LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction Procedure
2.2. Freeze-Drying of Extracts
2.3. Determination of Total Polyphenolic, Flavonoid and Caffeic Acid Derivatives Content
2.4. LC-MS Analysis
2.5. Evaluation of In Vitro Antioxidant Activity
2.5.1. DPPH Radical Scavenging Activity
2.5.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.6. In Vivo Studies
2.6.1. Experimental Animals
2.6.2. Investigation of In Vivo Anti-Inflammatory Activity
2.6.3. Evaluation of In Vivo Cardioprotective Activity
2.6.4. Measurement of Oxidative Stress Parameters
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Analysis by LC-MS
3.2. Quantification of Total Polyphenols, Flavonoids, and Caffeic Acid Derivatives in Agastache sp. Extracts
3.3. Assessment of In Vitro Antioxidant Activity
3.4. Investigation of In Vivo Antioxidant and Anti-Inflammatory Effects
3.5. Investigation of In Vivo Cardioprotective Activity
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPLC-MS | High-Performance Liquid Chromatography–Mass Spectrometry |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FRAP | Ferric Reducing Antioxidant Power |
IC50 | Half Maximal Inhibitory Concentration |
TOS | Total Oxidant Status |
OSI | Oxidative Stress Index |
TAC | Total Antioxidant Capacity |
MDA | Malondialdehyde |
NO | Nitric Oxide |
SH | Sulfhydryl Groups |
GOT | Glutamate Oxaloacetate Transaminase |
GPT | Glutamate Pyruvate Transaminase |
CK-MB | Creatine Kinase-MB Isoenzyme |
CVD | Cardiovascular Disease |
LDL | Low-Density Lipoprotein |
CRP | C-Reactive Protein |
ROS | Reactive Oxygen Species |
LDH | Lactate Dehydrogenase |
ATP | Adenosine Triphosphate |
NAD | Nicotinamide Adenine Dinucleotide |
SOD | Superoxide Dismutase |
AM | Agastache mexicana |
AS | Agastache scrophulariifolia |
TPC | Total Phenolic Content |
GAE | Gallic Acid Equivalents |
TFC | Total Flavonoids Content |
RE | Rutoside Equivalents |
TCADC | Total Caffeic Acid Derivatives Content |
CAE | Caffeic Acid Equivalents |
TPTZ | 2,4,6-Tripyridyl-s-triazine |
ISO | Isoprenaline |
MAPK | Mitogen-Activated Protein Kinase |
NF-KB | Nuclear Factor Kappa B |
TE | Trolox Equivalents |
INFL | Inflammation |
CAT | Catalase |
GPx | Glutathione Peroxidase |
MMP-9 | Matrix Metalloproteinase-9 |
TRPA1 | Transient Receptor Potential Ankyrin 1 |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
TNF-alfa | Tumor Necrosis Factor-alpha |
IL-6 | Interleukin-6 |
MI | Myocardial Infarction |
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
- Moore, K.J. Targeting inflammation in CVD: Advances and challenges. Nat. Rev. Cardiol. 2019, 16, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E.; PROMINENT, REDUCE-IT, and STRENGTH Investigators. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Bucci, T.; Sagris, D.; Harrison, S.L.; Underhill, P.; Pastori, D.; Ntaios, G.; McDowell, G.; Buckley, B.J.R.; Lip, G.Y.H. C-reactive protein levels are associated with early cardiac complications or death in patients with acute ischemic stroke: A propensity-matched analysis of a global federated health from the TriNetX network. Intern. Emerg. Med. 2023, 18, 1329–1336. [Google Scholar] [CrossRef]
