Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress
Abstract
1. Introduction
2. Results
2.1. Physiological Responses of A. caudatus Plants to Zn-Exposure
2.2. Patterns of Low-Molecular Weight Metabolites Detected by GC-MS in A. caudatus Leaves and Roots and Their Dynamics Upon Treatment with Zn2+
2.3. Relative Quantification of the Zn-Responsive Primary Metabolites in the Leaves and Roots of A. caudatus
# | Metabolite Feature a | Derivatives b | RI c | m/z d | FC e | p f |
---|---|---|---|---|---|---|
Metabolites demonstrating higher abundances in Zn-treated leaves in comparison to untreated ones | ||||||
1 | Glyoxylic acid | 1MEOX, 1TMS | 1142.6 | 218 | 22 | 0.015 |
2 | 3-Hydroxy-3-methylglutaric acid | 3TMS | 1598.9 | 247 | 3.6 | 0.002 |
3 | Gluconic acid δ-lactone | 4TMS | 1878.5 | 319 | 2.8 | 0.008 |
4 | Ribonic acid-1,4-lactone | 3TMS | 1645.9 | 117 | 6.2 | 0.018 |
5 | Lyxonic acid-1,4-lactone | 3TMS | 1729.7 | 217 | 1.8 | 0.017 |
6 | Arabinonic acid-1,4-lactone | 3TMS | 1622.2 | 217 | 2 | 0.005 |
7 | Gluconic acid | 6TMS | 1990.7 | 333 | 10 | 0.003 |
8 | Shikimic acid | 4TMS | 1808.5 | 204 | 2.5 | 0.041 |
9 | Salicylic acid | 2TMS | 1504.2 | 267 | 23 | ≤0.001/0.026 |
10 | Octanoic acid | 1TMS | 1269.1 | 117 | >100 | 0.0003 |
11 | Stearic acid | 1TMS | 2223.3 | 341 | 3 | 0.001 |
12 | Arachidic acid | 1TMS | 2392.2 | 369 | 2.8 | ≤0.001/0.005 |
13 | Myristic acid | 1TMS | 1846.1 | 285 | 2.6 | 0.02 |
14 | Oleic acid | 1TMS | 2205.5 | 339 | 2 | 0.034 |
15 | Heptadecanoic acid | 1TMS | 2134.3 | 327 | 2.1 | 0.002 |
16 | Behenic acid (docosanoic acid) | 1TMS | 2547.0 | 397 | 2 | 0.009 |
17 | 1-Monostearateglycerol | 2TMS | 2651.2 | 399 | 2.2 | 0.036 |
18 | Pyroglutamic acid (5-oxoproline) | 1TMS | 1496.4 | 84 | 5.5 | 0.006 |
19 | Ethanolamine | 3TMS | 1232.1 | 174 | 4.2 | 0.038 |
20 | N-acetyl-serine | 2TMS | 1503.1 | 116 | 12 | 0.002 |
21 | 5-Methylcytosine | 2TMS | 1534.0 | 254 | 7.4 | 0.023 |
22 | Fructofuranose, peak 1 | 5TMS | 1807.0 | 217 | 4.3 | 0.013 |
23 | Fructose, peak 2 | 1MEOX, 5TMS | 1942.9 | 217 | 4.3 | 0.021 |
24 | Fructofuranose, peak 2 | 5TMS | 1798.7 | 217 | 3.9 | 0.011 |
25 | Fructose, peak 1 | 1MEOX, 5TMS | 1934.8 | 217 | 3.8 | 0.024 |
26 | Glucose, peak 1 | 1MEOX, 5TMS | 1990.5 | 319 | 3.7 | 0.019 |
27 | Glucose, peak 2 | 1MEOX, 5TMS | 2007.2 | 319 | 2.6 | 0.033 |
28 | Mannose | 1MEOX, 5TMS | 1984.3 | 319 | 3.5 | 0.028 |
29 | Galactose | 1MEOX, 5TMS | 1979.6 | 319 | 2.1 | 0.042 |
30 | Myo-inositol | 6TMS | 2076.9 | 305 | 1.9 | 0.044 |
31 | Sucrose | 8TMS | 2540.8 | 361 | 6.6 | 0.043 |
32 | Phosphoric acid monomethyl ester | 2TMS | 1185.5 | 241 | 1.7 | 0.036 |
Metabolites demonstrating lower abundances in Zn-treated leaves in comparison to untreated ones | ||||||
1 | Succinic acid | 2TMS | 1316.6 | 247 | 2.0 | 0.012 |
2 | Linoleic acid | 1TMS | 2192.7 | 337 | 1.7 | 0.003 |
3 | 2-Oleoylglycerol | 2TMS | 2629.7 | 129 | 1.7 | 0.012 |
4 | Glycerol-3-phosphate | 4TMS | 1758.8 | 299 | 1.7 | 0.017 |
# | Metabolite Features a | Derivatives b | RI c | m/z d | FC e | p f |
---|---|---|---|---|---|---|
Metabolites demonstrating higher abundances in Zn-treated roots in comparison to untreated ones | ||||||
1 | Malonic acid | 2TMS | 1211.3 | 233 | 2.1 | 0.002 |
2 | Glyceric acid | 3TMS | 1330.4 | 292 | 2.5 | ≤0.001/0.004 |
3 | Citric acid | 4TMS | 1814.1 | 273 | 2.7 | 0.0035/0.01 |
4 | Citramalic acid | 3TMS | 1468.2 | 247 | 1.8 | 0.002/0.01 |
5 | 3,4-Dihydroxybutyric acid γ-lactone | - | 1371.4 | 247 | 3.7 | ≤0.001/0.007 |
6 | Adipic acid | 2TMS | 1504.9 | 111 | 1.9 | 0.023 |
7 | Threonic acid | 4TMS | 1558.5 | 292 | 3.8 | ≤0.001/0.007 |
8 | Erythronic acid | 4TMS | 1540.9 | 292 | 2.0 | ≤0.001/0.003 |
9 | α-Hydroxyglutaric acid | 3TMS | 1573.8 | 247 | 2.4 | 0.003/0.014 |
10 | 3-Hydroxy-3-methylglutaric acid | 3TMS | 1598.9 | 247 | 2.4 | ≤0.001/0.007 |
11 | Gluconic acid | 6TMS | 1990.7 | 333 | 59 | ≤0.001/0.003 |
12 | Gluconic acid δ-lactone | 4TMS | 1878.5 | 319 | 25 | ≤0.001/0.007 |
13 | Xylonic acid-1,4-lactone | 3TMS | 1629.5 | 117 | 2.8 | ≤0.001/0.005 |
14 | Shikimic acid | 4TMS | 1808.5 | 204 | 2.7 | ≤0.001/0.005 |
15 | Salicylic acid | 2TMS | 1504.2 | 267 | 27 | ≤0.001/≤ 0.001 |
16 | 2-Hydroxysebacic acid | 2TMS | 2525.2 | 317 | 5.2 | ≤0.001/0.005 |
17 | Behenic acid | 1TMS | 2547.0 | 397 | 1.7 | 0.006/0.02 |
18 | 1-Monooleoylglycerol | 2TMS | 2632.9 | 129 | 1.7 | 0.006/0.02 |
19 | Oleic acid amide | 1TMS | 2366.7 | 338 | 9.6 | 0.013 |
20 | Proline [+CO2] | 2TMS | 1577.6 | 142 | 6.8 | ≤0.001 |
21 | Alanine | 3TMS | 1357.0 | 188 | 2.9 | 0.04 |
22 | Leucine | 2TMS | 1271.7 | 158 | 2.0 | 0.042 |
23 | N,N-Dimethylglycine | 1TMS | 1040.4 | 58 | 1.9 | 0.004/0.02 |
24 | N-acetyl-serine | 2TMS | 1503.1 | 116 | 1.5 | 0.012/0.035 |
25 | 5-Methylcytosine | 2TMS | 1534.0 | 254 | 3.7 | ≤0.001/≤0.001 |
