Ecophysiological Responses of Triterpene Glycosides in Buds of Aralia elata (Miq.) Seem. to Late Spring Frost with Soil-Mediated Effects
Abstract
1. Introduction
2. Results
2.1. Growth and Triterpene Glycosides in A. elata Buds
2.1.1. Growth of A. elata Buds
2.1.2. Triterpene Glycosides in A. elata Buds
2.2. Soil Properties in A. elata Plots
2.2.1. Variations in Soil Properties Among A. elata Plots
2.2.2. Inner Relationships Between Paired Variables About Soil Properties
2.3. LSF Attributes
2.3.1. Variations in LSF Attributes
2.3.2. Inner Relationships Between Paired Variables About LSF Attributes
2.4. Driving Forces of Soil and LSF on Triterpene Glycosides in A. elata Buds
3. Discussion
3.1. LSFs in Counties Containing A. elata Plots: What Deserves Attention?
3.2. Soil Properties in A. elata Plots: Do They Matter?
3.3. Growth and TGs in Buds of A. elata: Response and Trend
3.4. Combined Effects of LSF and Soil Properties on TGs in A. elata Buds
3.5. Limits of This Study
3.6. Conclusions
4. Materials and Methods
4.1. Study Area and Plot Target
4.2. Field Investigation and Sampling
4.3. Air Temperature Records and Late Spring Frost Characterization
- (1)
- (2)
- (3)
- (4)
4.4. Field Investigation and Soil Properties
4.5. Triterpene Glycoside Determination in Buds
4.6. Variable Calculation and Statistics
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, B.F.; Buras, A.; Gregor, K.; Layritz, L.S.; Principe, A.; Kreyling, J.; Rammig, A.; Zang, C.S. Frost matters: Incorporating late-spring frost into a dynamic vegetation model regulates regional productivity dynamics in European beech forests. Biogeosciences 2024, 21, 1355–1370. [Google Scholar] [CrossRef]
- Qiu, H.; Yan, Q.; Yang, Y.; Huang, X.; Wang, J.; Luo, J.; Peng, L.; Bai, G.; Zhang, L.; Zhang, R.; et al. Flowering in the Northern Hemisphere is delayed by frost after leaf-out. Nat. Commun. 2024, 15, 9123. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R. Rising risks of late-spring frosts in a changing climate. Nat. Clim. Change 2021, 11, 554–555. [Google Scholar] [CrossRef]
- Werner, P.A.; Peacock, S.J. Savanna canopy trees under fire: Long-term persistence and transient dynamics from a stage-based matrix population model. Ecosphere 2019, 10, e02706. [Google Scholar] [CrossRef]
- Bosdijk, J.; de Feiter, V.S.; Gaiser, A.; Smink, T.; Thorkelsdottir, G.; van Vliet, A.J.H.; Luedeling, E. False springs in the Netherlands: Climate change impact assessment with the false spring damage indicator model. Reg. Environ. Change 2024, 24, 73. [Google Scholar] [CrossRef]
- Chamberlain, C.J.; Cook, B.I.; de Cortazar-Atauri, I.G.; Wolkovich, E.M. Rethinking false spring risk. Glob. Change Biol. 2019, 25, 2209–2220. [Google Scholar] [CrossRef]
- Allstadt, A.J.; Vavrus, S.J.; Heglund, P.J.; Pidgeon, A.M.; Thogmartin, W.E.; Radeloff, V.C. Spring plant phenology and false springs in the conterminous US during the 21st century. Environ. Res. Lett. 2015, 10, 104008. [Google Scholar] [CrossRef]
- Zohner, C.M.; Mo, L.D.; Renner, S.S.; Svenning, J.C.; Vitasse, Y.; Benito, B.M.; Ordonez, A.; Baumgarten, F.; Bastin, J.F.; Sebald, V.; et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl. Acad. Sci. USA 2020, 117, 12192–12200. [Google Scholar] [CrossRef]
- Wang, J.; Hua, H.; Guo, J.; Huang, X.; Zhang, X.; Yang, Y.; Wang, D.; Guo, X.; Zhang, R.; Smith, N.G.; et al. Late spring frost delays tree spring phenology by reducing photosynthetic productivity. Nat. Clim. Change 2025, 15, 201–209. [Google Scholar] [CrossRef]
