Dynamic Coordination of Alternative Splicing and Subgenome Expression Bias Underlies Rusty Root Symptom Response in Panax ginseng
Abstract
1. Introduction
2. Results
2.1. Global Changes in Ginseng Root Alternative Splicing Patterns Induced by Rusty Root Symptom Infection
2.2. GRS Infection Shifts Subgenome- and Chromosome-Specific Alternative Splicing Landscapes
2.3. Differential Expression Analysis of Unique Expression Patterns and Subgenome Bias in GRS-Affected Ginseng Tissues
2.4. Dissecting the Mechanism of Splicing Plasticity-Regulating Multidimensional Transcriptional Networks in Ginseng Phloem
3. Discussion
4. Materials and Methods
4.1. Transcriptome Data Acquisition
4.2. Data Preprocessing
4.3. Transcript Assembly and Annotation
4.4. Identification of Gene Alternative Splicing Events
4.5. Differential Splicing Event Analysis
4.6. Gene Expression and Subgenome Bias Analysis
4.7. Gene Ontology Enrichment Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yun, T. Brief Introduction of Panax ginseng C.A. Meyer. J. Korean Med. Sci. 2002, 16, S3–S5. [Google Scholar]
- Choi, K. Botanical Characteristics, Pharmacological Effects and Medicinal Components of Korean Panax ginseng C.A. Meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [PubMed]
- Kang, J.-H.; Song, K.-H.; Woo, J.-K.; Park, M.H.; Rhee, M.H.; Choi, C.; Oh, S.H. Ginsenoside Rp1 from Panax ginseng Exhibits Anti-Cancer Activity by Down-Regulating the IGF-1R/Akt Pathway in Breast Cancer Cells. Plant Foods Hum. Nutr. 2011, 66, 298–305. [Google Scholar] [PubMed]
- Jiao, Y.; Leebens-Mack, J.; Ayyampalayam, S.; Bowers, J.E.; McKain, M.R.; McNeal, J.; Rolf, M.; Ruzicka, D.R.; Wafula, E.; Wickett, N.J.; et al. A Genome Triplication Associated with Early Diversification of the Core Eudicots. Genome Biol. 2012, 13, R3. [Google Scholar]
- Song, Y.; Zhang, Y.; Wang, X.; Yu, X.; Liao, Y.; Zhang, H.; Li, L.; Wang, Y.; Liu, B.; Li, W. Telomere-to-Telomere Reference Genome for Panax ginseng Highlights the Evolution of Saponin Biosynthesis. Hortic. Res. 2024, 11, uhae107. [Google Scholar]
- Wang, Z.-H.; Wang, X.-F.; Lu, T.; Li, M.-R.; Jiang, P.; Zhao, J.; Liu, S.-T.; Fu, X.-Q.; Wendel, J.F.; Van de Peer, Y.; et al. Reshuffling of the Ancestral Core-Eudicot Genome Shaped Chromatin Topology and Epigenetic Modification in Panax. Nat. Commun. 2022, 13, 1902. [Google Scholar]
- You, J.; Liu, X.; Zhang, B.; Xie, Z.; Hou, Z.; Yang, Z. Seasonal Changes in Soil Acidity and Related Properties in Ginseng Artificial-Bed Soils under a Plastic Shade. J. Ginseng Res. 2015, 39, 81–88. [Google Scholar]
- Li, J.; Chen, Y.; Zhao, G.; Chen, Y.; Zhang, N.; Yu, D.; Li, X. Herbal Materials Used as Soil Amendments Alleviate Root Rot of Panax ginseng. Sci. Rep. 2024, 14, 23825. [Google Scholar]
- Bian, X.; Zhao, Y.; Xiao, S.; Yang, H.; Han, Y.; Zhang, L. Metabolome and Transcriptome Analysis Reveals the Molecular Profiles Underlying the Ginseng Response to Rusty-Root Symptoms. BMC Plant Biol. 2021, 21, 215. [Google Scholar]
- Zhao, G.; Pei, Y.; Yang, R.; Xiang, L.; Fang, Z.; Wang, Y.; Yin, D.; Wu, J.; Gao, D.; Yu, D.; et al. A Non-Destructive Testing Method for Early Detection of Ginseng Root Diseases Using Machine-Learning Technologies Based on Leaf Hyperspectral Reflectance. Front. Plant Sci. 2022, 13, 1031030. [Google Scholar]
- Yu, P.-C.; Zhang, W.; Wang, L.-Y.; Liu, W.-F.; Liu, X.-B.; Yao, Y.; Song, X.-W.; Meng, Z.-P.; Meng, X.-C. Ginseng Rusty-Root Symptoms Result from Nitric Oxide Stress in Soil. Sci. Rep. 2024, 14, 20394. [Google Scholar]
