem. 2016, 210, 512–519. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Baroja, E.; Santamaría, P.; Garde-Cerdán, T. Improvement of Grape and Wine Phenolic Content by Foliar Application to Grapevine of Three Different Elicitors: Methyl Jasmonate, Chitosan, and Yeast Extract. Food Chem. 2016, 201, 213–221. [Google Scholar] [CrossRef]
- Rodrigues, L.; Santana, I.; Coelho, R.; Murta, G.; Cardoso, H.; Campos, C.; Barroso, J.M.; Rato, A.E. Exploring Opuntia Ficus-Indica as a Strategy to Mitigate High Temperatures Effects in Vineyards: Insights into Physiological and Proteomic Responses. Agronomy 2025, 15, 869. [Google Scholar] [CrossRef]
- Mayfield, S.E.; Threlfall, R.T.; Howard, L.R. Impact of Inactivated Yeast Foliar Spray on Chambourcin (Vitis Hybrid) Wine Grapes. ACS Food Sci. Technol. 2021, 1, 1585–1594. [Google Scholar] [CrossRef]
- Conde, A.; Badim, H.; Dinis, L.T.; Moutinho-Pereira, J.; Ferrier, M.; Unlubayir, M.; Lanoue, A.; Gerós, H. Stimulation of Secondary Metabolism in Grape Berry Exocarps by a Nature-Based Strategy of Foliar Application of Polyols. OENO One 2024, 58, 1–17. [Google Scholar] [CrossRef]
- Panahirad, S.; Dadpour, M.; Gohari, G.; Akbari, A.; Mahdavinia, G.; Jafari, H.; Kulak, M.; Alcázar, R.; Fotopoulos, V. Putrescine-Functionalized Carbon Quantum Dot (Put-CQD) Nanoparticle: A Promising Stress-Protecting Agent against Cadmium Stress in Grapevine (Vitis vinifera cv. Sultana). Plant Physiol. Biochem. 2023, 197, 107653. [Google Scholar] [CrossRef] [PubMed]
- Najafi, R.; Kappel, N.; Mozafarian, M. The Role of Exogenously Applied Polyamines to Improve Heat Tolerance in Tomatoes: A Review. Agriculture 2025, 15, 988. [Google Scholar] [CrossRef]
- Amiri, H.; Banakar, M.H.; Hemmati Hassan Gavyar, P. Polyamines: New Plant Growth Regulators Promoting Salt Stress Tolerance in Plants. J. Plant Growth Regul. 2024, 43, 4923–4940. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Elicitation with Methyl Jasmonate Supported by Precursor Feeding with Phenylalanine: Effect on Garnacha Grape Phenolic Content. Food Chem. 2017, 237, 416–422. [Google Scholar] [CrossRef]
- Anzano, A.; Bonanomi, G.; Mazzoleni, S.; Lanzotti, V. Plant Metabolomics in Biotic and Abiotic Stress: A Critical Overview. Phytochem. Rev. 2022, 21, 503–524. [Google Scholar] [CrossRef]
- Rahman, F.U.; Zhang, Y.; Khan, I.A.; Liu, R.; Sun, L.; Wu, Y.; Jiang, J.; Fan, X.; Liu, C. The Promoter Analysis of VvPR1 Gene: A Candidate Gene Identified through Transcriptional Profiling of Methyl Jasmonate Treated Grapevine (Vitis vinifera L.). Plants 2022, 11, 1540. [Google Scholar] [CrossRef]
- Çakır, B.; Kılıçkaya, O. Mitogen-Activated Protein Kinase Cascades in Vitis vinifera. Front. Plant Sci. 2015, 6, 1–18. [Google Scholar] [CrossRef]
- Wang, G.; Lovato, A.; Liang, Y.H.; Wang, M.; Chen, F.; Tornielli, G.B.; Polverari, A.; Pezzotti, M.; Cheng, Z.M. Validation by Isolation and Expression Analyses of the Mitogen-Activated Protein Kinase Gene Family in the Grapevine (Vitis vinifera L.). Aust. J. Grape Wine Res. 2014, 20, 255–262. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.T.; Machado, N.; Barros, A.; Pitarch-Bielsa, M.; Gómez-Cadenas, A.; Moutinho-Pereira, J. Kaolin Impacts on Hormonal Balance, Polyphenolic Composition and Oenological Parameters in Red Grapevine Berries during Ripening. J. Berry Res. 2021, 11, 465–479. [Google Scholar] [CrossRef]
- Jindo, K.; Goron, T.L.; Pizarro-Tobías, P.; Sánchez-Monedero, M.Á.; Audette, Y.; Deolu-Ajayi, A.O.; van der Werf, A.; Goitom Teklu, M.; Shenker, M.; Pombo Sudré, C.; et al. Application of Biostimulant Products and Biological Control Agents in Sustainable Viticulture: A Review. Front. Plant Sci. 2022, 13, 932311. [Google Scholar] [CrossRef]
- Frioni, T.; Saracino, S.; Squeri, C.; Tombesi, S.; Palliotti, A.; Sabbatini, P.; Magnanini, E.; Poni, S. Understanding Kaolin Effects on Grapevine Leaf and Whole-Canopy Physiology during Water Stress and Re-Watering. J. Plant Physiol. 2019, 242, 153020. [Google Scholar] [CrossRef] [PubMed]
- Frioni, T.; VanderWeide, J.; Palliotti, A.; Tombesi, S.; Poni, S.; Sabbatini, P. Foliar vs. Soil Application of Ascophyllum nodosum Extracts to Improve Grapevine Water Stress Tolerance. Sci. Hortic. 2021, 277, 109807. [Google Scholar] [CrossRef]
- Salvi, L.; Brunetti, C.; Cataldo, E.; Storchi, P.; Mattii, G.B. Eco-Physiological Traits and Phenylpropanoid Profiling on Potted Vitis vinifera L. Cv Pinot Noir Subjected to Ascophyllum Nodosum Treatments under Post-Veraison Low Water Availability. Appl. Sci. 2020, 10, 4473. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Shao, Z.; Dai, Z.; Li, D. Melatonin-Mediated Modulation of Grapevine Resistance Physiology, Endogenous Hormonal Dynamics, and Fruit Quality Under Varying Irrigation Amounts. Int. J. Mol. Sci. 2024, 25, 13081. [Google Scholar] [CrossRef]
- Daler, S.; Uygun, E. Effects of Putrescine Application Against Drought Stress on the Morphological and Physiological Characteristics of Grapevines. Appl. Fruit. Sci. 2024, 66, 1569–1578. [Google Scholar] [CrossRef]
- Min, Z.; Li, R.; Chen, L.; Zhang, Y.; Li, Z.; Liu, M.; Ju, Y.; Fang, Y. Alleviation of Drought Stress in Grapevine by Foliar-Applied Strigolactones. Plant Physiol. Biochem. 2019, 135, 99–110. [Google Scholar] [CrossRef]