- Zohner, C.M.; Rockinger, A.; Renner, S.S. Increased autumn productivity permits temperate trees to compensate for spring frost damage. New Phytol. 2019, 221, 789–795. [Google Scholar] [CrossRef]
- Manhas, R.K.; Negi, J.D.S.; Kumar, R.; Chauhan, P.S. Temporal assessment of growing stock, biomass and carbon stock of Indian forests. Clim. Change 2006, 74, 191–221. [Google Scholar] [CrossRef]
- Ayma-Romay, A.I.; Bown, H.E. Biomass and dominance of conservative species drive above-ground biomass productivity in a mediterranean-type forest of Chile. For. Ecosyst. 2019, 6, 47. [Google Scholar] [CrossRef]
- Masoodi, H.U.; Sundriyal, R.C. Richness of non-timber forest products in Himalayan communities-diversity, distribution, use pattern and conservation status. J. Ethnobiol. Ethnomed. 2020, 16, 56. [Google Scholar] [CrossRef]
- SijiMol, K.; Dev, S.A.; Sreekumar, V.B. A review of the ecological functions of reed bamboo, genus Ochlandra in the Western Ghats of India: Implications for sustainable conservation. Trop. Conserv. Sci. 2016, 9, 389–407. [Google Scholar] [CrossRef]
- Wei, H.X.; Chen, X.; Chen, G.S.; Zhao, H.T. Foliar nutrient and carbohydrate in Aralia elata can be modified by understory light quality in forests with different structures at Northeast China. Ann. For. Res. 2019, 62, 125–137. [Google Scholar] [CrossRef]
- Bianchi, E.; Bugmann, H.; Bigler, C. Early emergence increases survival of tree seedlings in Central European temperate forests despite severe late frost. Ecol. Evol. 2019, 9, 8238–8252. [Google Scholar] [CrossRef]
- Martz, F.; Vuosku, J.; Ovaskainen, A.; Stark, S.; Rautio, P. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest. PLoS ONE 2016, 11, e0156620. [Google Scholar] [CrossRef]
- Friesen, H.C.; Slesak, R.A.; Karwan, D.L.; Kolka, R.K. Effects of snow and climate on soil temperature and frost development in forested peatlands in minnesota, USA. Geoderma 2021, 394, 115015. [Google Scholar] [CrossRef]
- Luoranen, J.; Riikonen, J.; Saksa, T. Factors affecting winter damage and recovery of newly planted Norway spruce seedlings in boreal forests. For. Ecol. Manag. 2022, 503, 119759. [Google Scholar] [CrossRef]
- Wang, A.-Y.; Cui, H.-X.; Gong, X.-W.; Guo, J.-J.; Wu, N.; Hao, G.-Y. Contrast in vulnerability to freezing-induced xylem embolism contributes to divergence in spring phenology between diffuse- and ring-porous temperate trees. For. Ecosyst. 2022, 9, 100070. [Google Scholar] [CrossRef]
- Yin, J.J.; Fridley, J.D.; Smith, M.S.; Bauerle, T.L. Xylem vessel traits predict the leaf phenology of native and non-native understorey species of temperate deciduous forests. Funct. Ecol. 2016, 30, 206–214. [Google Scholar] [CrossRef]
- Thyroff, E.C.; Griscom, H.P. Experimental Study of Soil and Aspect on American Ginseng in an Appalachian Cove Ecosystem. Nat. Areas J. 2019, 39, 378–383. [Google Scholar] [CrossRef]
- Sutinen, S.; Roitto, M.; Repo, T. Vegetative buds, needles and shoot growth of Norway spruce are affected by experimentally delayed soil thawing in the field. For. Ecol. Manag. 2015, 336, 217–223. [Google Scholar] [CrossRef]
- Sellin, A.; Heinsoo, K.; Kupper, P.; Meier, R.; Ounapuu-Pikas, E.; Reinthal, T.; Rosenvald, K.; Tullus, A. Growth responses to elevated environmental humidity vary between phenological forms of Picea abies. Front. For. Glob. Change 2024, 7, 1370934. [Google Scholar] [CrossRef]