- Rahman, M.; Punja, Z. Biochemistry of Ginseng Root Tissues Affected by Rust-Root Symptoms. Plant Physiol. Biochem. 2005, 43, 1103–1114. [Google Scholar] [PubMed]
- Wang, Q.; Sun, H.; Xu, C.; Ma, L.; Li, M.; Shao, C.; Guan, Y.; Liu, N.; Liu, Z.; Zhang, S.; et al. Analysis of Rhizosphere Bacterial and Fungal Communities Associated with Rusty-Root Disease of Panax ginseng. Appl. Soil Ecol. 2019, 138, 245–252. [Google Scholar]
- Farh, M.E.-A.; Kim, Y.-J.; Kim, Y.-J.; Yang, D.-C. Cylindrocarpon destructans/Ilyonectria radicicola Species Complex: Causative Agent of Ginseng Root-Rot Disease and Rusty Symptoms. J. Ginseng Res. 2018, 42, 9–15. [Google Scholar]
- Farh, M.E.-A.; Kim, Y.-J.; Sukweenadhi, J.; Singh, P.; Yang, D.-C. Aluminium Resistant, Plant Growth Promoting Bacteria Induce Over-Expression of Aluminium Stress Related Genes in Arabidopsis thaliana and Increase the Ginseng Tolerance against Aluminium Stress. Microbiol. Res. 2017, 200, 45–52. [Google Scholar]
- Zhou, Y.; Yang, Z.; Gao, L.; Liu, W.; Liu, R.; Zhao, J.; You, J. Changes in Element Accumulation, Phenolic Metabolism and Antioxidative Enzyme Activities in the Red-Skin Roots of Panax ginseng. J. Ginseng Res. 2017, 41, 307–315. [Google Scholar]
- Zhang, Y.; Wang, Q.; Xu, C.; Sun, H.; Wang, J.; Li, L. Iron (Fe2⁺)-Induced Toxicity Produces Morphological and Physiological Changes in Roots of Panax ginseng Grown in Hydroponics. Toxicol. Environ. Chem. 2016, 98, 630–637. [Google Scholar]
- Choi, J.E.; Ryuk, J.A.; Kim, J.H.; Choi, C.H.; Chun, J.S.; Kim, Y.J.; Lee, H.B. Identification of Endophytic Bacteria Isolated from Rusty-Coloured Root of Korean Ginseng (Panax ginseng) and Its Induction. Korean J. Med. Crop Sci. 2005, 13, 1–5. [Google Scholar]
- Lee, C.Y.; Kim, K.Y.; Lee, J.E.; Kim, S.H.; Ryu, D.K.; Choi, J.E.; An, G.H. Enzymes Hydrolysing Structural Components and Ferrous Ion Cause Rusty-Root Symptom on Ginseng (Panax ginseng). J. Microbiol. Biotechnol. 2011, 21, 192–196. [Google Scholar]
- Lu, X.H.; Jiao, X.L.; Chen, A.J.; Luo, Y.; Gao, W.W. First Report of Ilyonectria robusta Causing Rusty Root of Asian Ginseng in China. Plant Dis. 2015, 99, 156. [Google Scholar]
- Wang, Q.X.; Xu, C.L.; Sun, H.; Ma, L.; Li, L.; Zhang, D.D.; Zhang, Y.Y. Analysis of the Relationship between Rusty-Root Incidences and Soil Properties in Panax ginseng. IOP Conf. Ser. Earth Environ. Sci. 2016, 41, 012001. [Google Scholar]
- Yin, J.; Zhuang, J.; Zhang, X.; Xu, C.; Lv, S.; Ma, Y. Ginseng of Different Ages Is Affected by the Accumulation of Heavy Metals in Ginseng Soil. PLoS ONE 2022, 17, e0269238. [Google Scholar]
- Liu, D.; Sun, H.; Ma, H. Deciphering Microbiome Related to Rusty Roots of Panax ginseng and Evaluation of Antagonists against Pathogenic Ilyonectria. Front. Microbiol. 2019, 10, 1350. [Google Scholar]
- Tong, A.; Liu, W.; Wang, H.; Liu, X.; Xia, G.; Zhu, J. Transcriptome Analysis Provides Insights into the Cell Wall and Aluminium Toxicity Related to Rusty-Root Syndrome of Panax ginseng. Front. Plant Sci. 2023, 14, 1142211. [Google Scholar]
- Tang, C.; Xu, Q.; Zhao, J.; Yue, M.; Wang, J.; Wang, X.; Kang, Z.; Wang, X. A Rust Fungus Effector Directly Binds Plant pre-mRNA Splice Site to Reprogram Alternative Splicing and Suppress Host Immunity. Plant Biotechnol. J. 2022, 20, 1167–1181. [Google Scholar]