- Shellie, K. Foliar Reflective Film and Water Deficit Increase Anthocyanin to Soluble Solids Ratio during Berry Ripening in Merlot. Am. J. Enol. Vitic. 2015, 66, 348–356. [Google Scholar] [CrossRef]
- Zeng, G.; Gao, F.; Xie, R.; Lei, B.; Wan, Z.; Zeng, Q.; Zhang, Z. The Ameliorative Effects of Exogenous Methyl Jasmonate on Grapevines under Drought Stress: Reactive Oxygen Species, Carbon and Nitrogen Metabolism. Sci. Hortic. 2024, 335, 113354. [Google Scholar] [CrossRef]
- Salvi, L.; Niccolai, A.; Cataldo, E.; Sbraci, S.; Paoli, F.; Storchi, P.; Rodolfi, L.; Tredici, M.R.; Mattii, G.B. Effects of Arthrospira platensis Extract on Physiology and Berry Traits in Vitis vinifera. Plants 2020, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pallotti, L.; Dottori, E.; Lattanzi, T.; Lanari, V.; Brillante, L.; Silvestroni, O. Anti-Hail Shading Net and Kaolin Application: Protecting Grape Production to Ensure Grape Quality in Mediterranean Vineyards. Horticulturae 2025, 11, 110. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines. Agriculture 2022, 12, 491. [Google Scholar] [CrossRef]
- Copp, C.R.; Liao, M.; Bouranis, J.A. Response of Leaf Optical Properties, Temperature, and Physiology to Variable Kaolin Application Rate. Am. J. Enol. Vitic. 2025, 76, 0760005. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, T.; Han, X.; Guan, L.; Zhang, L.; Wang, H.; Li, H. Kaolin Particle Film Affects Grapevine Berry Quality in Cv. Meili in Humid Climate Conditions. HortScience 2020, 55, 1987–2000. [Google Scholar] [CrossRef]
- Petoumenou, D.G.; Patris, V.E. Effects of Several Preharvest Canopy Applications on Yield and Quality of Table Grapes (Vitis vinifera L.) Cv. Crimson Seedless. Plants 2021, 10, 906. [Google Scholar] [CrossRef]
- Salvi, L.; Brunetti, C.; Cataldo, E.; Niccolai, A.; Centritto, M.; Ferrini, F.; Mattii, G.B. Effects of Ascophyllum Nodosum Extract on Vitis vinifera: Consequences on Plant Physiology, Grape Quality and Secondary Metabolism. Plant Physiol. Biochem. 2019, 139, 21–32. [Google Scholar] [CrossRef]
- Frioni, T.; Tombesi, S.; Quaglia, M.; Calderini, O.; Moretti, C.; Poni, S.; Gatti, M.; Moncalvo, A.; Sabbatini, P.; Berrìos, J.G.; et al. Metabolic and Transcriptional Changes Associated with the Use of Ascophyllum Nodosum Extracts as Tools to Improve the Quality of Wine Grapes (Vitis vinifera cv. Sangiovese) and Their Tolerance to Biotic Stress. J. Sci. Food Agric. 2019, 99, 6350–6363. [Google Scholar] [CrossRef]
- Cogato, A.; Jewan, S.Y.Y.; Wu, L.; Marinello, F.; Meggio, F.; Sivilotti, P.; Sozzi, M.; Pagay, V. Water Stress Impacts on Grapevines (Vitis vinifera L.) in Hot Environments: Physiological and Spectral Responses. Agronomy 2022, 12, 1819. [Google Scholar] [CrossRef]
- Valentini, G.; Allegro, G.; Pastore, C.; Chinnici, F.; Filippetti, I. Optimizing Viticulture Sustainability Through Foliar Zeolite Treatments: An In-Depth Analysis of Their Impact on Gas Exchange, Yield, and the Composition of Sangiovese Grapes and Wine. Aust. J. Grape Wine Res. 2025, 2025, 7719408. [Google Scholar] [CrossRef]
- Xyrafis, E.G.; Biniari, K.; Stavrakaki, M. Particle Film Treatments on ‘Assyrtiko’ Grapevines Enhance Physiology and Grape Attributes in Santorini Island. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13425. [Google Scholar] [CrossRef]
- Sangiorgio, D.; Valentini, G.; Pastore, C.; Allegro, G.; Gottardi, D.; Patrignani, F.; Spinelli, F.; Filippetti, I. A Comprehensive Study on the Effect of Foliar Mineral Treatments on Grapevine Epiphytic Microorganisms, Flavonoid Gene Expression, and Berry Composition. OENO One 2024, 58, 1–11. [Google Scholar] [CrossRef]
- Biniari, K.; Athanasopoulou, E.; Daskalakis, I.; Xyrafis, E.G.; Bouza, D.; Stavrakaki, M. Effect of Foliar Applications on the Qualitative and Quantitative Characters of Cv. Assyrtiko and Cv. Mavrotragano in the Island of Santorini, under Vineyard Conditions. BIO Web Conf. 2023, 56, 01008. [Google Scholar] [CrossRef]
- Bernardo, S.; Luzio, A.; Machado, N.; Ferreira, H.; Vives-Peris, V.; Malheiro, A.C.; Correia, C.; Gómez-Cadenas, A.; Moutinho-Pereira, J.; Dinis, L.T. Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards. Agronomy 2021, 11, 477. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.T.; Machado, N.; Barros, A.; Pitarch-Bielsa, M.; Malheiro, A.C.; Gómez-Cadenas, A.; Moutinho-Pereira, J. Uncovering the Effects of Kaolin on Balancing Berry Phytohormones and Quality Attributes of Vitis vinifera Grown in Warm-Temperate Climate Regions. J. Sci. Food Agric. 2022, 102, 782–793. [Google Scholar] [CrossRef]