- Jin, J.; Wang, L.Q.; Müller, K.; Wu, J.S.; Wang, H.L.; Zhao, K.L.; Berninger, F.; Fu, W.J. A 10-year monitoring of soil properties dynamics and soil fertility evaluation in Chinese hickory plantation regions of southeastern China. Sci. Rep. 2021, 11, 23531. [Google Scholar] [CrossRef]
- Ahmed, B.; Hijri, M. Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J. Cannabis Res. 2021, 3, 25. [Google Scholar] [CrossRef]
- Duan, J.; Xu, C.Y.; Jacobs, D.F.; Ma, L.Y.; Wei, H.X.; Jiang, L.N.; Ren, J. Exponential nutrient loading shortens the cultural period of Larix olgensis seedlings. Scand. J. For. Res. 2013, 28, 409–418. [Google Scholar] [CrossRef]
- Horvath, D. Bud Dormancy and Growth. In Plant Developmental Biology—Biotechnological Perspectives: Volume 1; Pua, E.C., Davey, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 53–70. [Google Scholar]
- Repo, T.; Leinonen, I.; Ryyppö, A.; Finér, L. The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiol. Plant. 2004, 121, 93–100. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; He, H.; Song, X.Y.; Yao, G.D.; Song, S.J. Triterpene saponins with neuroprotective effects from a wild vegetable Aralia elata. J. Funct. Foods 2018, 45, 313–320. [Google Scholar] [CrossRef]
- Fan, R.F.; Tan, L.; Zheng, M.H.; Huang, X.Y.; Liu, X.B.; Guo, S.L. Assessment of root foraging behaviour in Aralia elata subjected to drought stress under different light spectra. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13560. [Google Scholar] [CrossRef]
- Ziaco, E.; Truettner, C.; Biondi, F.; Bullock, S. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell Environ. 2018, 41, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Verma, S.; Pradhan, S.S.; Singh, A.; Kushuwaha, M. Effect of Organic Manure on Different Soil Properties: A Review. Int. J. Plant Soil Sci. 2024, 36, 182–187. [Google Scholar] [CrossRef]
- Henry, H.A.L.; Kreyling, J.; Gebauer, G.; Klisz, M.; Weigel, R. 15N tracer enrichment in response to winter soil temperature manipulation differs between canopy trees and juveniles. Trees-Struct. Funct. 2021, 35, 325–331. [Google Scholar] [CrossRef]
- Bouchard, B.; Nadeau, D.F.; Domine, F.; Anctil, F.; Jonas, T.; Tremblay, E. How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? Insights from observations and modeling in eastern Canada. Hydrol. Earth Syst. Sci. 2024, 28, 2745–2765. [Google Scholar] [CrossRef]
- Salemaa, M.; Hotanen, J.P.; Oksanen, J.; Tonteri, T.; Merilä, P. Broadleaved trees enhance biodiversity of the understorey vegetation in boreal forests. For. Ecol. Manag. 2023, 546, 121357. [Google Scholar] [CrossRef]
- Roitto, M.; Sutinen, S.; Wang, A.F.; Domisch, T.; Lehto, T.; Repo, T. Waterlogging and soil freezing during dormancy affected root and shoot phenology and growth of Scots pine saplings. Tree Physiol. 2019, 39, 805–818. [Google Scholar] [CrossRef]
- Sun, Y.X.; Sun, M.Y.; Qiu, H.J.; Tan, L.; Guo, S.L. Triterpenoid saponins in Aralia elata subjected to combined nutrient availability and light quality. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 13036. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L. Phenological and Geographical Effects on Phenolic and Triterpenoid Content in Vaccinium vitis-idaea L. Leaves. Plants 2021, 10, 1986. [Google Scholar] [CrossRef]