- Świątkiewicz, I.; Magielski, P.; Kubica, J. C-reactive protein as a risk marker for post-infarct heart failure over a multi-year period. Int. J. Mol. Sci. 2021, 22, 3169. [Google Scholar] [CrossRef]
- Iso, H.; Noda, H.; Ikeda, A.; Yamagishi, K.; Inoue, M.; Iwasaki, M.; Tsugane, S. The impact of C-reactive protein on risk of stroke, stroke subtypes, and ischemic heart disease in middle-aged Japanese: The Japan Public Health Center-based Study. J. Atheroscler. Thromb. 2012, 19, 756–766. [Google Scholar]
- Xu, T.; Ke, K. C-reactive protein and ischemic stroke risk in general population: A dose-response meta-analysis of prospective studies. Int. J. Cardiol. 2015, 190, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.J.; Shapiro, M.D. Immune-mediated inflammatory diseases, dyslipidemia, and cardiovascular risk: A complex interplay. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2396–2406. [Google Scholar] [CrossRef]
- Jensen, R.V.; Hjortbak, M.V.; Bøtker, H.E. Ischemic heart disease: An update. Semin. Nucl. Med. 2020, 50, 195–207. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; et al. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int. J. Mol. Sci. 2020, 21, 8118. [Google Scholar] [CrossRef]
- Alum, E.U. Role of phytochemicals in cardiovascular disease management: Insights into mechanisms, efficacy, and clinical application. Phytomed. Plus 2025, 5, 100695. [Google Scholar] [CrossRef]
- Adegbola, P.; Aderibigbe, I.; Hammed, W.; Omotayo, T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: A review. Am. J. Cardiovasc. Dis. 2017, 7, 19–32. [Google Scholar]
- Ullah, A.; Mostafa, N.; Halim, S.; Elhawary, E.A.; Ali, A.; Bhatti, R.; Shareef, U.; Naeem, W.; Khalid, A.; Kashtoh, H.; et al. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytother. Res. 2024, 38, 4467–4501. [Google Scholar] [CrossRef] [PubMed]
- Khattulanuar, F.S.; Sekar, M.; Fuloria, S.; Gan, S.H.; Rani, N.N.I.M.; Ravi, S.; Chidambaram, K.; Begum, M.Y.; Azad, A.K.; Jeyabalan, S.; et al. Tilianin: A potential natural lead molecule for new drug design and development for the treatment of cardiovascular disorders. Molecules 2022, 27, 673. [Google Scholar] [CrossRef]
- Tian, L.; Cao, W.; Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment with tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1α signaling pathway. J. Pharmacol. Sci. 2019, 139, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Jiang, W.; Zheng, R.; He, C.; Li, J.; Xing, J. Cardioprotection of Tilianin Ameliorates Myocardial Ischemia-Reperfusion Injury: Role of the Apoptotic Signaling Pathway. PLoS ONE 2018, 13, e0193845. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.-H.; Kim, J.S.; Lee, J.; Seo, Y.H.; Kim, H.S.; Ryu, S.M.; Choi, G.; Moon, B.C.; Lee, A.Y. Pharmacological effects of Agastache rugosa against gastritis using a network pharmacology approach. Biomolecules 2020, 10, 1298. [Google Scholar] [CrossRef]
- Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wei, J.; Kang, W.-Y. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med. 2017, 17, 93. [Google Scholar]