- Azuara, M.; González, M.R.; Mangas, R.; Martín, P. Kaolin Foliar-Application Improves the Photosynthetic Performance and Fruit Quality of Verdejo Grapevines. BIO Web Conf. 2023, 68, 01024. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Methyl Jasmonate Treatment to Increase Grape and Wine Phenolic Content in Tempranillo and Graciano Varieties during Two Growing Seasons. Sci. Hortic. 2018, 240, 378–386. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Pérez-Álvarez, E.P.; Rubio-Bretón, P.; Garde-Cerdán, T. Changes on Grape Volatile Composition through Elicitation with Methyl Jasmonate, Chitosan, and a Yeast Extract in Tempranillo (Vitis vinifera L.) Grapevines. Sci. Hortic. 2019, 244, 257–262. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Ayestarán, B.; González-Lázaro, M.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of Seaweed Foliar Application to Tempranillo Grapevines on Grape and Wine Phenolic Compounds over Two Vintages. Food Chem. 2021, 345, 128843. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of Methyl Jasmonate on the Aroma of Sangiovese Grapes and Wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, L.; Yang, B.; Wang, M.; Ma, L.; Shi, J.; Zhang, Z.; Zeng, Q. Effects of Foliar Applications of γ-Polyglutamic Acid and Alginic Acid on the Quality and Antioxidant Activity of Marselan Grapes and Wines. Food Chem. X 2025, 25, 102112. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-González, L.; Peña-Neira, A.; Ibáñez, F.; Pastenes, C. Long-Term Effects of Abscisic Acid (ABA) on the Grape Berry Phenylpropanoid Pathway: Gene Expression and Metabolite Content. Plant Physiol. Biochem. 2016, 105, 213–223. [Google Scholar] [CrossRef]
- Xia, H.; Shen, Y.; Deng, H.; Wang, J.; Lin, L.; Deng, Q.; Lv, X.; Liang, D.; Hu, R.; Wang, Z.; et al. Melatonin Application Improves Berry Coloration, Sucrose Synthesis, and Nutrient Absorption in ‘Summer Black’ Grape. Food Chem. 2021, 356, 129713. [Google Scholar] [CrossRef]
- Giacosa, S.; Ossola, C.; Botto, R.; Río Segade, S.; Paissoni, M.A.; Pollon, M.; Gerbi, V.; Rolle, L. Impact of Specific Inactive Dry Yeast Application on Grape Skin Mechanical Properties, Phenolic Compounds Extractability, and Wine Composition. Food Res. Int. 2019, 116, 1084–1093. [Google Scholar] [CrossRef]
- Crupi, P.; Santamaria, M.; Vallejo, F.; Tomás-Barberán, F.A.; Masi, G.; Caputo, A.R.; Battista, F.; Tarricone, L. How Pre-Harvest Inactivated Yeast Treatment May Influence the Norisoprenoid Aroma Potential in Wine Grapes. Appl. Sci. 2020, 10, 3369. [Google Scholar] [CrossRef]
- Crupi, P.; Palattella, D.; Corbo, F.; Clodoveo, M.L.; Masi, G.; Caputo, A.R.; Battista, F.; Tarricone, L. Effect of Pre-Harvest Inactivated Yeast Treatment on the Anthocyanin Content and Quality of Table Grapes. Food Chem. 2021, 337, 128006. [Google Scholar] [CrossRef]
- Li, J.; Javed, H.U.; Wu, Z.; Wang, L.; Han, J.; Zhang, Y.; Ma, C.; Jiu, S.; Zhang, C.; Wang, S. Improving Berry Quality and Antioxidant Ability in ‘Ruidu Hongyu’ Grapevine through Preharvest Exogenous 2,4-Epibrassinolide, Jasmonic Acid and Their Signaling Inhibitors by Regulating Endogenous Phytohormones. Front. Plant Sci. 2022, 13, 1035022. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Seaweed Foliar Applications at Two Dosages to Tempranillo Blanco (Vitis vinifera L.) Grapevines in Two Seasons: Effects on Grape and Wine Volatile Composition. Food Res. Int. 2020, 130, 137–141. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Martínez-Lapuente, L.; da Costa, B.S.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Phenolic Composition of Tempranillo Blanco (Vitis vinifera L.) Grapes and Wines after Biostimulation via a Foliar Seaweed Application. J. Sci. Food Agric. 2020, 100, 825–835. [Google Scholar] [CrossRef]
- Taskos, D.; Stamatiadis, S.; Yvin, J.C.; Jamois, F. Effects of an Ascophyllum nodosum (L.) Le Jol. Extract on Grapevine Yield and Berry Composition of a Merlot Vineyard. Sci. Hortic. 2019, 250, 27–32. [Google Scholar] [CrossRef]
- Topuz, H.; Keskin, N.; Kiraz, M.E.; Tarım, G.; Topuz, F.; Ozel, N.; Kaya, O. Effect of Foliar Spraying of Ascophyllum nodosum Extracts on Grape Quality of ‘Tarsus Beyazı. ’ Erwerbs-Obstbau 2023, 65, 1873–1879. [Google Scholar] [CrossRef]
- Bavaresco, L.; Canavera, G.; Parisi, M.G.; Lucini, L. Role of Foliar Biostimulants (of Plant Origin) on Grapevine Adaptation to Climate Change. BIO Web Conf. 2023, 56, 01002. [Google Scholar] [CrossRef]
- Li, W.; Yao, H.; Chen, K.; Ju, Y.; Min, Z.; Sun, X.; Cheng, Z.; Liao, Z.; Zhang, K.; Fang, Y. Effect of Foliar Application of Fulvic Acid Antitranspirant on Sugar Accumulation, Phenolic Profiles and Aroma Qualities of Cabernet Sauvignon and Riesling Grapes and Wines. Food Chem. 2021, 351, 129308. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; González-Lázaro, M.; Sáenz de Urturi, I.; Marín-San Román, S.; Martínez-Vidaurre, J.M.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Foliar Application of Methyl Jasmonate and Methyl Jasmonate + Urea: Effect on Nitrogen Compounds in Tempranillo Grapes over Two Vintages. J. Plant Nutr. 2024, 47, 1058–1071. [Google Scholar] [CrossRef]
- Torres-Díaz, L.L.; Pérez-Álvarez, E.P.; Parra-Torrejón, B.; Marín-San Román, S.; de Sáenz de Urturi, I.; Ramírez-Rodríguez, G.B.; Murillo-Peña, R.; González-Lázaro, M.; Delgado-López, J.M.; Garde-Cerdán, T. Effects of Foliar Application of Methyl Jasmonate and/or Urea, Conventional or via Nanoparticles, on Grape Volatile Composition. J. Sci. Food Agric. 2024, 104, 8248–8262. [Google Scholar] [CrossRef]
- Salama, A.M.; Abdelsalam, M.A.; Rehan, M.; Elansary, M.; El-Shereif, A. Anthocyanin Accumulation and Its Corresponding Gene Expression, Total Phenol, Antioxidant Capacity, and Fruit Quality of ‘Crimson Seedless’ Grapevine (Vitis vinifera L.) in Response to Grafting and Pre-Harvest Applications. Horticulturae 2023, 9, 1001. [Google Scholar] [CrossRef]