- Wan, J.; Jiang, C.-X.; Tang, Y.; Ma, G.-L.; Tong, Y.-P.; Jin, Z.-X.; Zang, Y.; Osman, E.E.A.; Li, J.; Xiong, J.; et al. Structurally diverse glycosides of secoiridoid, bisiridoid, and triterpene-bisiridoid conjugates from the flower buds of two Caprifoliaceae plants and their ATP-citrate lyase inhibitory activities. Bioorganic Chem. 2022, 120, 105630. [Google Scholar] [CrossRef]
- Stamp, N. Out of the Quagmire of Plant Defense Hypotheses. Q. Rev. Biol. 2003, 78, 23–55. [Google Scholar] [CrossRef] [PubMed]
- Dinday, S. Recent trends in the elucidation of complex triterpene biosynthetic pathways in horticultural trees. Hortic. Res. 2024, 12, uhae254. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Zeng, F.; Graciano, C.; Ullah, A.; Sadia, S.; Ahmed, Z.; Murtaza, G.; Ismoilov, K.; Zhang, Z. Regulation of Metabolites by Nutrients in Plants. In Plant Ionomics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 1–18. [Google Scholar]
- Alami, M.M.; Liu, S.; Gong, D.; Guo, S.; Shaohua, S.; Mei, Z.; Alami, M.J.; Yang, G.; Wang, X. Effects of excessive and deficient nitrogen fertilizers on triptolide, celastrol, and metabolite profile content in Tripterygium wilfordii Hook F. Ind. Crops Prod. 2023, 206, 117577. [Google Scholar] [CrossRef]
- Vinolina, N.S.; Sigalingging, R. Growth and Secondary Metabolites Production of Centella asiatica (L.) Urb. Cultivated at Different Phosphate Application Rates in Acid Soil. Trends Sci. 2022, 19, 5820. [Google Scholar] [CrossRef]
- Mhlongo, M.I.; Piater, L.A.; Madala, N.E.; Labuschagne, N.; Dubery, I.A. The Chemistry of Plant–Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance. Front. Plant Sci. 2018, 9, 112. [Google Scholar] [CrossRef]
- Anjali; Kumar, S.; Korra, T.; Thakur, R.; Arutselvan, R.; Kashyap, A.S.; Nehela, Y.; Chaplygin, V.; Minkina, T.; Keswani, C. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 2023, 8, 100154. [Google Scholar] [CrossRef]
- Fouad, R.; Fouad, H.; El-Desoky, A.H.; Omer, E.A. Secondary Metabolism and Its Role in Enhancing Drought Stress Tolerance. In Climate-Resilient Agriculture, Vol 2: Agro-Biotechnological Advancement for Crop Production; Hasanuzzaman, M., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 603–640. [Google Scholar]
- Takahashi, H.; Abo, C.; Suzuki, H.; Romsuk, J.; Oi, T.; Yanagawa, A.; Gorai, T.; Tomisaki, Y.; Jitsui, M.; Shimamura, S.; et al. Triterpenoids in aerenchymatous phellem contribute to internal root aeration and waterlogging adaptability in soybeans. New Phytol. 2023, 239, 936–948. [Google Scholar] [CrossRef]
- Hu, Y.B.; Zhou, J.N.; Cao, Y.; Shen, Y.Z.; Liu, J.X.; Zhao, J. Extraction and biological activities of polysaccharides and saponins from Aralia elata: A review. Nat. Prod. Res. 2024. Early Access. [Google Scholar] [CrossRef]
- Wei, H.X.; Chen, G.S.; Chen, X.; Zhao, H.T. Geographical distribution of Aralia elata characteristics correlated with topography and forest structure in Heilongjiang and Jilin Provinces, Northeast China. J. For. Res. 2021, 32, 1115–1125. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, L.Z.; Man, Y.; Yan, Q.L. Effects of harvest intensity on the marketable organ yield, growth and reproduction of non-timber forest products (NTFPs): Implication for conservation and sustainable utilization of NTFPs. For. Ecosyst. 2021, 8, 56. [Google Scholar] [CrossRef]
- Qi, M.M.; Hua, X.Y.; Peng, X.Y.; Yan, X.F.; Lin, J.X. Comparison of chemical composition in the buds of Aralia elata from different geographical origins of China. R. Soc. Open Sci. 2018, 5, 180676. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Li, D.; Zhang, T.; Sun, Y.; Liu, R.; Sun, T.D. A mini-review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Aralia elata (Miq.) Seem. Int. J. Biol. Macromol. 2024, 277, 134572. [Google Scholar] [CrossRef]