- Jiang, H.; Zhang, M.; Yu, F.; Li, X.; Jin, J.; Zhou, Y.; Wang, Q.; Jing, T.; Wan, X.; Schwab, W.; et al. A Geraniol Synthase Regulates Plant Defence via Alternative Splicing in Tea Plants. Hortic. Res. 2023, 10, uhad184. [Google Scholar]
- Kim, S.-I.; Ma, X.; Kong, L.; Guo, W.; Xu, L.; Shan, L.; Zhang, R.; He, P. Global Profiling of CPL3-Mediated Alternative Splicing Reveals Regulatory Mechanisms of DGK5 in Plant Immunity and Phosphatidic Acid Homeostasis. Genome Biol. 2025, 26, 65. [Google Scholar]
- Sánchez-Martín, J.; Widrig, V.; Herren, G.; Wicker, T.; Zbinden, H.; Gronnier, J.; Spörri, L.; Praz, C.R.; Heuberger, M.; Kolodziej, M.C.; et al. Wheat Pm4 Resistance to Powdery Mildew Is Controlled by Alternative-Splice Variants Encoding Chimeric Proteins. Nat. Plants 2021, 7, 327–341. [Google Scholar]
- Sun, B.; Huang, J.; Kong, L.; Gao, C.; Zhao, F.; Shen, J.; Wang, T.; Li, K.; Wang, L.; Wang, Y.; et al. Alternative Splicing of a Potato Disease-Resistance Gene Maintains Homeostasis between Growth and Immunity. Plant Cell 2024, 36, 3729–3750. [Google Scholar]
- Liu, F.; Cai, S.; Dai, L.; Ai, N.; Feng, G.; Wang, N.; Zhang, W.; Liu, K.; Zhou, B. SR45a Plays a Key Role in Enhancing Cotton Resistance to Verticillium dahliae by Alternative Splicing of Immunity Genes. Plant J. 2024, 119, 137–152. [Google Scholar]
- Qin, F.; Sakuma, Y.; Tran, L.-S.P.; Maruyama, K.; Kidokoro, S.; Fujita, Y.; Fujita, M.; Umezawa, T.; Sawano, Y.; Miyazono, K.-I.; et al. Arabidopsis DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought-Stress-Responsive Gene Expression. Plant Cell 2008, 20, 1693–1707. [Google Scholar] [PubMed]
- Jo, I.H.; Lee, J.; Hong, C.E.; Lee, D.J.; Bae, W.; Park, S.G.; Ahn, Y.J.; Kim, Y.C.; Kim, J.U.; Lee, J.W.; et al. Isoform Sequencing Provides a More Comprehensive View of the Panax ginseng Transcriptome. Genes 2017, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Graveley, B.R.; Brooks, A.N.; Carlson, J.W.; Duff, M.O.; Landolin, J.M.; Yang, L.; Artieri, C.G.; van Baren, M.J.; Boley, N.; Booth, B.W.; et al. The Developmental Transcriptome of Drosophila melanogaster. Nature 2011, 471, 473–479. [Google Scholar] [PubMed]
- Filichkin, S.A.; Priest, H.D.; Givan, S.A.; Shen, R.; Bryant, D.W.; Fox, S.E.; Wong, W.-K.; Mockler, T.C. Genome-Wide Mapping of Alternative Splicing in Arabidopsis thaliana. Genome Res. 2010, 20, 45–58. [Google Scholar]
- Li, W.; Lin, W.-D.; Ray, P.; Lan, P.; Schmidt, W. Genome-Wide Detection of Condition-Sensitive Alternative Splicing in Arabidopsis Roots. Plant Physiol. 2013, 162, 1750–1763. [Google Scholar]
- Yu, P.; Song, X.; Zhang, W.; Yao, Y.; Ren, J.; Wang, L.; Liu, W.; Meng, Z.; Meng, X. Analysis of Ginseng Rusty-Root Symptoms Transcriptome and Its Pathogenesis Directed by Reactive Oxygen Species Theory. Plant Direct 2024, 8, e586. [Google Scholar]
- Laloum, T.; Martín, G.; Duque, P. Alternative Splicing Control of Abiotic Stress Responses. Trends Plant Sci. 2018, 23, 140–150. [Google Scholar]
- Reddy, A.; Marquez, Y.; Kalyna, M.; Barta, A. Complexity of the Alternative Splicing Landscape in Plants. Plant Cell 2013, 25, 3657–3683. [Google Scholar]
- Staiger, D.; Brown, J. Alternative Splicing at the Intersection of Biological Timing, Development and Stress Responses. Plant Cell 2013, 25, 3640–3656. [Google Scholar]
- Filichkin, S.; Priest, H.; Megraw, M.; Mockler, T. Alternative Splicing in Plants: Directing Traffic at the Crossroads of Adaptation and Environmental Stress. Curr. Opin. Plant Biol. 2015, 24, 125–135. [Google Scholar]