- Mu, Q.; Leng, X.; Wang, P.; Cheng, L.; Ji, X.; Chen, J.; Zhu, X. Combined Metabolism and Transcriptome Profiling Reveals the Novel Role of Abscisic Acid during Grape Berry Ripening. J. Agric. Food Res. 2025, 21, 101841. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Q.; Xi, B.; Dai, H. Study on the Regulation of Anthocyanin Biosynthesis by Exogenous Abscisic Acid in Grapevine. Sci. Hortic. 2019, 250, 294–301. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Li, X.; Li, D.; Han, J.; Zhang, Y.; Ma, C.; Xu, W.; Wang, L.; Jiu, S.; et al. Exogenous Abscisic Acid Mediates Berry Quality Improvement by Altered Endogenous Plant Hormones Level in “Ruiduhongyu” Grapevine. Front. Plant Sci. 2021, 12, 739964. [Google Scholar] [CrossRef] [PubMed]
- Crupi, P.; Alba, V.; Masi, G.; Caputo, A.R.; Tarricone, L. Effect of Two Exogenous Plant Growth Regulators on the Color and Quality Parameters of Seedless Table Grape Berries. Food Res. Int. 2019, 126, 108667. [Google Scholar] [CrossRef]
- Deng, Q.; Xia, H.; Lin, L.; Wang, J.; Yuan, L.; Li, K.; Zhang, J.; Lv, X.; Liang, D. SUNRED, a Natural Extract-Based Biostimulant, Application Stimulates Anthocyanin Production in the Skins of Grapes. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Murcia, G.; Fontana, A.; Pontin, M.; Baraldi, R.; Bertazza, G.; Piccoli, P.N. ABA and GA3 Regulate the Synthesis of Primary and Secondary Metabolites Related to Alleviation from Biotic and Abiotic Stresses in Grapevine. Phytochemistry 2017, 135, 34–52. [Google Scholar] [CrossRef]
- Zhu, S.; Liang, Y.; Gao, D.; An, X.; Kong, F. Spraying Foliar Selenium Fertilizer on Quality of Table Grape (Vitis vinifera L.) from Different Source Varieties. Sci. Hortic. 2017, 218, 87–94. [Google Scholar] [CrossRef]
- Pardo-García, A.I.; Martínez-Gil, A.M.; Cadahía, E.; Pardo, F.; Alonso, G.L.; Salinas, M.R. Oak Extract Application to Grapevines as a Plant Biostimulant to Increase Wine Polyphenols. Food Res. Int. 2014, 55, 150–160. [Google Scholar] [CrossRef]
- Silvestroni, O.; Lanari, V.; Lattanzi, T.; Dottori, E.; Palliotti, A. Effects of Anti-Transpirant Di-1-p-Menthene, Sprayed Post-Veraison, on Berry Ripening of Sangiovese Grapevines with Different Crop Loads. Aust. J. Grape Wine Res. 2020, 26, 363–371. [Google Scholar] [CrossRef]
- Abou-Zaid, E.A.A.; Eissa, M.A. Thompson Seedless Grapevines Growth and Quality as Affected by Glutamic Acid, Vitamin B, and Algae. J. Soil. Sci. Plant Nutr. 2019, 19, 725–733. [Google Scholar] [CrossRef]
Country | Cultivar | Salinity | Foliar Application | Results | Ref. |
---|---|---|---|---|---|
Iran (hydroponic culture) | H6 (salt tolerant) GhezelUzum (salt sensitive) | NaCl (0, 50, 100 mM) | Silicon (0, 3 mM Na2SiO3 at 6-leaf stage and continued for two weeks) | Photosynthesis and gas exchange: ↑ photosynthesis Oxidative stress and antioxidants: in H6 ↑ activity of CAT, and APX, ↓ POD and SOD in leaves, in GhezelUzum ↑ CAT, POD, APX, and SOD in leaves Osmotic adjustment: ↑ proline (in GhezelUzum), ↓ sugar content in leaves and roots Leaf mineral content: ↓ Na, Cl, and Na/K ratio, ↑ K and Si in leaves and roots Morphological traits: ↑ shoot and root dry weights Interaction: Salt-tolerant and salt-sensitive genotypes responded differently under salinity stress | [24] |
China (pot experiment) | Cabernet Sauvignon | NaCl (0, 100 mM) | Silicon (0, 2 mM K2SiO3 9H2O) | Photosynthesis and gas exchange: ↑ photosynthesis, stomatal conductance, and transpiration rate Chlorophyll and pigments: − chlorophyll Osmotic adjustment: ↑ total soluble sugars and starch Mineral content: ↓ Na, ↑ Cl and Si Morphological traits: ↑ stem and leaf dry weights Interaction: Silicon in the absence of salt had negative effects on most parameters | [27] |
Iran (pot experiment) | Sultana | NaCl (0, 25, 50, 75, 100 mM) | Abscisic acid (0, 100 μM) | Water relations: ↑ relative water content Chlorophyll and pigments: ↑ carotenoids, chlorophylls a, b Oxidative stress and antioxidants: ↓ MDA and H2O2, ↑ activity of CAT, GPX, and APX Osmotic adjustment: ↑ proline content and total soluble sugars Cell membrane integrity: ↓ electrolyte leakage, improved membrane stability Morphological traits: ↑ height, leaf number, leaf area, and shoot dry matter Mineral content: ↑ Mg, Ca, K, P, NO3−, Mn, and Fe, ↓ Cl, Na Secondary metabolism: ↑ total flavonoids and phenolics (leaves) | [29] |
Egypt (open-field experiment) | Thompson Seedless | NaCl (0, 1000, 2000, 3000 mg L−1) | Brassinolide (0, 1, 2 mg L−1) | Water relations: ↑ leaf relative water content Chlorophyll and pigments: ↑ chlorophyll a, chlorophyll b, and carotenoids Oxidative stress and antioxidants: ↓ activity of CAT and POD Osmotic adjustment: ↓ proline content Morphological traits: ↑ survival percentage, plant height, stem thickness, number of leaves, leaf area, shoot and root dry weights Anatomical changes: Mitigation of the harmful effects of salinity on leaf anatomy Reversed ultrastructural modifications to cell organelles Mineral content: ↑ N, P, K, ↓ Na Secondary metabolites: ↓ total phenolic content (leaves) Optimal brassinolide concentration: 2 mg L−1 | [25] |