26 | Uridine | 3TMS | 2389.4 | 217 | 2.3 | 0.005/0.02 |
27 | Adenine—derivative | 2TMS | 2096.2 | 264 | 1.8 | 0.0018 |
28 | Arabinose 1 | 1MEOX, 4TMS | 1755.0 | 307 | 2.3 | ≤0.001 |
29 | Arabinose 2 | 1MEOX, 4TMS | 1758.9 | 307 | 2.2 | 0.005/0.02 |
30 | Arabino-hexos-2-ulose (2-ketoglucose) | 4TMS | 1477.2 | 234 | 2.3 | 0.02/0.044 |
31 | Fructofuranose | 5TMS | 1807.0 | 217 | 2.8 | ≤0.001/0.005 |
32 | Fructose, peak 1 | 1MEOX, 5TMS | 1934.8 | 217 | 2.8 | ≤0.001/0.004 |
33 | Fructose, peak 2 | 1MEOX, 5TMS | 1942.9 | 217 | 2.7 | ≤0.001/0.006 |
34 | Glucose, peak 1 | 1MEOX, 5TMS | 1990.5 | 319 | 4.0 | ≤0.001/0.002 |
35 | Glucose, peak 2 | 1MEOX, 5TMS | 2007.2 | 319 | 2.0 | ≤0.001/0.006 |
36 | Mannose | 1MEOX, 5TMS | 1984.3 | 319 | 3.0 | ≤0.001/≤0.001 |
37 | Galactose | 1MEOX, 5TMS | 1979.6 | 319 | 9.0 | ≤0.001/≤0.001 |
38 | Myo-inositol | 6TMS | 1979.6 | 319 | 2.0 | 0.001/0.008 |
39 | Ribitol | 5TMS | 1720.7 | 217 | 2.8 | ≤0.001/0.003 |
40 | 2-O-Glycerol-α-D-galactopyranoside | 6TMS | 2283.0 | 204 | 2.2 | 0.001/0.008 |
41 | Trehalose | 8TMS | 2675.5 | 361 | 2.7 | ≤0.001/≤0.001 |
Metabolites demonstrating lower abundances in Zn-treated roots in comparison to untreated ones | ||||||
1 | Oxalic acid | 2TMS | 1145.5 | 190 | 1.6 | 0.004/0.015 |
2 | Succinic acid | 2TMS | 1316.6 | 247 | 1.5 | ≤0.001/0.006 |
3 | Methylmaleic acid | 2TMS | 1348.9 | 259 | 2.3 | 0.02/0.05 |
4 | trans-Caffeic acid | 3TMS | 2137.6 | 219 | 4.0 | 0.007/0.02 |
5 | Itaconic acid | 2TMS | 1342.9 | 183 | 2.4 | 0.012/0.035 |
6 | Ethanolamine | 3TMS | 1232.1 | 174 | 2.8 | 0.007/0.023 |
7 | Pyroglutamic acid | 1TMS | 1496.4 | 84 | 2.2 | 0.024 |
8 | Oleic acid amide | - | 2323.2 | 59 | 1.5 | 0.02/0.048 |
9 | Glycerol-3-phosphate | 4TMS | 1758.8 | 299 | 2.2 | ≤0.001/0.002 |
10 | Glycerophosphoglycerol | 5TMS | 2181.2 | 357 | 5.1 | ≤0.001/≤0.001 |
11 | myo-Inositol phosphate | 7TMS | 2361.7 | 318 | 1.8 | 0.001/0.008 |
12 | Phytol | 1TMS | 2159.7 | 143 | 2.3 | 0.008/0.03 |
13 | β-Sitosterol | 1TMS | 3087.5 | 486 | 3.0 | 0.003/0.012 |
2.4. Structure Elucidation of Di- and Oligosaccharides Based on RI and EI Mass Spectra
2.5. Absolute Quantification of the Zn-Responsive Primary Metabolites in the Leaves and Roots of A. caudatus in Targeted GC-MS Experiments
2.6. Annotation of Zn-Responsive Metabolic Pathways in A. caudatus Leaves and Roots
3. Discussion
3.1. Dynamics of the Metabolite Patterns in the Integrated Plant Response to Zn Stress
3.2. Di- and Monosaccharides in the Response of Amaranth Plants to Zn Stress
3.3. Organic Acids in the Response of Amaranth Plants to Zn Stress
3.4. Fatty Acids in the Response of Amaranth Plants to Zn Stress
3.5. Nitrogen Metabolites in the Response of Amaranth Plants to Zn Stress
4. Materials and Methods
4.1. Reagents
4.2. Plant Culturing and Zn2+ Stress Application
4.3. Physiological Assays
4.4. Plant Fresh and Dry Biomass Determination
4.5. Atomic Absorption Spectroscopy (AAS)-Based Analysis of Zn in Plant Organs
4.6. GC-MS-Based Metabolite Profiling
4.7. Metabolic Pathway Analysis
4.8. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ghori, N.-H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Goyal, D.; Yadav, A.; Prasad, M.; Singh, T.B.; Shrivastav, P.; Ali, A.; Dantu, P.K.; Mishra, S. Effect of Heavy Metals on Plant Growth: An Overview. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 79–101. ISBN 978-3-030-41552-5. [Google Scholar]
- El-Sappah, A.H.; Zhu, Y.; Huang, Q.; Chen, B.; Soaud, S.A.; Abd Elhamid, M.A.; Yan, K.; Li, J.; El-Tarabily, K.A. Plants’ molecular behavior to heavy metals: From criticality to toxicity. Front. Plant Sci. 2024, 15, 1423625. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.-J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009, 14, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Liu, F.; Burritt, D.J.; Fujita, M.; Huang, B. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Academic Press: Cambridge, MA, USA, 2020; ISBN 978-0-12-817893-5. [Google Scholar]
- Gratani, L. Plant Phenotypic Plasticity in Response to Environmental Factors. Adv. Bot. 2014, 2014, e208747. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M.; Singh, M.P.V.V.B. Adaptation Strategies of Plants against Heavy Metal Toxicity: A Short Review. Biochem. Pharmacol. 2015, 4, 161. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Paradisone, V.; Barrameda-Medina, Y.; Montesinos-Pereira, D.; Romero, L.; Esposito, S.; Ruiz, J.M. Roles of some nitrogenous compounds protectors in the resistance to zinc toxicity in Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. Acta Physiol. Plant. 2015, 37, 137. [Google Scholar] [CrossRef]
- Patel, M.K.; Pandey, S.; Kumar, M.; Haque, M.I.; Pal, S.; Yadav, N.S. Plants Metabolome Study: Emerging Tools and Techniques. Plants 2021, 10, 2409. [Google Scholar] [CrossRef]