- Zhang, X.-C.; Gassmann, W. RPS4-Mediated Disease Resistance Requires the Combined Presence of RPS4 Transcripts with Full-Length and Truncated Open Reading Frames. Plant Cell 2003, 15, 2333–2342. [Google Scholar] [PubMed]
- Zhang, X.-C.; Gassmann, W. Alternative Splicing and mRNA Levels of the Disease-Resistance Gene RPS4 Are Induced during Defence Responses. Plant Physiol. 2008, 145, 1577–1587. [Google Scholar]
- Yang, S.; Tang, F.; Zhu, H. Alternative Splicing in Plant Immunity. Int. J. Mol. Sci. 2014, 15, 10424–10445. [Google Scholar] [PubMed]
- Edger, P.P.; Smith, R.; McKain, M.R.; Cooley, A.M.; Vallejo-Marin, M.; Yuan, Y.; Bewick, A.J.; Ji, L.; Platts, A.E.; Bowman, M.J.; et al. Subgenome Dominance in an Interspecific Hybrid, Synthetic Allopolyploid and a 140-Year-Old Naturally Established Neo-Allopolyploid Monkeyflower. Plant Cell 2017, 29, 2150–2167. [Google Scholar]
- Rhie, S.K.; Hazelett, D.J.; Coetzee, S.G.; Yan, C.; Noushmehr, H.; A Coetzee, G. Nucleosome Positioning and Histone Modifications Define Relationships between Regulatory Elements and Nearby Gene Expression in Breast Epithelial Cells. BMC Genom. 2014, 15, 331. [Google Scholar]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar]
- Dobin, A.; Gingeras, T. Mapping RNA-Seq Reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11.14.1–11.14.19. [Google Scholar]
- Zhang, Z.; Xun, H.; Lv, R.; Gou, X.; Ma, X.; Li, J.; Zhao, J.; Li, N.; Gong, L.; Liu, B. Effects of Homoeologous Exchange on Gene Expression and Alternative Splicing in a Newly Formed Allotetraploid Wheat. Plant J. 2022, 111, 1267–1282. [Google Scholar]
- Shao, M.; Kingsford, C. Accurate Assembly of Transcripts through Phase-Preserving Graph Decomposition. Nat. Biotechnol. 2017, 35, 1167–1169. [Google Scholar]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Research 2020, 9, 304. [Google Scholar]
- Trincado, J.L.; Entizne, J.C.; Hysenaj, G.; Singh, B.; Skalic, M.; Elliott, D.J.; Eyras, E. SUPPA2: Fast, Accurate and Uncertainty-Aware Differential Splicing Analysis across Multiple Conditions. Genome Biol. 2018, 19, 40. [Google Scholar]
- Love, M.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, J.; Lei, X.; Di, P.; Xun, H.; Zhang, Z.; Zhang, J.; Meng, X.; Wang, Y. Dynamic Coordination of Alternative Splicing and Subgenome Expression Bias Underlies Rusty Root Symptom Response in Panax ginseng. Plants 2025, 14, 2120. https://doi.org/10.3390/plants14142120
Zhao J, Li J, Lei X, Di P, Xun H, Zhang Z, Zhang J, Meng X, Wang Y. Dynamic Coordination of Alternative Splicing and Subgenome Expression Bias Underlies Rusty Root Symptom Response in Panax ginseng. Plants. 2025; 14(14):2120. https://doi.org/10.3390/plants14142120
Chicago/Turabian StyleZhao, Jing, Juzuo Li, Xiujuan Lei, Peng Di, Hongwei Xun, Zhibin Zhang, Jian Zhang, Xiangru Meng, and Yingping Wang. 2025. "Dynamic Coordination of Alternative Splicing and Subgenome Expression Bias Underlies Rusty Root Symptom Response in Panax ginseng" Plants 14, no. 14: 2120. https://doi.org/10.3390/plants14142120
APA StyleZhao, J., Li, J., Lei, X., Di, P., Xun, H., Zhang, Z., Zhang, J., Meng, X., & Wang, Y. (2025). Dynamic Coordination of Alternative Splicing and Subgenome Expression Bias Underlies Rusty Root Symptom Response in Panax ginseng. Plants, 14(14), 2120. https://doi.org/10.3390/plants14142120