China (pot experiment) | Kyoho | NaCl: Na2SO4: NaHCO3 (0, 50 mM) | Spermidine (0, 0.5 μΜ) | Water relations: ↑ leaf relative water content Photosynthesis and gas exchange: ↑ photosynthetic rate, transpiration rate, stomatal conductance, WUE Chlorophyll and pigments: ↑ chlorophylls a and b and carotenoids Oxidative stress and antioxidants: ↓ MDA, H2O2, and O2− ↑ activity of CAT, SOD, POD, and APX Osmotic adjustment: ↑ proline content and total soluble sugars Morphological traits: ↑ leaf dry and fresh weights Mineral content: ↑ K, ↓ Na | [32] |
China (pot experiment) | Cabernet Sauvignon | NaHCO3 (0, 200 mM) | Abscisic acid (50, 100 μM) | Photosynthesis and gas exchange: ↑ photosynthetic rate ↓ intercellular CO2 concentration Chlorophyll and pigments: ↑ chlorophyll content Oxidative stress and antioxidants: ↓ MDA, H2O2, and O2−, ↑ activity of CAT, SOD, and APX Osmotic adjustment: ↑ proline content Mineral content: ↑ K, ↓ Na Secondary metabolites: ↑ flavonoids | [33] |
Turkey (open-field experiment) | Narince | Alkaline soil | Ascophyllum nodosum extract (first application of 0.3 g L−1 when the shoots were about 20 cm, with 15-day intervals, and a final (fourth) application when the berries were approximately 0.5 mm thick) | Chlorophyll and pigments: ↑ chlorophyll content Morphological traits: − leaf dry and fresh weight and leaf area Quantity traits: − cluster number and weight, berry length and diameter, and yield ↑ berry weight and volume (only one year) Quality traits: − TSS, TA, and pH Mineral content: − N, P, K, Mg, and Cu, ↑ Ca, Zn, S, and B, ↓ Mn, Fe, and Al | [85] |
Country | Cultivar | Temperature | Foliar Application | Results | Ref. |
---|---|---|---|---|---|
Italy (open-field experiment) | Verdicchio | Tmax > 35 °C | Kaolin (different dosages depending on year of the experiment) | Photosynthesis and gas exchange: ↓ or ↑ stomatal conductance and transpiration (year depended) Quantity traits: − berry weight Quality traits: ↓ or − TSS, pH, ↑ or − TA | [116] |
Italy (open-field experiment) | Sauvignon Blanc | Tmax > 30 °C | Kaolin particle film (1.5 kg/100 L at veraison and 3 kg/100 L after 10 and 20 days) | Leaf temperature: ↓ (only the second year) Photosynthesis and gas exchange: − stomatal conductance, transpiration, and WUE Chlorophyll and pigments: − chlorophyll content (SPAD) Quality traits: ↓ TSS, ↑ TA, − pH | [117] |
Portugal (open-field experiment) | Touriga-Nacional | Tmax > 35 °C for 36 days | Kaolin particle film (5% at pre-veraison) | Oenological parameters: ↑ TA, tartaric acid, ↓ pH, alcoholic degree Deep reddish color Secondary metabolites: ↑ total anthocyanins and phenolics | [59] |
USA (open-field experiment) | Syrah | Tmax > 40 °C | Kaolin (14, 28, and 56 kg/ha applied to pea-sized berries at intervals of 15 and 26 days) | Leaf temperature: − or ↓ Photosynthesis and gas exchange: − or ↑ stomatal conductance Quantity traits: − yield, clusters/vine, cluster and berry mass, berries/cluster Quality traits: − TSS, pH, and TA (TA ↑ only the third year) Secondary metabolites: − total anthocyanins, tannins, catechin, and quercetin | [118] |
China (open-field experiment) | Meili | Tmax > 35 °C | Kaolin particle film (6% at pre-veraison) | Quantity traits: ↓ 100-berry weight Quality traits: ↑ TSS, ↓ TA Secondary metabolites: ↑ total anthocyanins, phenolics, and flavonoids in skin ↓ or − total flavanols in skin, ↑ or − tannins in skin | [119] |
Greece (open-field experiment) | Crimson Seedless | Tmax > 30 °C Irrigation | Ecklonia maxima (3 L ha−1, two sprays) Ascophyllum nodosum (4 g L−1 vine−1, five sprays), inactivated wine yeast (1.5 kg ha−1, two sprays), ethephon (250 ppm, two sprays), Sunred (4 L ha−1, two sprays) | Quantity traits: ↑ yield, cluster and berry weight, berry length and diameter ↓ berry skin mass. − clusters/vine, cluster length and width Quality traits: − TSS (except from Sunred, which ↑), ↓ TA Secondary metabolites: − anthocyanins (except from Sunred, which ↑) Effectiveness: Sunred was the most effective canopy treatment | [120] |
Italy, USA (open-field experiment) | Sangiovese (Italy) Pinot Noir Cabernet Franc (USA) | Italy = warmer and dryer conditions than those in the USA | Ascophyllum nodosum (1.5 kg/ha, 3 kg/ha, five applications, first three weeks after the formation of pea-size berries, intervals of ten to twenty days) | Italy Quantity traits: − yield, clusters/vine, cluster weight Quality traits: − TSS, pH, and TA Secondary metabolites: ↑ total anthocyanins and phenolics in skin USA (both varieties) Quantity traits: − yield, clusters/vine, berries/cluster, cluster and berry weight Quality traits: − TSS, pH, TA Secondary metabolites: ↑ total anthocyanins in skins, − phenolics in skins | [5] |
Brazil (open-field experiment) | Niágara Rosada | Tmax > 30 °C Irrigation | Ascophyllum nodosum, Hypnea musciformis, Lithothamnium sp., Sargassum vulgare extracts (0.6% 20 days after breaking dormancy and at bloom, fruit set, and veraison) | Photosynthesis and gas exchange: ↑ photosynthetic rate, stomatal conductance, WUE, and intercellular CO2 concentration Chlorophyll and pigments: ↑ chlorophyll content (only A. nodosum) Mineral content: ↑ K, Mg, B, Cu, and Zn in leaves Quantity traits: ↑ yield (only A. nodosum) Effectiveness: (AN > LS > HM ≈ SV) | [87] |