- Allwood, J.W.; Williams, A.; Uthe, H.; van Dam, N.M.; Mur, L.A.J.; Grant, M.R.; Pétriacq, P. Unravelling Plant Responses to Stress—The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021, 11, 558. [Google Scholar] [CrossRef]
- Carrera, F.P.; Noceda, C.; Maridueña-Zavala, M.G.; Cevallos-Cevallos, J.M. Metabolomics, a Powerful Tool for Understanding Plant Abiotic Stress. Agronomy 2021, 11, 824. [Google Scholar] [CrossRef]
- Jamla, M.; Khare, T.; Joshi, S.; Patil, S.; Penna, S.; Kumar, V. Omics approaches for understanding heavy metal responses and tolerance in plants. Curr. Plant Biol. 2021, 27, 100213. [Google Scholar] [CrossRef]
- Jorge, T.F.; Rodrigues, J.A.; Caldana, C.; Schmidt, R.; van Dongen, J.T.; Thomas-Oates, J.; António, C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrom. Rev. 2016, 35, 620–649. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, L.; Shen, H.; Wang, J.; Liu, W.; Zhu, X.; Wang, R.; Sun, X.; Liu, L. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots. Sci. Rep. 2015, 5, 18296. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Zhang, H.; Ni, Y.; Zhang, Q.; Chen, J.; Guan, Y. The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 2010, 78, 840–845. [Google Scholar] [CrossRef]
- Keunen, E.; Florez-Sarasa, I.; Obata, T.; Jozefczak, M.; Remans, T.; Vangronsveld, J.; Fernie, A.R.; Cuypers, A. Metabolic responses of Arabidopsis thaliana roots and leaves to sublethal cadmium exposure are differentially influenced by ALTERNATIVE OXIDASE1a. Environ. Exp. Bot. 2016, 124, 64–78. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Taamalli, M.; Gevi, F.; Timperio, A.M.; Zolla, L.; Ghnaya, T. Cadmium Stress Responses in Brassica juncea: Hints from Proteomics and Metabolomics. J. Proteome Res. 2013, 12, 4979–4997. [Google Scholar] [CrossRef]
- Xie, Y.; Hu, L.; Du, Z.; Sun, X.; Amombo, E.; Fan, J.; Fu, J. Effects of Cadmium Exposure on Growth and Metabolic Profile of Bermudagrass [Cynodon dactylon (L.) Pers.]. PLoS ONE 2014, 9, e115279. [Google Scholar] [CrossRef]
- Hédiji, H.; Djebali, W.; Cabasson, C.; Maucourt, M.; Baldet, P.; Bertrand, A.; Boulila Zoghlami, L.; Deborde, C.; Moing, A.; Brouquisse, R.; et al. Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicol. Environ. Saf. 2010, 73, 1965–1974. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, Z.; Wang, H.; Song, L.; Jia, S.; Ma, D. Zinc stress affects ionome and metabolome in tea plants. Plant Physiol. Biochem. PPB 2017, 111, 318–328. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlíková, D.; Novák, M.; Hnilička, F. The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic. Plants 2024, 13, 3363. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Blamey, F.P.C.; Asher, C.J.; Menzies, N.W. Trace metal phytotoxicity in solution culture: A review. J. Exp. Bot. 2010, 61, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Tsonev, T.; Lidon, F. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Sagardoy, R.; Morales, F.; Rellán-Álvarez, R.; Abadía, A.; Abadía, J.; López-Millán, A.F. Carboxylate metabolism in sugar beet plants grown with excess Zn. J. Plant Physiol. 2011, 168, 730–733. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Jia, L.; Chen, H.; Wei, X. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf. 2013, 89, 150–157. [Google Scholar] [CrossRef]
- Anjum, N.A.; Hasanuzzaman, M.; Hossain, M.A.; Thangavel, P.; Roychoudhury, A.; Gill, S.S.; Rodrigo, M.A.M.; Adam, V.; Fujita, M.; Kizek, R.; et al. Jacks of metal/metalloid chelation trade in plants—An overview. Front. Plant Sci. 2015, 6, 192. [Google Scholar]
- Osmolovskaya, N.; Vu, D.V.; Kuchaeva, L. The role of organic acids in heavy metal tolerance in plants. Biol. Commun. 2018, 63, 9–16. [Google Scholar] [CrossRef]
- Panchal, P.; Miller, A.J.; Giri, J. Organic acids: Versatile stress-response roles in plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef]
- Bosiacki, M.; Kleiber, T.; Kaczmarek, J. Evaluation of Suitability of Amaranthus Caudatus L. and Ricinus Communis L. in Phytoextraction of Cadmium and Lead from Contaminated Substrates. Arch. Environ. Prot. 2013, 39, 47–59. [Google Scholar] [CrossRef]
- Watanabe, T.; Murata, Y.; Osaki, M. Amaranthus Tricolor Has the Potential for Phytoremediation of Cadmium-Contaminated Soils. Commun. Soil Sci. Plant Anal. 2009, 40, 3158–3169. [Google Scholar] [CrossRef]
- Ko, C.-H.; Chang, F.-C.; Wang, Y.-N.; Chung, C.-Y. Extraction of Heavy Metals from Contaminated Soil by Two Amaranthus spp. CLEAN-Soil Air Water 2014, 42, 635–640. [Google Scholar] [CrossRef]
- Lukatkin, A.S.; Bashmakov, D.I.; Al Harbawee, W.E.Q.; Teixeira da Silva, J.A. Assessment of physiological and biochemical responses of Amaranthus retroflexus seedlings to the accumulation of heavy metals with regards to phytoremediation potential. Int. J. Phytoremediat. 2021, 23, 219–230. [Google Scholar] [CrossRef]