- Yuk, H.J.; Ryu, H.W.; Kim, D.-S. Potent xanthine oxidase inhibitory activity of constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods 2023, 12, 573. [Google Scholar] [CrossRef]
- Lee, H.W.; Ryu, H.W.; Baek, S.C.; Kang, M.-G.; Park, D.; Han, H.-Y.; An, J.H.; Oh, S.-R.; Kim, H. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. Int. J. Biol. Macromol. 2017, 104, 547–553. [Google Scholar] [CrossRef]
- Nechita, M.-A.; Toiu, A.; Benedec, D.; Hanganu, D.; Ielciu, I.; Oniga, O.; Nechita, V.-I.; Oniga, I. Agastache species: A comprehensive review on phytochemical composition and therapeutic properties. Plants 2023, 12, 2937. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef]
- Palma-Tenango, M.; Sánchez-Fernández, R.E.; Soto-Hernández, M. A systematic approach to Agastache mexicana research: Biology, agronomy, phytochemistry, and bioactivity. Molecules 2021, 26, 3751. [Google Scholar] [CrossRef]
- Vârban, R.; Ona, A.; Stoie, A.; Vârban, D.; Crișan, I. Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale. Agronomy 2021, 11, 2280. [Google Scholar] [CrossRef]
- Benedec, D.; Oniga, I.; Hanganu, D.; Vlase, A.-M.; Ielciu, I.; Crișan, G.; Fiţ, N.; Niculae, M.; Bab, T.; Pall, E.; et al. Revealing the phenolic composition and the antioxidant, antimicrobial and antiproliferative activities of two Euphrasia sp. extracts. Plants 2024, 13, 1790. [Google Scholar] [CrossRef] [PubMed]
- Ielciu, I.; Filip, G.A.; Sevastre-Berghian, A.C.; Bâldea, I.; Olah, N.-K.; Burtescu, R.F.; Toma, V.A.; Moldovan, R.; Oniga, I.; Hanganu, D. Effects of a Rosmarinus officinalis L. extract and rosmarinic acid in improving streptozotocin-induced aortic tissue damages in rats. Nutrients 2025, 17, 158. [Google Scholar] [CrossRef]
- Țicolea, M.; Pop, R.M.; Pârvu, M.; Usatiuc, L.-O.; Uifălean, A.; Pop, D.D.; Fischer-Fodor, E.; Ranga, F.; Rusu, C.C.; Cătoi, A.F.; et al. Flowers and leaves of Artemisia absinthium and Artemisia annua: Phytochemical characterization, anti-inflammatory, antioxidant, and anti-proliferative activities evaluation. Plants 2025, 14, 1029. [Google Scholar] [CrossRef] [PubMed]
- Epure, A.; Pârvu, A.E.; Vlase, L.; Benedec, D.; Hanganu, D.; Oniga, O.; Vlase, A.-M.; Ielciu, I.; Toiu, A.; Oniga, I. New approaches on the anti-inflammatory and cardioprotective properties of Taraxacum officinale tincture. Pharmaceuticals 2023, 16, 358. [Google Scholar] [CrossRef]
- Pop, R.M.; Boarescu, P.-M.; Bocsan, C.I.; Gherman, M.L.; Chedea, V.S.; Jianu, E.-M.; Roșian, Ș.H.; Boarescu, I.; Ranga, F.; Tomoiagă, L.L.; et al. Anti-inflammatory and antioxidant effects of white grape pomace polyphenols on isoproterenol-induced myocardial infarction. Int. J. Mol. Sci. 2025, 26, 2035. [Google Scholar] [CrossRef]
- Cavalcante, M.; Oliveira, J.; Barreto, M.; Pinheiro, L.; Cantuária, P.; Borges, W.; da Silva, G.; de Souza, T. An HPLC Method to Determine Phenolic Compounds of Plant Extracts: Application to Byrsonima Crassifolia and Senna Alata Leaves. Pharmacogn. Res. 2022, 14, 395–404. [Google Scholar] [CrossRef]