Italy (open-field experiment) | Sangiovese | Tmax > 33 °C | Ascophyllum nodosum extract (3 g/L one week after full veraison and 15 days after) | Photosynthesis and gas exchange: ↑ net assimilation rate and stomatal conductance Quantity traits: − berry weight Quality traits: ↓ TSS, − pH and TA Secondary metabolites: − individual anthocyanins, hydroxycinnamic acids, quercetin derivatives, and total phenolics | [121] |
Italy (open-field experiment) | Sangiovese | Tmax > 33 °C | Ascophyllum nodosum extract (1.5 kg ha−1, six applications from 3 weeks after the formation of pea-size berries to harvest) | Quantity traits: − yield, bunches/vine, bunch weight, berries/bunch, and berry weight Quality traits: − TSSs, pH, and TA Secondary metabolites: ↑ total anthocyanins and phenolics | [122] |
Romania (open-field experiment) | Moldova | Tmax > 30 °C | Gibberellic acid (25, 50, and 100 mg/L when 80% of caps had fell) Cropmax (1, 2.5, and 5 mL/L at full inflorescence and fruit set and when berries were pea-sized) | Photosynthesis and gas exchange: ↓ or − photosynthetic rate, − stomatal conductance Chlorophyll and pigments: ↓ chlorophylls a and b − carotenoids Quantity traits: ↑ marketable yield (only GA3), − seed and skin weight, seeds/berry Quality traits: − TSS, pH, and TA (GA3) ↑ TSS and TA (Cropmax 2.5 mL/L) Secondary metabolites: ↑ total anthocyanins and phenolics (Cropmax) ↓ total anthocyanins and phenolics (GA3) | [20] |
China (pot experiment) | Thompson Seedless | Tmax > 40 °C Irrigation | β-Myrcene BaZFP924 protein Aspergone | Photosynthesis and gas exchange: ↑ photosynthetic rate Chlorophyll and pigments: ↑ chlorophyll content (SPAD) Morphological traits: ↑ height and stem thickness − root and internode length Effective order: BaZFP924 protein > β-Myrcene > Aspergone | [63] |
Country | Cultivar | Temperature Irrigation | Foliar Application | Results | Ref. |
---|---|---|---|---|---|
Italy (open-field experiment) | Sangiovese | Taver = 26.2 °C (August) No irrigation | Kaolin and zeolite (3 kg L−1 at the beginning and end of veraison) | Leaf temperature: ↓ (only the first year) Berry temperature: ↓ (kaolin) Water relations: − stem water potential Photosynthesis and gas exchange: − stomatal conductance and leaf assimilation rate Quantity traits: − yield, bunch, and berry weight | [10] |
Greece (open-field experiment) | Roditis | Taver = 27.9 °C No irrigation | Kaolin and zeolite (3% at the beginning of veraison and one week later) | Leaf temperature: ↓ in the morning and at midday in veraison and harvest (only zeolite) Photosynthesis and gas exchange: ↑ net photosynthesis and WUE in the morning and at midday at veraison and harvest (only zeolite), ↑ stomatal conductance in the morning and at midday at harvest (only zeolite) Quantity traits: ↑ yield, cluster and berry weight, − clusters/vine, and berries/cluster ↓ sunburn necrosis, dehydrated berries, and infected berries Quality traits: − TSS and pH, ↑ TA Secondary metabolites: ↓ or − total phenolics Effectiveness: Zeolite is more effective than kaolin | [6] |
Greece (open-field experiment) | Assyrtiko | Tmax > 30 °C No irrigation and irrigation | Kaolin and CaCO3 (5% at a single dose, 150–160 DOY) | Leaf temperature: ↓ at harvest Photosynthesis and gas exchange: ↑ photosynthesis and stomatal conductance Chlorophyll and pigments: ↑ chlorophyll content(SPAD) (only in non-irrigated vines) Quantity traits: ↑ bunch and berry weight (only in non-irrigated vines) − bunch number/vine, berry length and width ↓ sunburn necrosis and infected berries Quality traits: ↓ TSSs, − or ↓ pH and TA Effectiveness: Kaolin was more effective than CaCO3 Interaction: Varying effects depending on year, region, training system, and irrigation | [125] |
Greece (open-field experiment) | Assyrtiko Mavrotragano | No irrigation | Kaolin and CaCO3 (5% at bunch closure and veraison) | Quantity traits: Varying effects on grape length, width, weight − berry length and width − or ↓ 50-berry weight Quality traits: − TA Varying effect on TSSs, glucose, fructose, tartaric acid, malic acid, and pH Secondary metabolites: Varying effect In general, ↑ phenolic compounds, flavanols, flavonoids, flavones, flavonols, and anthocyanins in the skin Interaction: Varying effects depending on variety, region, and training system | [127] |
Italy (open-field experiment) | Sangiovese | Tmax > 30 °C No irrigation | Kaolin, zeolite (3 kg L−1 at the beginning and at full veraison) | Quality traits: − TSS and pH ↑ TA (kaolin only one year) Secondary metabolites: ↑ total anthocyanins (zeolite only one year) | [126] |
Portugal (open-field experiment) | Touriga Franca Touriga Nacional Tinta Francisca Vinhao Grenache Borraçal Cornifesto | Tmax > 40 °C Deficit irrigation | Kaolin (5% at pre-veraison) | Quantity traits: ↑ berry size, ↓ skin/pulp Secondary metabolites: Variable effect − total anthocyanins in whole fruit, ↑ or ↓ total anthocyanins of skin −, ↑, or ↓ total phenolic content and total flavonoids in the berries, skin, and seeds Interaction: Varying effect depending on variety | [7] |
Portugal (open-field experiment) | Touriga Franca Touriga Nacional | Tmax > 40 °C Deficit irrigation | Kaolin (5% at pre-veraison) | Leaf temperature: − or ↓ temperature Chlorophyll and pigments: − or ↑ chlorophyll content Osmotic adjustment: ↑ or ↓ proline Interaction: Varying effect depending on variety, region, year, and phenological stage | [128] |