- Hunková, J.; Lisinovičová, M.; Lancikova, V.; Szabóová, M. A comparative analysis of heavy metal stress responses in different grain amaranth cultivars. ResearchGate 2025, 14, 100619. [Google Scholar] [CrossRef]
- Rastogi, A.; Shukla, S. Amaranth: A new millennium crop of nutraceutical values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef]
- Achigan-Dako, E.G.; Sogbohossou, O.E.D.; Maundu, P. Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 2014, 197, 303–317. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Austria, J.P.M.; Subosa, A.F.; Torres, O.B.; Shen, C.-C. Chemical Constituents of Amaranthus viridis. Chem. Nat. Compd. 2015, 51, 146–147. [Google Scholar] [CrossRef]
- Joshi, D.C.; Sood, S.; Hosahatti, R.; Kant, L.; Pattanayak, A.; Kumar, A.; Yadav, D.; Stetter, M.G. From zero to hero: The past, present and future of grain amaranth breeding. Theor. Appl. Genet. 2018, 131, 1807–1823. [Google Scholar] [CrossRef]
- Ludwig, M. The Roles of Organic Acids in C4 Photosynthesis. Front. Plant Sci. 2016, 7, 647. [Google Scholar]
- Gélinas, B.; Seguin, P. Oxalate in grain amaranth. J. Agric. Food Chem. 2007, 55, 4789–4794. [Google Scholar] [CrossRef]
- Osmolovskaya, N.G.; Dung, V.V.; Kudryashova, Z.K.; Kuchaeva, L.N.; Popova, N.F. Effect of Cadmium on Distribution of Potassium, Calcium, Magnesium, and Oxalate Accumulation in Amaranthus cruentus L. Plants. Russ. J. Plant Physiol. 2018, 65, 553–562. [Google Scholar] [CrossRef]
- Harvey, D.J.; Vouros, P. Mass spectrometric fragmentation of trimethylsilyl and related alkylsilyl derivatives. Mass Spectrom. Rev. 2020, 39, 105–211. [Google Scholar] [CrossRef] [PubMed]
- Boldizsár, I.; Füzfai, Z.; Molnár-Perl, I. Characteristic fragmentation patterns of trimethylsilyl and trimethylsilyl-oxime derivatives of plant disaccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry. J. Chromatogr. A 2011, 1218, 7864–7868. [Google Scholar] [CrossRef] [PubMed]
- Füzfai, Z.; Boldizsár, I.; Molnár-Perl, I. Characteristic fragmentation patterns of the trimethylsilyl and trimethylsilyl-oxime derivatives of various saccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry. J. Chromatogr. A 2008, 1177, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, J.; Dadakova, E. Rutin and total quercetin content in amaranth (Amaranthus spp.). Plant Foods Hum. Nutr. (Dordr. Neth.) 2009, 64, 68–74. [Google Scholar] [CrossRef]
- Paudel, G.; Bilova, T.; Schmidt, R.; Greifenhagen, U.; Berger, R.; Tarakhovskaya, E.; Stöckhardt, S.; Balcke, G.U.; Humbeck, K.; Brandt, W.; et al. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana. J. Exp. Bot. 2016, 67, 6283–6295. [Google Scholar] [CrossRef]
- Chen, H.; Song, L.; Zhang, H.; Wang, J.; Wang, Y.; Zhang, H. Cu and Zn Stress affect the photosynthetic and antioxidative systems of alfalfa (Medicago sativa). J. Plant Interact. 2022, 17, 695–704. [Google Scholar] [CrossRef]
- Keunen, E.; Peshev, D.; Vangronsveld, J.; Van Den Ende, W.; Cuypers, A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environ. 2013, 36, 1242–1255. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Ludewig, F.; Cvetkovic, J.; Trentmann, O.; Klemens, P.A.W.; Neuhaus, H.E. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. Plant Cell Physiol. 2018, 59, 1290–1299. [Google Scholar] [CrossRef]
- Shumilina, J.; Kusnetsova, A.; Tsarev, A.; Janse van Rensburg, H.C.; Medvedev, S.; Demidchik, V.; Van den Ende, W.; Frolov, A. Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling? Int. J. Mol. Sci. 2019, 20, 2366. [Google Scholar] [CrossRef]
- Peshev, D.; Vergauwen, R.; Moglia, A.; Hideg, E.; Van den Ende, W. Towards understanding vacuolar antioxidant mechanisms: A role for fructans? J. Exp. Bot. 2013, 64, 1025–1038. [Google Scholar] [CrossRef]
- Gangola, M.P.; Ramadoss, B.R. Chapter 2—Sugars Play a Critical Role in Abiotic Stress Tolerance in Plants. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants; Wani, S.H., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 17–38. ISBN 978-0-12-813066-7. [Google Scholar]
- Couée, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Bolouri-Moghaddam, M.R.; Le Roy, K.; Xiang, L.; Rolland, F.; Van den Ende, W. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010, 277, 2022–2037. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cai, S.; Chen, M.; Ye, L.; Chen, Z.; Zhang, H.; Dai, F.; Wu, F.; Zhang, G. Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley. PLoS ONE 2013, 8, e55431. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Zhang, W.; Zhang, B.; Xie, F. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Biochem. PPB 2020, 146, 1–12. [Google Scholar] [CrossRef]