- Wang, W.; Yao, G.D.; Shang, X.Y.; Gao, J.C.; Zhang, Y.; Song, S.J. Eclalbasaponin I from Aralia elata (Miq.) Seem. reduces oxidative stress-induced neural cell death by autophagy activation. Biomed. Pharmacother. 2018, 97, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.C.; Qian, H.S.; Li, S.H.; Tang, B.Q.; Wang, J.; Chen, S.; Ni, G.H.; Dong, F.W.; Li, Y.P.; Huang, F.; et al. Aralianudaside A, an unusual skeleton triterpenoid saponin with anti-airway inflammatory activity from Aralia elata. Nat. Prod. Res. 2024, 38, 1036–1043. [Google Scholar] [CrossRef]
- Wei, H.X.; Zhao, H.T.; Chen, X. Foliar N:P Stoichiometry in Aralia elata Distributed on Different Slope Degrees. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 887–895. [Google Scholar] [CrossRef]
- Jin, X.; Chang, B.L.; Huang, Y.Q.; Lin, X.K. Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China. Forests 2024, 15, 153. [Google Scholar] [CrossRef]
- Lin, X.K.; Chang, B.L.; Huang, Y.Q.; Jin, X. Predicting the impact of climate change and land use change on the potential distribution of two economic forest trees in Northeastern China. Front. Plant Sci. 2024, 15, 1407867. [Google Scholar] [CrossRef]
- Dai, J.H.; Wang, H.J.; Ge, Q.S. The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years. J. Geogr. Sci. 2013, 23, 641–652. [Google Scholar] [CrossRef]
- Menzel, A.; Helm, R.; Zang, C. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs. Front. Plant Sci. 2015, 6, 110. [Google Scholar] [CrossRef]
- Liu, B.D.; Zhang, J.; Zhang, Z.Y.; Sui, Y.; Zhu, H.X.; Shi, Y.R.; Sui, X.Y.; Li, Y.W.; Jiang, X.Q. Insights into the changes in leaf functional traits of Aralia elata grown under different shading treatments. Plant Growth Regul. 2023, 101, 679–691. [Google Scholar] [CrossRef]
- Zhuk, E. Flowering intraspecies variation in Pinus sibirica ex situ: Abundance, phenology, and frost survival. New For. 2025, 56, 34. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Colangelo, M.; de Luis, M.; del Castillo, E.M.; Serra-Maluquer, X. Summer drought and spring frost, but not their interaction, constrain European beech and Silver fir growth in their southern distribution limits. Agric. For. Meteorol. 2019, 278, 107695. [Google Scholar] [CrossRef]
- Domouso, P.; Pareja-Sánchez, E.; Calero, J.; García-Ruiz, R. Carbon and Nitrogen Mineralization of Common Organic Amendments in Olive Grove Soils. Agriculture 2024, 14, 1923. [Google Scholar] [CrossRef]
- Nguyen, T.-P.; Koyama, M.; Nakasaki, K. Effect of oxygen deficiency on organic matter decomposition during the early stage of composting. Waste Manag. 2023, 160, 43–50. [Google Scholar] [CrossRef]
- Chamberlain, C.J.; Wolkovich, E.M. Late spring freezes coupled with warming winters alter temperate tree phenology and growth. New Phytol. 2021, 231, 987–995. [Google Scholar] [CrossRef]
- Güsewell, S.; Furrer, R.; Gehrig, R.; Pietragalla, B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob. Change Biol. 2017, 23, 5189–5202. [Google Scholar] [CrossRef]
- Specialty Produce. Taranome: Estiamted Inventory, lb: 0. Available online: https://specialtyproduce.com/produce/Taranome_10041.php#:~:text=Taranome%20is%20the%20name%20of%20the%20young%20shoots%20of%20a,a%20singular%2C%20fibrous%20woody%20base. (accessed on 14 May 2025).