Portugal (open-field experiment) | Touriga Franca Touriga Nacional | Tmax > 40 °C Deficit irrigation | Kaolin (5% at pre-veraison) | Hormonal balance: −, ↑, or ↓ ABA, IAA, and SA Quality traits: −, ↑, or ↓ soluble sugars, − TA and pH Secondary metabolites: − or ↓ total phenols and flavonoids; −, ↑, or ↓ total anthocyanins; ↑ tannins Interaction: Varying effect depending on variety, year, and phenological stage | [105] |
Portugal (open-field experiment) | Touriga Franca Touriga Nacional | Tmax > 40 °C Deficit irrigation | Kaolin (5% at pre-veraison) | Hormonal balance: ↑ or ↓ SA and ABA Quality traits: ↓ or − soluble sugars and − TA, pH, malic acid, and tartaric acid Secondary metabolites: ↑ or − total phenols, flavonoids, and total anthocyanins and − tannins Interaction: Varying effect depending on variety, year, and phenological stage | [129] |
Spain (open-field experiment) | Verdejo | Tmax > 35 °C Deficit irrigation | Kaolin (5%, three times between fruit set and veraison) | Leaf temperature: ↓ Photosynthesis and gas exchange: ↑ maximum quantum efficiency of photosystem II, photochemical quenching, and electron transport rate, ↓ basal fluorescence Quality traits: − TSSs and TA, ↓ pH and total phenolics | [130] |
Italy (pot experiment) | Sangiovese | Tmax > 30 °C Deficit irrigation | Zeolite (3% at the beginning and end of veraison) | Leaf temperature: ↓ Photosynthesis and gas exchange: ↑ net photosynthesis and stomatal conductance Quantity traits: − yield and cluster and berry weight Quality traits: − TSSs, pH, and TA Secondary metabolites: ↑ total anthocyanins | [124] |
Italy (open field experiment) | Barbera | Tmax > 35 °C No irrigation | Proline-rich specific yeast derivative | Leaf and cluster temperature: − Water relations: ↑ leaf water potential Photosynthesis and gas exchange: ↑ stomatal conductance and assimilation rates, − WUE Chlorophyll and pigments: ↑ β-carotene and chlorophylls a, b Oxidative stress and antioxidant defense: ↓ H2O2 Osmotic adjustment: ↑ proline Quantity traits: ↓ cluster sunburn − clusters/vine and skin weight ↑ yield, cluster weight, cluster compactness, and berry weight Quality traits: ↓ TSS and TSS/TA − pH, TA, tartaric, and malic acid Secondary metabolites: − anthocyanins and phenolics (mg/g); ↑ anthocyanins and phenolics (mg/berry) | [63] |
Country | Cultivar | Foliar Application | Results | Ref. |
---|---|---|---|---|
Italy | Pinot Noir | Chitosan | Secondary metabolites: ↓ citronellol, 2,4-di-tert-butylphenol ↑ non-volatile phenolics Wines sensorially described as having “unpleasant flavors” and “odors” | [91] |
Italy | Sangiovese Cabernet Sauvignon | Chitosan | Secondary metabolites: ↑ catechin, epicatechin, and procyanidin B2 in Cabernet Sauvignon − anthocyanins and flavonols or t-resveratrol in berry skin | [92] |
Italy | Chardonnay, Cortese, Nebbiolo | Inactivated dry yeast | Quality traits: − reducing sugars, pH, and TA Secondary metabolites: Varying effect depending on variety and year | [138] |
Italy | Negro Amaro, Primitivo | Inactivated dry yeast | Quality traits: − reducing sugars, pH, and TA Secondary metabolites: ↑ aroma potential (↑ carotenoids − C13-norisoprenoid precursors) | [139] |
Italy | Scarlotta Seedless Crimson Seedless Red Globe | Inactivated dry yeast | Secondary metabolites: ↑ anthocyanins (particularly in Crimson Seedless, which is characterized by pigment concentrations lower than those in Scarlotta Seedless and Red Globe) | [140] |
Italy | Sauvignon Blanc | Inactivated dry yeast | Quality traits: − sugars and acidity Secondary metabolites: ↑ aroma precursors | [69] |
USA | Chambourcin | Inactivated dry yeast | Quality traits: ↓ pH, − TSSs Secondary metabolites: ↑ malvidin-, delphinidin-, petunidin-3-O-glucoside, and total anthocyanins | [95] |
China | Ruidu Hongyu | 2,4-epibrassinolide Jasmonic acid | Secondary metabolites: ↑ anthocyanins, phenolics, and flavonoids | [141] |
Spain | Tempranillo | Methyl jasmonate Chitosan Yeast extract | Secondary metabolites: ↓ terpenoids, C13 norisoprenoids, benzenoids, and esters (except for yeast extract) | [132] |
Spain | Tempranillo | Methyl jasmonate, chitosan, yeast extract | Quality traits: − TSSs, TA, and pH in berries, ↑ TA in wine Secondary metabolites: − total anthocyanins, flavonols, flavanols, and phenolic acids in grapes and wines ↑ trans-resveratrol in grapes ↑ anthocyanins in wine for methyl jasmonate Varying effect on individual anthocyanins | [93] |
Spain | Tempranillo | Ascophyllum nodosum extract | Secondary metabolites: ↑ total stilbenes, malvidin-3-glc, myricetin-3-glc, and myricetin-3-gal in grapes Varying effect on phenolic compounds depending on year | [133] |
Spain | Tempranillo | Ascophyllum nodosum extract | Secondary metabolites: ↑ several individual terpenoids, C13 norisoprenoids, esters, benzenoids, alcohols, carbonyl compounds, and C6 compounds in must and wine | [142,143] |
Greece | Merlot | Ascophyllum nodosum extract | Quality traits: − TSS, TA, malic acid, and tartaric acid Secondary metabolites: − total anthocyanins in berries, − or ↓ total phenolic index, ↑ seed tannin index | [144] |