- Thomas, A.; Beena, R.; Laksmi, G.; Soni, K.B.; Alex, S.; Viji, M.M. Changes in sucrose metabolic enzymes to water stress in contrasting rice genotypes. Plant Stress 2022, 5, 100088. [Google Scholar] [CrossRef]
- Turgeon, R. The Sink-Source Transition in Leaves. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 119–138. [Google Scholar] [CrossRef]
- Geiger, D. Plant Sucrose Transporters from a Biophysical Point of View. Mol. Plant 2011, 4, 395–406. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, J.; Beckles, D.M. A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress. Sci. Rep. 2018, 8, 9314. [Google Scholar] [CrossRef]
- Paul, M.J.; Watson, A.; Griffiths, C.A. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. J. Exp. Bot. 2020, 71, 2270–2280. [Google Scholar] [CrossRef]
- Srivastava, S.; Bisht, H.; Sidhu, O.P.; Srivastava, A.; Singh, P.C.; Pandey, R.M.; Raj, S.K.; Roy, R.; Nautiyal, C.S. Changes in the metabolome and histopathology of Amaranthus hypochondriacus L. in response to Ageratum enation virus infection. Phytochemistry 2012, 80, 8–16. [Google Scholar] [CrossRef]
- Zhang, G.-Y.; Liu, R.-R.; Zhang, C.-Q.; Tang, K.-X.; Sun, M.-F.; Yan, G.-H.; Liu, Q.-Q. Manipulation of the Rice L-Galactose Pathway: Evaluation of the Effects of Transgene Overexpression on Ascorbate Accumulation and Abiotic Stress Tolerance. PLoS ONE 2015, 10, e0125870. [Google Scholar] [CrossRef]
- Krzesłowska, M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 2011, 33, 35–51. [Google Scholar] [CrossRef]
- Glińska, S.; Gapińska, M.; Michlewska, S.; Skiba, E.; Kubicki, J. Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma 2016, 253, 367–377. [Google Scholar] [CrossRef]
- Doyama, K.; Yamaji, K.; Haruma, T.; Ishida, A.; Mori, S.; Kurosawa, Y. Zn tolerance in the evergreen shrub, Aucuba japonica, naturally growing at a mine site: Cell wall immobilization, aucubin production, and Zn adsorption on fungal mycelia. PLoS ONE 2021, 16, e0257690. [Google Scholar] [CrossRef]
- Caldelas, C.; Weiss, D.J. Zinc Homeostasis and isotopic fractionation in plants: A review. Plant Soil 2017, 411, 17–46. [Google Scholar] [CrossRef]
- Krzesłowska, M.; Rabęda, I.; Basińska, A.; Lewandowski, M.; Mellerowicz, E.J.; Napieralska, A.; Samardakiewicz, S.; Woźny, A. Pectinous cell wall thickenings formation—A common defense strategy of plants to cope with Pb. Environ. Pollut. 2016, 214, 354–361. [Google Scholar] [CrossRef]
- Castro, J.C.; Castro, C.G.; Cobos, M. Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. Front. Plant Sci. 2023, 14, 1099829. [Google Scholar] [CrossRef]
- Xiao, M.; Li, Z.; Zhu, L.; Wang, J.; Zhang, B.; Zheng, F.; Zhao, B.; Zhang, H.; Wang, Y.; Zhang, Z. The Multiple Roles of Ascorbate in the Abiotic Stress Response of Plants: Antioxidant, Cofactor, and Regulator. Front. Plant Sci. 2021, 12, 598173. [Google Scholar] [CrossRef]
- Wang, F.; Ding, D.; Li, J.; He, L.; Xu, X.; Zhao, Y.; Yan, B.; Li, Z.; Xu, J. Characterisation of genes involved in galactolipids and sulfolipids metabolism in maize and Arabidopsis and their differential responses to phosphate deficiency. Funct. Plant Biol. 2020, 47, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, S.; Baker, A.J.M.; Roessner, U.; Johnson, A.A.T.; Bacic, A.; Callahan, D.L. Hyperaccumulation of zinc by Noccaea caerulescens results in a cascade of stress responses and changes in the elemental profile. Metallomics 2014, 6, 1671–1682. [Google Scholar] [CrossRef]
- Härtel, H.; Dormann, P.; Benning, C. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2000, 97, 10649–10654. [Google Scholar] [CrossRef]
- Agnihotri, A.; Gupta, P.; Dwivedi, A.; Seth, C.S. Counteractive mechanism (s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna. Planta 2018, 248, 49–68. [Google Scholar] [CrossRef]
- Yu, L.-L.; Liu, Y.; Zhu, F.; Geng, X.-X.; Yang, Y.; He, Z.-Q.; Xu, F. The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana. Biol. Plant 2020, 64, 150–158. [Google Scholar] [CrossRef]
- Yang, H.; Fang, R.; Luo, L.; Yang, W.; Huang, Q.; Yang, C.; Hui, W.; Gong, W.; Wang, J. Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops. Front. Plant Sci. 2023, 14, 1226041. [Google Scholar] [CrossRef]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef]
- Saha, B.; Borovskii, G.; Panda, S.K. Alternative oxidase and plant stress tolerance. Plant Signal. Behav. 2016, 11, e1256530. [Google Scholar] [CrossRef]
- Poór, P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020, 10, 341. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Z.; Huang, J.; Lai, Z.; Fan, B. Biosynthesis of salicylic acid in plants. Plant Signal. Behav. 2009, 4, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Hu, H.; Fan, B.; Zhu, C.; Chen, Z. Biosynthesis and Roles of Salicylic Acid in Balancing Stress Response and Growth in Plants. Int. J. Mol. Sci. 2021, 22, 11672. [Google Scholar] [CrossRef]