- NOAA. National Oceanic and Atmospheric Administration—U.S. Department of Commerce. Available online: https://www.noaa.gov/ (accessed on 14 May 2025).
- Chamberlain, C.J.; Cook, B.; Morales-Castilla, I.; Wolkovich, E.M. Climate change reshapes the drivers of false spring risk across European trees. New Phytol. 2021, 229, 323–334. [Google Scholar] [CrossRef]
- Augspurger, C.K. Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 2009, 23, 1031–1039. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, F.; Zheng, J.; Lin, J.; Hänninen, H.; Wu, J. Chilling accumulation and photoperiod regulate rest break and bud burst in five subtropical tree species. For. Ecol. Manag. 2021, 485, 118813. [Google Scholar] [CrossRef]
- Wang, X.P.; Meng, L.Q.; Wei, H.X. Biomass, carbohydrate, and leakage conductance in buds of six ornamental tree species subjected to a “false spring” in Northeast China. Ann. For. Res. 2022, 65, 15–30. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Frost Damage: Physiology and Critical Temperatures. In Frost Protection: Fundamentals, Practice, and Economics; Snyder, R.L., de Melo-Abreu, J.P., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Graczyk, D.; Szwed, M. Changes in the Occurrence of Late Spring Frost in Poland. Agronomy 2020, 10, 1835. [Google Scholar] [CrossRef]
- Duan, Y.D.; Guo, B.T.; Zhang, L.; Li, J.X.; Li, S.; Zhao, W.B.; Yang, G.; Zhou, S.; Zhou, C.W.; Song, P.H.; et al. Interactive climate-soil forces shape the spatial distribution of foliar N:P stoichiometry in Vaccinium uliginosum planted in agroforests of Northeast China. Front. Ecol. Evol. 2022, 10, 1065680. [Google Scholar] [CrossRef]
- Zhou, C.; Cui, W.; Yuan, T.; Cheng, H.; Su, Q.; Wei, H.; Guo, P. Root Foraging Behavior of Two Agronomical Herbs Subjected to Heterogeneous P Pattern and High Ca Stress. Agronomy 2022, 12, 624. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Sudha, K.; Israil, M.; Mittal, S.; Rai, J. Soil characterization using electrical resistivity tomography and geotechnical investigations. J. Appl. Geophys. 2009, 67, 74–79. [Google Scholar] [CrossRef]
- Wang, J.J.; Zeng, P.; Liu, Z.; Li, Y.Q. Manufacture of potassium chloride from cement kiln bypass dust: An industrial implementation case for transforming waste into valuable resources. Heliyon 2023, 9, e21806. [Google Scholar] [CrossRef]
- Yang, J.; Bai, J.; Liu, M.; Chen, Y.; Wang, S.; Yang, Q. Determination of Phosphorus in Soil by ICP-OES Using an Improved Standard Addition Method. J. Anal. Methods Chem. 2018, 2018, 1324751. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J.; Chen, H.; Han, L. Determination of available phosphorus in alkaline soil by molybdenum blue spectrophotometry. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 052003. [Google Scholar] [CrossRef]