- Estrada-Reyes, R.; Aguirre Hernández, E.; García-Argáez, A.; Soto Hernández, M.; Linares, E.; Bye, R.; Heinze, G.; Martínez-Vázquez, M. Comparative Chemical Composition of Agastache mexicana subsp. mexicana and A. mexicana subsp. xolocotziana. Biochem. Syst. Ecol. 2004, 32, 685–694. [Google Scholar]
- Hwang, J.M.; Lee, M.-H.; Lee, J.-H.; Lee, J.H. Agastache rugosa Extract and Its Bioactive Compound Tilianin Suppress Adipogenesis and Lipogenesis on 3T3-L1 Cells. Appl. Sci. 2021, 11, 7679. [Google Scholar]
- Hong, S.; Cha, K.H.; Kwon, D.Y.; Son, Y.J.; Kim, S.M.; Choi, J.-H.; Yoo, G.; Nho, C.W. Agastache rugosa Ethanol Extract Suppresses Bone Loss via Induction of Osteoblast Differentiation with Alteration of Gut Microbiota. Phytomedicine 2021, 84, 153517. [Google Scholar] [PubMed]
- Nechita, M.-A.; Olah, N.-K.; Bab, T.H.; Vârban, R.; Hanganu, D.; Benedec, D.; Toiu, A.; Nechita, V.-I.; Oniga, I. Polyphenolic Compounds Analysis and Antioxidant Activity of Two Romanian Cultivated Agastache Species. Farmacia 2023, 71, 704–709. [Google Scholar]
- Lee, J.-J.; Lee, J.; Gu, M.; Han, J.-H.; Cho, W.-K.; Ma, J. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevents atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27KIP1. J. Funct. Foods 2017, 30, 30–38. [Google Scholar]
- Bielecka, M.; Zielińska, S.; Pencakowski, B.; Stafiniak, M.; Ślusarczyk, S.; Prescha, A.; Matkowski, A. Age-Related Variation of Polyphenol Content and Expression of Phenylpropanoid Biosynthetic Genes in Agastache rugosa. Ind. Crops Prod. 2019, 141, 111743. [Google Scholar]
- Tuan, P.A.; Park, W.T.; Xu, H.; Park, N.I.; Park, S.U. Accumulation of Tilianin and Rosmarinic Acid and Expression of Phenylpropanoid Biosynthetic Genes in Agastache Rugosa. J. Agric. Food Chem. 2012, 60, 5945–5951. [Google Scholar] [CrossRef]
- Yin, S.; Han, K.; Wu, D.; Wang, Z.; Zheng, R.; Fang, L.; Wang, S.; Xing, J.; Du, G. Tilianin Suppresses NLRP3 Inflammasome Activation in Myocardial Ischemia/Reperfusion Injury via Inhibition of TLR4/NF-κB and NEK7/NLRP3. Front. Pharmacol. 2024, 15, 1423053. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef]
- Chen, C.-P.; Lin, Y.-C.; Peng, Y.-H.; Chen, H.-M.; Lin, J.-T.; Kao, S.-H. Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade. Pharmaceuticals 2022, 15, 437. [Google Scholar] [CrossRef]
- Jiang, K.; Ma, X.; Guo, S.; Zhang, T.; Zhao, G.; Wu, H.; Wang, X.; Deng, G. Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Induced Mastitis in Mice. Inflammation 2018, 41, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Zohan, A.; Hassanzadeh-Taheri, M.; Hosseini, M. The Effects of Rosmarinic Acid on Hippocampal Oxidative Stress Markers in LPS-Induced Neuroinflammation Rats: Rosmarinic Acid and Hippocampal Oxidative Stress. Iran. J. Pharm. Sci. 2021, 17, 117–128. [Google Scholar] [CrossRef]
- Estrada-Reyes, R.; López-Rubalcava, C.; Ferreyra-Cruz, O.A.; Dorantes-Barrón, A.M.; Heinze, G.; Moreno Aguilar, J.; Martínez-Vázquez, M. Central Nervous System Effects and Chemical Composition of Two Subspecies of Agastache Mexicana; an Ethnomedicine of Mexico. J. Ethnopharmacol. 2014, 153, 98–110. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, H.-W.; Ryu, I.W.; Huang, Y.-H.; Park, M.; Chi, Y.M.; Lim, C.-J. Anti-Inflammatory, Barrier-Protective, and Antiwrinkle Properties of Agastache rugosa Kuntze in Human Epidermal Keratinocytes. Biomed. Res. Int. 2020, 2020, 1759067. [Google Scholar] [PubMed]