- Torrens-Spence, M.P.; Bobokalonova, A.; Carballo, V.; Glinkerman, C.M.; Pluskal, T.; Shen, A.; Weng, J.-K. PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis. Mol. Plant 2019, 12, 1577–1586. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef]
- Riaz, U.; Kharal, M.A.; Murtaza, G.; Zaman, Q.U.; Javaid, S.; Malik, H.A.; Aziz, H.; Abbas, Z. Prospective Roles and Mechanisms of Caffeic Acid in Counter Plant Stress: A Mini Review. Pak. J. Agric. Res. 2019, 32, 8–19. [Google Scholar] [CrossRef]
- Kisa, D.; Kayir, O.; Saglam, N.; Şahin, S.; Öztürk, L.; Elmastaş, M. Changes of phenolic compounds in tomato associated with the heavy metal stress. J. Nat. Appl. Sci. 2019, 2, 35–43. [Google Scholar]
- Kovácik, J.; Klejdus, B.; Backor, M. Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J. Plant Physiol. 2009, 166, 1460–1464. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Y.; Keller, A.A. Comparative Metabolic Response between Cucumber (Cucumis sativus) and Corn (Zea mays) to a Cu(OH)2 Nanopesticide. J. Agric. Food Chem. 2018, 66, 6628–6636. [Google Scholar] [CrossRef]
- Corkins, M.E.; Wilson, S.; Cocuron, J.-C.; Alonso, A.P.; Bird, A.J. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast. J. Biol. Chem. 2017, 292, 13823–13832. [Google Scholar] [CrossRef]
- Kornecki, J.F.; Carballares, D.; Tardioli, P.W.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Alcántara, A.R.; Fernandez-Lafuente, R. Enzyme production of D-gluconic acid and glucose oxidase: Successful tales of cascade reactions. Catal. Sci. Technol. 2020, 10, 5740–5771. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Z.; Su, Y.; Zhang, X.; Li, G.; Guo, J.; Que, Y.; Xu, L. A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. Sci. Rep. 2014, 4, 7090. [Google Scholar] [CrossRef]
- Van Assche, F.; Cardinaels, C.; Clijsters, H. Induction of enzyme capacity in plants as a result of heavy metal toxicity: Dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ. Pollut. (Barking, Essex: 1987) 1988, 52, 103–115. [Google Scholar] [CrossRef]
- Ávila, F.; Schmeda-Hirschmann, G.; Silva, E. The Major Chromophore Arising from Glucose Degradation and Oxidative Stress Occurrence during Lens Proteins Glycation Induced by Glucose. Molecules 2017, 23, 6. [Google Scholar] [CrossRef]
- Antonova, K.; Vikhnina, M.; Soboleva, A.; Mehmood, T.; Heymich, M.-L.; Leonova, T.; Bankin, M.; Lukasheva, E.; Gensberger-Reigl, S.; Medvedev, S.; et al. Analysis of Chemically Labile Glycation Adducts in Seed Proteins: Case Study of Methylglyoxal-Derived Hydroimidazolone 1 (MG-H1). Int. J. Mol. Sci. 2019, 20, 3659. [Google Scholar] [CrossRef]
- Soboleva, A.; Frolova, N.; Bureiko, K.; Shumilina, J.; Balcke, G.; Zhukov, V.; Tikhonovich, I.; Frolov, A. Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress. Int. J. Mol. Sci. 2022, 23, 2726. [Google Scholar] [CrossRef]
- Rauser, W.E. Structure and function of metal chelators produced by plants: The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem. Biophys. 1999, 31, 19–48. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Eprintsev, A.T. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants. Front. Plant Sci. 2016, 7, 1042. [Google Scholar]
- Igamberdiev, A.U.; Bykova, N.V. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radic. Biol. Med. 2018, 122, 74–85. [Google Scholar] [CrossRef]
- Zarei, A.; Brikis, C.J.; Bajwa, V.S.; Chiu, G.Z.; Simpson, J.P.; DeEll, J.R.; Bozzo, G.G.; Shelp, B.J. Plant Glyoxylate/Succinic Semialdehyde Reductases: Comparative Biochemical Properties, Function during Chilling Stress, and Subcellular Localization. Front. Plant Sci. 2017, 8, 1399. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlík, M.; Pavlíková, D.; Kyjaková, P. Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ. 2015, 61, 285–290. [Google Scholar] [CrossRef]
- Wada, H.; Shintani, D.; Ohlrogge, J. Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proc. Natl. Acad. Sci. USA 1997, 94, 1591–1596. [Google Scholar] [CrossRef]
- Koch, K.; Barthlott, W. Plant Epicuticular Waxes: Chemistry, Form, Self-Assembly and Function. Nat. Prod. Commun. 2006, 1, 1934578X0600101123. [Google Scholar] [CrossRef]
- He, M.; Ding, N.-Z. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Front. Plant Sci. 2020, 11, 562785. [Google Scholar]
- Sharma, S.S.; Dietz, K.-J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 2006, 57, 711–726. [Google Scholar] [CrossRef]
- Singh, S.; Singh, P.; Tomar, R.S.; Sharma, R.A.; Singh, S.K. Proline: A Key Player to Regulate Biotic and Abiotic Stress in Plants. In Towards Sustainable Natural Resources: Monitoring and Managing Ecosystem Biodiversity; Rani, M., Chaudhary, B.S., Jamal, S., Kumar, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 333–346. ISBN 978-3-031-06443-2. [Google Scholar]