Turkey | Tarsus Beyazı | Ascophyllum nodosum extract | Quality traits: ↓ TSS and pH, ↑ TA | [145] |
Italy | Corvina | Animal- and plant-derived protein hydrolysates (casein, soybean, and lupin) | Quality traits: ↑ TSS, ↓ TA and malic acid Secondary metabolites: ↑ total anthocyanins | [83] |
Italy | Merlot | Protein hydrolysates of plant origin (Trainer, Stimtide) | Quality traits: ↓ TSSs, ↑ TA, − pH, tartaric acid, and malic acid Secondary metabolites: − total anthocyanins and phenolics | [146] |
Romania | Feteasca Regala Riesling Italian | Humic acid | Quality traits: ↑ TSS, ↓ TA | [77] |
China | Cabernet Sauvignon Riesling | Fulvic acid | Secondary metabolites: ↑ total phenols, flavonoids (Riesling grapes), total tannin, individual flavanols, and volatiles (Cabernet Sauvignon grapes and wine) ↓ individual phenolic acids and flavonols (Cabernet Sauvignon wine) | [147] |
Italy | Ribolla Gialla | Biostimulant made using Fabaceae tissue rich in triacontanol | Quality traits: ↑ TSS, citric acid, − pH, TA, tartaric acid, and malic acid ↓ lactic acid | [79] |
Italy | Sangiovese | Methyl jasmonate | Secondary metabolites: ↑ aroma compounds, ↑ several monoterpenes, norisoprenoids, and esters | [134] |
Spain | Tempranillo | Methyl jasmonate | Quality traits: ↑ TSSs, amino acids; − pH, TA | [148] |
Spain | Garnacha | Methyl jasmonate | Quality traits: − TSS, pH, TA, tartaric acid, and malic acid Secondary metabolites: ↑ total anthocyanins, flavonols, hydroxybenzoic acids, and several individual compounds − total phenolic content, flavanols, and antioxidant capacity | [100] |
Spain | Tempranillo Graciano | Methyl jasmonate | Quality traits: − TSS, pH, TA, tartaric acid, and malic acid Secondary metabolites: − flavonols, flavanols, and hydroxybenzoic acids ↑ some anthocyanins and stilbenes | [131] |
Spain | Tempranillo | Methyl jasmonate | Quality traits: − TSS, pH, TA, tartaric acid, malic acid, fructose, and glucose Secondary metabolites: ↓ total phenolic content − terpenoids and C13 norisoprenoids | [149] |
Egypt | Crimson Seedless | Abscisic acid Methyl jasmonate Ethephon melatonin | Quality traits: ↑ berry firmness, TSS, ↓ TA Secondary metabolites: ↑ total anthocyanins, phenolics, and antioxidant capacity | [150] |
China | Muscat Hamburg | Abscisic acid | Quality traits: ↑ TSS, glucose, and fructose; ↓ TA, tartaric, malic, and citric acids Secondary metabolites: ↑ total and individual anthocyanins | [151] |
China | Merlot | Abscisic acid | Quality traits: ↑ total sugar, − TA Secondary metabolites: ↑ total phenolics, total and Individual anthocyanins | [152] |
Chile | Carmenere | Abscisic acid | Quality traits: − TSS, TA Secondary metabolites: ↓ non-methylated anthocyanins (delphinidin and petunidin), flavonols ↑ methylated anthocyanins (malvidin and peonidin), tannins | [136] |
China | Ruiduhongyu | Abscisic acid | Quality traits: ↑ TSS, ↓ TA Secondary metabolites: ↑ polyphenols, flavonoids, resveratrol | [153] |
Italy | Crimson Seedless | Abscisic acid Harpin proteins | Quality traits: − TSS, pH, TA, and firmness Secondary metabolites: ↑ individual anthocyanins (especially abscisic acid) | [154] |
China | Red Globe | Abscisic acid, Sunred | Quality traits: ↑ TSS, ↓ TA Secondary metabolites: ↑ total anthocyanins | [155] |
China | Summer Black | Melatonin | Quality traits: ↑ TSS, fructose, glucose, and sucrose; ↓ TA Secondary metabolites: ↑ or ↓ total and individual anthocyanins | [137] |
Argentina | Malbec | Abscisic acid Gibberellic acid | Secondary metabolites: ↑ mono- and sesquiterpenes in berries, ↑ (ABA) and ↓ (GA3) anthocyanins | [156] |
China | Marselan | γ-polyglutamic acid, alginic acid | Secondary metabolites: ↑ total phenolics and antioxidant capacity in grapes and wine | [135] |
China | Crimson Seedless Red Barbara Summer Black Hutai No. 8 | Selenium | Quality traits: ↑ TSS, soluble protein, and vitamin C ↓ organic acids Secondary metabolites: ↑ procyanidins − resveratrol | [157] |
Spain | Monastrell | Oak extract | Quality traits: ↓ TSS in grapes, ↑ TA in grapes, ↓ in wine, − pH, tartaric acid, and malic acid Secondary metabolites: ↑ total anthocyanins and phenols in wine ↑ gallic acid, hydroxycynnamoyltartaric acids, acylated anthocyanins, flavanols, and stilbenes | [158] |
Italy | Sangiovese | Antitranspirant di-1-p-menthene | Quality traits: ↓ TSS, − pH, TA, tartaric acid, and malic acid | [159] |
Egypt | Thompson Seedless | Vitamin B Glutamic acid Amphora ovalis extract | Quality traits: ↑ TSS, ↓ TA | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petoumenou, D.G.; Liava, V. Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality. Plants 2025, 14, 2157. https://doi.org/10.3390/plants14142157
Petoumenou DG, Liava V. Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality. Plants. 2025; 14(14):2157. https://doi.org/10.3390/plants14142157
Chicago/Turabian StylePetoumenou, Despoina G., and Vasiliki Liava. 2025. "Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality" Plants 14, no. 14: 2157. https://doi.org/10.3390/plants14142157
APA StylePetoumenou, D. G., & Liava, V. (2025). Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality. Plants, 14(14), 2157. https://doi.org/10.3390/plants14142157