- Oh, Y.; Lim, H.-W.; Huang, Y.-H.; Kwon, H.-S.; Jin, C.D.; Kim, K.; Lim, C.-J. Attenuating Properties of Agastache rugosa Leaf Extract against Ultraviolet-B-Induced Photoaging via up-Regulating Glutathione and Superoxide Dismutase in a Human Keratinocyte Cell Line. J. Photochem. Photobiol. B 2016, 163, 170–176. [Google Scholar]
- Muscolo, A.; Oppedisano, M.; Taviano, G.; Ragusa, M. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Yeo, H.J.; Park, C.H.; Park, Y.E.; Hyeon, H.; Kim, J.K.; Lee, S.Y.; Park, S.U. Metabolic Profiling and Antioxidant Activity during Flower Development in Agastache rugosa. Physiol. Mol. Biol. Plants 2021, 27, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Desta, K.T.; Kim, G.-S.; Kim, Y.-H.; Lee, W.S.; Lee, S.J.; Jin, J.S.; Abd El-Aty, A.M.; Shin, H.-C.; Shim, J.-H.; Shin, S.C. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed. Chromatogr. 2016, 30, 225–231. [Google Scholar] [CrossRef]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of physico-chemical properties and antioxidant capacities of bioactive honey produced from Australian grown Agastache rugosa and its correlation with colour and polyphenol content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Alfaro, R.A.; Davis, D.D. Diclofenac. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Li, S.; Hong, M.; Tan, H.-Y.; Wang, N.; Feng, Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid. Med. Cell. Longev. 2016, 2016, 4234061. [Google Scholar] [CrossRef]
- Hamad, I.; Arda, N.; Pekmez, M.; Karaer, S.; Temizkan, G. Intracellular Scavenging Activity of Trolox (6-Hydroxy-2,5,7,8-Tetramethylchromane-2-Carboxylic Acid) in the Fission Yeast, Schizosaccharomyces Pombe. J. Nat. Sci. Biol. Med. 2010, 1, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lu, M.; Zhang, S.; Liu, J. Renoprotective effects of tilianin in diabetic rats through modulation of oxidative stress via Nrf2-Keap1 pathway and inflammation via TLR4/MAPK/NF-κB pathways. Int. Immunopharmacol. 2020, 88, 106967. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson’s disease. Exp. Ther. Med. 2022, 23, 293. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zou, L.; Sun, H.; Peng, J.; Gao, C.; Bao, L.; Ji, R.; Jin, Y.; Sun, S. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front. Pharmacol. 2020, 11, 153. [Google Scholar] [CrossRef]
- Moon, H.; Kim, M.J.; Son, H.J.; Kweon, H.-J.; Kim, J.T.; Kim, Y.; Shim, J.; Suh, B.-C.; Rhyu, M.-R. Five HTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa. PLoS ONE 2015, 10, e0127060. [Google Scholar]
- Sun, J.; Sun, P.; Kang, C.; Zhang, L.; Guo, L.; Kou, Y. Chemical Composition and Biological Activities of Essential Oils from Six Lamiaceae Folk Medicinal Plants. Front. Plant Sci. 2022, 13, 919294. [Google Scholar]