- Singh, J.; Hembram, P.; Basak, J. Potential of Vigna unguiculata as a Phytoremediation Plant in the Remediation of Zn from Contaminated Soil. Am. J. Plant Sci. 2014, 5, 1156–1162. [Google Scholar] [CrossRef]
- Repkina, N.; Nilova, I.; Kaznina, N. Effect of Zinc Excess in Substrate on Physiological Responses of Sinapis alba L. Plants 2023, 12, 211. [Google Scholar] [CrossRef]
- Wouyou, A.; Prodjinoto, H.; Zanklan, A.S.; Vanpee, B.; Lutts, S.; Gandonou, C.B. Implication of Ions and Organic Solutes Accumulation in Amaranth (Amaranthus cruentus L.) Salinity Resistance. Am. J. Plant Sci. 2019, 10, 2335–2353. [Google Scholar] [CrossRef]
- Dorion, S.; Ouellet, J.C.; Rivoal, J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021, 11, 641. [Google Scholar] [CrossRef]
- Kumar, A.; Bachhawat, A.K. Pyroglutamic acid: Throwing light on a lightly studied metabolite. Curr. Sci. 2012, 102, 288–297. [Google Scholar]
- Jiménez-Arias, D.; García-Machado, F.J.; Morales-Sierra, S.; Luis, J.C.; Suarez, E.; Hernández, M.; Valdés, F.; Borges, A.A. Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environ. Exp. Bot. 2019, 158, 215–222. [Google Scholar] [CrossRef]
- Moussa, H.R.; Selem, E.E.-S.M.; Ghramh, H.A. Ethanolamine affects physiological responses of salt-treated jute plants. Int. J. Veg. Sci. 2019, 25, 581–589. [Google Scholar]
- Van Damme, T.; Blancquaert, D.; Couturon, P.; Van Der Straeten, D.; Sandra, P.; Lynen, F. Wounding stress causes rapid increase in concentration of the naturally occurring 2′,3′-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry 2014, 103, 59–66. [Google Scholar] [CrossRef]
- Watanabe, M.; Chiba, Y.; Hirai, M.Y. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. Front. Plant Sci. 2021, 12, 643403. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Xiong, Y.; Moshood, A.Y.; Cadenas-Pliego, G.; Zhang, H.; Hu, J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. Plants 2024, 13, 163. [Google Scholar] [CrossRef]
- Gallo-Franco, J.J.; Sosa, C.C.; Ghneim-Herrera, T.; Quimbaya, M. Epigenetic Control of Plant Response to Heavy Metal Stress: A New View on Aluminum Tolerance. Front. Plant Sci. 2020, 11, 602625. [Google Scholar]
- Fasani, E.; Giannelli, G.; Varotto, S.; Visioli, G.; Bellin, D.; Furini, A.; DalCorso, G. Epigenetic Control of Plant Response to Heavy Metals. Plants 2023, 12, 3195. [Google Scholar] [CrossRef]
- Dong, C.-J.; Wang, X.-L.; Shang, Q.-M. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Sci. Hortic. 2011, 129, 629–636. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, J.; Lin, H.; Lin, M.; Lin, Y.; Wang, H.; Hung, Y.-C. Salicylic acid reduces the incidence of Phomopsis longanae Chi infection in harvested longan fruit by affecting the energy status and respiratory metabolism. Postharvest Biol. Technol. 2020, 160, 111035. [Google Scholar] [CrossRef]
- Regulatory Role of Proline in Heat Stress Tolerance: Modulation by Salicylic Acid. In Plant Signaling Molecules; Woodhead Publishing: Cambridge, UK, 2019; pp. 437–448.
- Wang, Z.; Guo, J.; Luo, W.; Niu, S.; Qu, L.; Li, J.; Chen, Y.; Li, G.; Yang, H.; Lu, D. Salicylic Acid Cooperates with Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress. Plant Cell Environ. 2025, 48, 4341–4355. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, R.; Fang, X.; Tong, C.; Chen, H.; Gao, H. Effects of salicylic acid treatment on fruit quality and wax composition of blueberry (Vaccinium virgatum Ait). Food Chem. 2022, 368, 130757. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An Evaluation of Noninvasive Methods to Estimate Foliar Chlorophyll Content. New Phytol. 2002, 153, 185–194. [Google Scholar]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Monteith, J.L.; Campbell, G.S.; Potter, E.A. Theory and performance of a dynamic diffusion porometer. Agric. For. Meteorol. 1988, 44, 27–38. [Google Scholar] [CrossRef]
- Hina, B.; Rizwani, G.-H.-; Naseeb, U.; Huma, A.; Hyder, Z. Application of Atomic Absorption Spectroscopy to determine Mineral and Heavy Metal distribution level of Medicinal Plants. J. Anal. Tech. Res. 2023, 5, 26–32. [Google Scholar]
- Leonova, T.; Popova, V.; Tsarev, A.; Henning, C.; Antonova, K.; Rogovskaya, N.; Vikhnina, M.; Baldensperger, T.; Soboleva, A.; Dinastia, E.; et al. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea (Pisum sativum L.) Seeds? Int. J. Mol. Sci. 2020, 21, 567. [Google Scholar] [CrossRef]
- Wei, R.; Wang, J.; Su, M.; Jia, E.; Chen, S.; Chen, T.; Ni, Y. Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data. Sci. Rep. 2018, 8, 663. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Goeman, J.J.; Bühlmann, P. Analyzing gene expression data in terms of gene sets: Methodological issues. Bioinformatics 2007, 23, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Cochran, C.; Martin, K.; Rafferty, D.; Choi, J.; Leontyev, A.; Shetty, A.; Kurup, S.; Puthanveetil, P. Untargeted Metabolomics Based Prediction of Therapeutic Potential for Apigenin and Chrysin. Int. J. Mol. Sci. 2023, 24, 4066. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
Metabolite | Average Content, μmol/g DW b | YL (Zn-Treated v. Cont.) | R (Zn-Treated v. Cont.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
YL Cont | YL Zn | R Cont | R Zn | |||||||||
μmol/g DW | ±StD | μmol/g DW | ±StD | μmol/g DW | ±StD | μmol/g DW | ±StD | FC c | p d | FC | p | |
Metabolites demonstrating an increase in tissue contents in response to Zn2+ treatment in comparison to control | ||||||||||||
Young leaf and root metabolites | ||||||||||||
Galactose (1MEOX, 5TMS) | 0.05 | 0.01 | 0.10 | 0.03 | 0.05 | 0.004 | 0.38 | 0.02 | ↑ 2.0 | 0.04 | ↑ 7.8 | ≤0.001 |
Glucose (1MEOX, 5TMS) | 0.26 | 0.02 | 0.76 | 0.2 | 0.93 | 0.06 | 3.3 | 0.28 | ↑ 2.9 | 0.02 | ↑ 3.5 | ≤0.001 |
myo-Inositol (6TMS) | 0.31 | 0.06 | 0.59 | 0.2 | 0.36 | 0.03 | 0.74 | 0.08 | ↑ 1.9 | 0.04 | ↑ 2.0 | 0.001 |
Young leaf metabolites | ||||||||||||
Pyroglutamic acid (1&2TMS) | 10.0 | 6.1 | 25.0 | 7.2 | 19.0 | 1.9 | 18.0 | 3.8 | ↑ 2.5 | 0.05 | ↓ ≤1.3 | 0.46 |
Sucrose (8TMS) | 2.2 | 0.7 | 17.0 | 9.1 | 7.6 | 0.3 | 8.2 | 0.83 | ↑ 7.6 | 0.05 | ↑ ≤1.3 | 0.31 |
Root metabolites | ||||||||||||
Malonic acid (2TMS) | 0.74 | 0.11 | 0.8 | 0.2 | 0.5 | 0.04 | 0.9 | 0.10 | 1.0 | 0.90 | ↑ 1.9 | 0.002 |
Citric acid (4TMS) | 0.31 | 0.08 | 0.4 | 0.2 | 0.2 | 0.003 | 0.4 | 0.05 | ↑ 1.3 | 0.51 | ↑ 2.1 | 0.003 |
Erythronic acid (4TMS) | 2.5 | 0.2 | 3.0 | 0.7 | 1.0 | 0.08 | 2.0 | 0.09 | ↑ ≤1.3 | 0.38 | ↑ 1.9 | ≤0.001 |
Alanine (2&3TMS) | 7.9 | 3.3 | 3.8 | 0.9 | 1.4 | 0.07 | 2.9 | 0.47 | ↓ 2.1 | 0.11 | ↑ 2.1 | 0.005 |
Valine (2TMS) | 0.59 | 0.20 | 0.4 | 0.09 | 0.5 | 0.03 | 1.1 | 0.34 | ↓ 1.6 | 0.15 | ↑ 2.1 | 0.051 |
Leucine (2TMS) | 0.80 | 0.05 | 0.6 | 0.2 | 1.2 | 0.13 | 2.1 | 0.47 | ↓ ≤1.3 | 0.21 | ↑ 1.7 | 0.036 |
Proline (2TMS) | 0.09 | 0.15 | 0.1 | 0.04 | 0.2 | 0.14 | 0.9 | 0.03 | ↑ ≤1.3 | 0.86 | ↑ 5.1 | 0.001 |
Glycerol (3TMS) | 1.4 | 0.1 | 2.0 | 0.8 | 3.0 | 0.10 | 4.3 | 0.11 | ↑ 1.4 | 0.25 | ↑ 1.4 | ≤0.001 |
Arabinose (1MEOX, 4TMS) | 0.21 | 0.02 | 0.2 | 0.05 | 0.07 | 0.01 | 0.14 | 0.02 | 1.0 | 0.87 | ↑ 1.9 | 0.004 |
Metabolites demonstrating a decrease in tissue contents in response to Zn2+ treatment in comparison to control | ||||||||||||
Young leaf and root metabolites | ||||||||||||
Succinic acid (2TMS) | 4.2 | 0.14 | 2.2 | 0.7 | 2.6 | 0.1 | 1.7 | 0.13 | ↓ 1.9 | 0.01 | ↓ 1.6 | 0.001 |
Young leaf metabolites | ||||||||||||
Benzoic acid (1TMS) | 10.0 | 0.5 | 8.1 | 0.2 | 9.1 | 2.5 | 10.0 | 0.25 | ↓ 1.3 | 0.002 | ↑ ≤1.3 | 0.58 |
Root metabolites | ||||||||||||
Oxalic acid (2TMS) | 4.9 | 2.1 | 4.6 | 1.3 | 10.7 | 0.6 | 7.3 | 0.79 | ↓ 1.1 | 0.85 | ↓ 1.5 | 0.004 |
Metabolites without significant changes in content in response to Zn2+ treatment in comparison to control | ||||||||||||
Fumaric acid (2TMS) | 0.44 | 0.04 | 0.4 | 0.1 | 0.8 | 0.03 | 0.8 | 0.05 | ↓ ≤1.3 | 0.37 | 1.0 | 0.93 |
Malic acid (2TMS) | 2.2 | 0.2 | 2.3 | 1.1 | 4.7 | 0.1 | 5.6 | 0.56 | ↑ ≤1.3 | 0.80 | ↑ ≤1.3 | 0.057 |
Aconitic acid (3TMS) | 1.4 | 0.5 | 1.1 | 0.4 | 0.05 | 0.02 | 0.1 | 0.13 | ↓ ≤1.3 | 0.55 | ↑ 2.2 | 0.484 |
Isoleucine (1&2TMS) | 0.16 | 0.03 | 0.1 | 0.06 | 0.4 | 0.04 | 0.5 | 0.07 | ↓ 1.7 | 0.17 | ↑ 1.3 | 0.062 |
Urea (2TMS) | 3.7 | 5.8 | 0.3 | 0.00 | 1.5 | 1.3 | 3.9 | 2.12 | ↓ 11.8 | 0.37 | ↑ 2.5 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osmolovskaya, N.; Bilova, T.; Gurina, A.; Orlova, A.; Vu, V.D.; Sukhikh, S.; Zhilkina, T.; Frolova, N.; Tarakhovskaya, E.; Kamionskaya, A.; et al. Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress. Plants 2025, 14, 2119. https://doi.org/10.3390/plants14142119
Osmolovskaya N, Bilova T, Gurina A, Orlova A, Vu VD, Sukhikh S, Zhilkina T, Frolova N, Tarakhovskaya E, Kamionskaya A, et al. Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress. Plants. 2025; 14(14):2119. https://doi.org/10.3390/plants14142119
Chicago/Turabian StyleOsmolovskaya, Natalia, Tatiana Bilova, Anastasia Gurina, Anastasia Orlova, Viet D. Vu, Stanislav Sukhikh, Tatiana Zhilkina, Nadezhda Frolova, Elena Tarakhovskaya, Anastasia Kamionskaya, and et al. 2025. "Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress" Plants 14, no. 14: 2119. https://doi.org/10.3390/plants14142119
APA StyleOsmolovskaya, N., Bilova, T., Gurina, A., Orlova, A., Vu, V. D., Sukhikh, S., Zhilkina, T., Frolova, N., Tarakhovskaya, E., Kamionskaya, A., & Frolov, A. (2025). Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress. Plants, 14(14), 2119. https://doi.org/10.3390/plants14142119