- Jiang, H.; Xing, J.; Fang, J.; Wang, L.; Wang, Y.; Zeng, L.; Li, Z.; Liu, R. Tilianin Protects against Ischemia/Reperfusion-Induced Myocardial Injury through the Inhibition of the Ca2+/Calmodulin-Dependent Protein Kinase II-Dependent Apoptotic and Inflammatory Signaling Pathways. Biomed. Res. Int. 2020, 2020, 5939715. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Wang, X.; Wang, Y.; Cheng, J.; Tian, L.; Guo, X.; Qin, D.; Cao, W. Tilianin Post-Conditioning Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondrial Protection and Inhibition of Apoptosis. Med. Sci. Monit. 2017, 23, 4490–4499. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.-X.; Ma, Z.-G.; Wu, H.-M.; Xu, S.-C.; Song, P.; Kong, C.-Y.; Yuan, Y.-P.; Deng, W.; Tang, Q.-Z. Rosmarinic Acid Alleviates Cardiomyocyte Apoptosis via Cardiac Fibroblast in Doxorubicin-Induced Cardiotoxicity. Int. J. Biol. Sci. 2019, 15, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, D.; Ye, L.; Li, P.; Hao, W.; Chen, X.; Ma, J.; Wang, B.; Shang, J.; Li, D.; et al. Rosmarinic Acid Protects against Inflammation and Cardiomyocyte Apoptosis during Myocardial Ischemia/Reperfusion Injury by Activating Peroxisome Proliferator-Activated Receptor Gamma. Front. Pharmacol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Flores-Flores, A.; Hernández-Abreu, O.; Rios, M.Y.; León-Rivera, I.; Aguilar-Guadarrama, B.; Castillo-España, P.; Perea-Arango, I.; Estrada-Soto, S. Vasorelaxant mode of action of dichloromethane-soluble extract from Agastache mexicana and its main bioactive compounds. Pharm. Biol. 2016, 54, 2807–2813. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Torres, K.C.; Estrada-Soto, S.; Arias-Durán, L.; Navarrete-Vázquez, G.; Almanza-Pérez, J.C.; Mora-Ramiro, B.; Perea-Arango, I.; Hernández-Núñez, E.; Villalobos-Molina, R.; Carmona-Castro, G.; et al. LC-MS fingerprinting development for standardized precipitate from Agastache mexicana, which induces antihypertensive effect through NO production and calcium channel blockade. Pharmaceutics 2023, 15, 2346. [Google Scholar] [CrossRef]
- Hernández-Abreu, O.; Torres-Piedra, M.; García-Jiménez, S.; Ibarra-Barajas, M.; Villalobos-Molina, R.; Montes, S.; Rembao, D.; Estrada-Soto, S. Dose-dependent antihypertensive determination and toxicological studies of tilianin isolated from Agastache mexicana. J. Ethnopharmacol. 2013, 146, 187–191. [Google Scholar] [CrossRef]
Time (min) | Methanol (%) | Water (%) | 2%Formic Acid in Water (%) |
---|---|---|---|
0.00 | 5 | 90 | 5 |
3.00 | 15 | 70 | 15 |
6.00 | 15 | 70 | 15 |
9.00 | 21 | 58 | 21 |
13.00 | 21 | 58 | 21 |
18.00 | 30 | 41 | 29 |
22.00 | 30 | 41 | 29 |
26.00 | 50 | 0 | 50 |
29.00 | 50 | 0 | 50 |
29.01 | 5 | 90 | 5 |
35.00 | 5 | 90 | 5 |
Compound | Retention Time (min) | m/z and Main Transitions | Detection Limit (μg/mL) | Quantification Limit (μg/mL) | A. mexicana Extract (μg/mL) | A. scrophulariifolia Extract (μg/mL) |
---|---|---|---|---|---|---|
Gallic Acid | 7.0 | 168.9 > 125.0 | 1.90 | 2.90 | 3.6 ± 0.05 | 4.0 ± 0.07 |
Chlorogenic Acid | 11.9 | 353.0 > 191.0 | 5.00 | 8.00 | 4005.2 ± 35.42 | 3362.3 ± 5.47 |
Vitexin | 13.0 | 179.1 > 123.0 | 1.30 | 2.00 | 2.5 ± 0.03 | 2.5 ± 0.05 |
Luteolin-7-O-glucoside | 13.6 | 317.0 > 179.0 | 3.00 | 4.00 | 677.9 ± 8.49 | 762.1 ± 10.78 |
Caffeic Acid | 13.8 | 179.0 > 135.0 | 3.20 | 4.80 | 189.7 ± 1.94 | 194.3 ± 3.21 |
Trans-p-coumaric Acid | 17.5 | 163.0 > 119.0 | 2.50 | 4.90 | 28.7 ± 0.31 | 23.7 ± 0.51 |
Quercetin | 18.4 | 431.0 > 311.0 | 0.80 | 1.10 | 2.5 ± 0.03 | 1.1 ± 0.02 |
Kaempferol | 19.9 | 447.0 > 284.9 | 0.80 | 1.20 | 470.3 ± 7.14 | 397.9 ± 7.41 |
Naringenin | 20.2 | 609.0 > 300.0 | 0.60 | 0.90 | 2.5 ± 0.03 | 2.3 ± 0.02 |
Tilianin | 20.2 | 447.1 > 285.0 | 9.10 | 13.60 | 51,635.8 ± 278.21 | 55,574.8 ± 411.21 |
Esculetin | 20.3 | 463.1 > 300.0 | 2.90 | 5.80 | 990.8 ± 12.17 | 748.7 ± 10.78 |
Rosmarinic Acid | 21.4 | 358.9 > 161.0 | 0.10 | 0.20 | 5910.3 ± 99.41 | 4263.3 ± 59.24 |
Salicylic Acid | 23.5 | 137.0 > 93.0 | 1.50 | 2.00 | 34.7 ± 0.72 | 47.9 ± 1.07 |
Myricetin | 25.4 | 300.9 > 151.0 | 0.60 | 0.90 | 132.5 ± 1.87 | 145.1 ± 2.78 |
Luteolin | 26.2 | 271.0 > 119.0 | 0.05 | 0.07 | 21.6 ± 0.27 | 13.0 ± 0.27 |
Hyperoside | 26.8 | 287.0 > 153.0 | 0.60 | 0.90 | 18.9 ± 0.24 | 21.0 ± 0.37 |
Chrysin | 27.0 | 301.0 > 164.0 | 3.00 | 5.00 | 4.5 ± 0.04 | 4.5 ± 0.07 |
Ellagic Acid | 27.2 | 301.0 > 185.0 | 3.00 | 5.00 | 72.7 ± 1.21 | 449.5 ± 7.49 |
Hesperetin | 27.9 | 285.0 > 187.0 | 3.00 | 5.00 | 9.9 ± 0.11 | 11.5 ± 0.17 |
Apigenin | 28.1 | 269.0 > 117.0 | 0.20 | 0.30 | 43.5 ± 0.74 | 26.0 ± 0.87 |
Carnosol | 29.7 | 253.0 > 143.0 | 1.00 | 2.00 | 10.8 ± 0.11 | 6.5 ± 0.10 |
Acacetin | 30.0 | 283.1 > 268.0 | 0.20 | 0.30 | 6.6 ± 0.09 | 6.1 ± 0.07 |
Rutoside | 30.7 | 329.1 > 285.1 | 4.00 | 6.00 | 7.8 ± 0.10 | 151.7 ± 2.45 |
Carnosic Acid | 32.0 | 331.2 > 285.1 | 4.00 | 6.00 | 51.4 ± 0.84 | 54.3 ± 1.07 |
Extract | TPC (mg GAE/g d.w.) | TFC (mg RE/g d.w.) | TCADC (mg CAE/g d.w.) |
---|---|---|---|
A. mexicana | 51.33 ± 1.53 | 9.73 ± 0.15 | 36.17 ± 0.76 |
A. scrophulariifolia | 36.33 ± 1.53 | 11.73 ± 1.07 | 27.38 ± 0.85 |
Extract | DPPH Assay IC50 (µg/mL) | FRAP Assay (µM of TEs/100 mL of Extract) |
---|---|---|
A. mexicana | 65.99 ± 1.21 | 2566.71 ± 267.55 |
A. scrophulariifolia | 68.64 ± 2.48 | 1688.76 ± 212.32 |
Group | TOS (µM H2O2 E/L) | OSI | TAC (mM TE/L) | NOx (µM/L) | MDA (μM/L) | SH (µM/L) |
---|---|---|---|---|---|---|
CONTROL | 10.81 ± 0.51 | 10.33 ± 0.49 | 1.046 ± 0.003 | 38.05 ± 4.59 | 6.68 ± 10.21 | 628.2 ± 55.41 |
INFL | 13.06 ± 0.59 * | 12.62 ± 0.57 ** | 1.035 ± 0.001 *** | 43.31 ± 1.39 * | 5.19 ± 0.33 | 520.6 ± 66.96 * |
TROLOX | 12.08 ± 0.35 **# | 11.55 ± 0.33 ** | 1.046 ± 0.002 ### | 38.91 ± 8.30 | 4.21 ± 0.29 ## | 675.8 ± 97.02 # |
DICLO | 11.33 ± 0.38 ### | 10.82 ± 0.32 ### | 1.048 ± 0.004 ### | 37.79 ± 1.65 ### | 4.34 ± 0.21 ## | 490.2 ± 44.37 * |
AS1 | 11.35 ± 0.18 ### | 10.84 ± 0.16 ### | 1.047 ± 0.003 # | 45.49 ± 2.02 * | 4.06 ± 0.44 ## | 625.4 ± 33.17 # |
AS2 | 12.14 ± 0.49 *# | 11.54 ± 0.52 *# | 1.052 ± 0.006 ### | 31.26 ± 1.96 *### | 3.84 ± 0.23 ### | 608.6 ± 48.11 # |
AS3 | 12.64 ± 0.30 ** | 12.10 ± 0.49 ** | 1.045 ± 0.002 ### | 48.37 ± 2.85 **## | 4.30 ± 0.27 ## | 611.4 ± 48.85 # |
AM1 | 13.08 ± 0.61 ** | 12.43 ± 0.53 ** | 1.052 ± 0.005 ### | 47.77 ± 3.77 *# | 3.73 ± 0.17 ### | 688.6 ± 101.72 # |
AM2 | 13.35 ± 0.54 ** | 12.71 ± 0.45 ** | 1.051 ± 0.005 ### | 49.34 ± 5.40 *# | 4.32 ± 0.29 ## | 531.4 ± 87.38 |
AM3 | 12.74 ± 0.97 ** | 12.20 ± 0.89 ** | 1.044 ± 0.004 ## | 39.11 ± 6.62 | 4.13 ± 0.35 ## | 525.4 ± 60.07 * |
Group | TOS (µM H2O2 E/L) | OSI | TAC (mM TE/L) | NOX (μM/L) | MDA (μM/L) | SH (μM/L) | GOT (U/L) | GPT (U/L) | CK-MB (U/L) |
---|---|---|---|---|---|---|---|---|---|
CONTROL | 10.8 ± 0.51 | 10.33 ± 0.49 | 1.046 ± 0.003 | 38.05 ± 4.59 | 6.68 ± 10.21 | 628.2 ± 55.41 | 40.20 ± 6.66 | 47.29 ± 4.34 | 7.71 ± 0.68 |
ISO | 12.96 ± 0.32 *** | 12.50 ± 0.33 *** | 1.036 ± 0.003 ** | 44.37 ± 2.77 * | 3.39 ± 0.15 | 480.5 ± 30.74 ** | 62.26 ± 7.11 ** | 62.74 ± 5.03** | 11.20 ± 0.67 *** |
TROLOX | 12.20 ± 0.31 **# | 11.63 ± 0.32 **# | 1.049 ± 0.003 ## | 36.79 ± 1.30 ## | 2.82 ± 0.42 # | 673.67 ± 63.13 ## | 47.63 ± 6.00 # | 50.30 ± 5.81 # | 7.82 ± 0.52 ### |
AM1 | 11.73 ± 0.34 # | 11.23 ± 0.31 # | 1.044 ± 0.001 # | 41.39 ± 0.72 | 2.54 ± 0.09 ## | 629 ± 33.94 ## | 40.41 ± 2.99 # | 44.28 ± 4.06 # | 8.34 ± 0.00 ## |
AM2 | 11.63 ± 0.29 *### | 11.10 ± 0.25 *### | 1.049 ± 0.005 ## | 40.47 ± 4.72 | 2.65 ± 0.37 # | 552 ± 20.30 *## | 46.88 ± 7.04 # | 47.39 ± 5.89 ## | 8.34 ± 0.43 ### |
AM3 | 11.54 ± 0.34 ## | 10.98 ± 0.30 ## | 1.051 ± 0.002 ## | 28.16 ± 1.70 ## | 2.70 ± 0.15 ## | 476 ± 43.84 * | 45.95 ± 1.87 # | 49.14 ± 0.35 # | 8.86 ± 0.00 # |
AS1 | 11.01 ± 0.26 ### | 10.55 ± 0.25 ### | 1.044 ± 0.001 ### | 30.41 ± 3.24 *### | 2.69 ± 0.12 ### | 610.2 ± 42.18 # | 42.89 ± 6.71 ## | 45.35 ± 4.98 ## | 7.92 ± 0.44 ### |
AS2 | 11.97 ± 0.14 *# | 11.41 ± 0.15 *# | 1.049 ± 0.002 ## | 48.16 ± 2.24 | 2.6 ± 0.18 ## | 711 ± 59.40 ## | 70.25 ± 7.84 ** | 71.59 ± 2.82 *** | 9.90 ± 0.00 |
AS3 | 12.79 ± 0.20 ** | 12.20 ± 0.16 ** | 1.049 ± 0.003 ## | 40.57 ± 5.82 | 2.35 ± 0.06 ### | 619 ± 28.28 ## | 64.71 ± 2.99 ** | 65.23 ± 5.82 ** | 9.90 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechita, M.-A.; Pârvu, A.E.; Uifălean, A.; Iurian, S.; Olah, N.-K.; Bab, T.H.; Vârban, R.; Nechita, V.-I.; Toiu, A.; Oniga, O.; et al. LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts. Plants 2025, 14, 2122. https://doi.org/10.3390/plants14142122
Nechita M-A, Pârvu AE, Uifălean A, Iurian S, Olah N-K, Bab TH, Vârban R, Nechita V-I, Toiu A, Oniga O, et al. LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts. Plants. 2025; 14(14):2122. https://doi.org/10.3390/plants14142122
Chicago/Turabian StyleNechita, Mihaela-Ancuța, Alina Elena Pârvu, Ana Uifălean, Sonia Iurian, Neli-Kinga Olah, Timea Henrietta Bab, Rodica Vârban, Vlad-Ionuț Nechita, Anca Toiu, Ovidiu Oniga, and et al. 2025. "LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts" Plants 14, no. 14: 2122. https://doi.org/10.3390/plants14142122
APA StyleNechita, M.-A., Pârvu, A. E., Uifălean, A., Iurian, S., Olah, N.-K., Bab, T. H., Vârban, R., Nechita, V.-I., Toiu, A., Oniga, O., Benedec, D., Hanganu, D., & Oniga, I. (2025). LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts. Plants, 14(14), 2122. https://doi.org/10.3390/plants14142122