- Xia, Y.; Ding, L.; Dai, W.; Liu, H.; Zhang, S.; Sui, Y.; You, X. Functional identification of AeHMGR gene involved in regulation of saponin biosynthesis in Aralia elata. Gene 2024, 908, 148287. [Google Scholar] [CrossRef]
- Xia, Y.-G.; Guo, X.-D.; Song, Y.; Liang, J.; Gong, F.-Q.; Wang, T.-L.; Yang, B.-Y.; Kuang, H.-X. A generic strategy based on gas phase decomposition of protonated and ammoninted precursors producing predictable MRM-MS ion pairs and collision energies for direct analysis of plant triterpene glycosides. J. Pharm. Biomed. Anal. 2019, 165, 292–303. [Google Scholar] [CrossRef]
- Riikonen, J.; Ruhanen, H.; Luoranen, J. Impact of warm spells during late fall and winter on frost hardiness of short-day treated Norway spruce seedlings. For. Ecol. Manag. 2023, 542, 121105. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yang, S.; Wang, J.; Xia, H.; Liu, X.; Chen, Q. Invisible Frost Stress on Introduced Dalbergia odorifera: A Bioassay on Foliar Parameters in Seedlings from Six Provenances. Sustainability 2023, 15, 14097. [Google Scholar] [CrossRef]
- Neuner, G.; Huber, B.; Plangger, A.; Pohlin, J.-M.; Walde, J. Low temperatures at higher elevations require plants to exhibit increased freezing resistance throughout the summer months. Environ. Exp. Bot. 2020, 169, 103882. [Google Scholar] [CrossRef]
- Allevato, E.; Saulino, L.; Cesarano, G.; Chirico, G.B.; D’Urso, G.; Falanga Bolognesi, S.; Rita, A.; Rossi, S.; Saracino, A.; Bonanomi, G. Canopy damage by spring frost in European beech along the Apennines: Effect of latitude, altitude and aspect. Remote Sens. Environ. 2019, 225, 431–440. [Google Scholar] [CrossRef]
Variable | Province | ANOVA | ||
---|---|---|---|---|
Heilongjiang | Jilin | F Value | p Value | |
CD0 1 (d) | 67.8 ± 4.6 a | 63.6 ± 5.9 b | 4.60 | 0.0384 |
CD12 1 (d) | 26.4 ± 3.4 a | 23.8 ± 3.6 a | 3.88 | 0.0562 |
CD20 1 (d) | 6.0 ± 2.5 a | 4.4 ± 04 b | 4.24 | 0.0463 |
NLSF 2 (time) | 1.8 ± 0.5 a | 1.2 ± 0.4 b | 12.03 | 0.0013 |
DLSF 2 (d) | 21.5 ± 5.2 a | 17.4 ± 3.9 b | 5.51 | 0.0242 |
DTR 3 (d) | 15.9 ± 3.8 a | 12.0 ± 3.3 b | 8.46 | 0.0060 |
DTD 3 (d) | 5.6 ± 2.1 a | 5.0 ± 1.0 a | 0.84 | 0.3662 |
HTLSF 4 (°C) | 20.5 ± 2.8 b | 22.6 ± 0.4 a | 5.97 | 0.0193 |
LTLSF 4 (°C) | −5.5 ± 2.0 a | −5.0 ± 1.9 a | 0.47 | 0.4980 |
TRR 5 (∆°C d −1) | 1.9 ± 0.4 a | 1.8 ± 0.3 a | 0.94 | 0.3375 |
TDR 5 (∆°C d −1) | −1.2 ± 0.4 a | −1.7 ± 0.3 b | 14.84 | 0.0004 |
Province | County | Latitude | Longitude | Forest Type |
---|---|---|---|---|
Heilongjiang | Boli | 45.69°–45.71° | 130.35°–130.55° | SF 1, PP 2 |
Heilongjiang | Hegang | 47.40°–47.52° | 130.14°–130.31° | LP 3, RPDBF 4 |
Heilongjiang | Hulin | 45.88°–45.98° | 132.39°–132.62° | BF 5, SF |
Heilongjiang | Jiamusi | 46.58°–47.00° | 129.72°–130.63° | FP 6, LP, RPDBF |
Heilongjiang | Mudanjiang | 44.76°–44.89° | 129.10°–129.26° | FP, BF, LP |
Heilongjiang | Raohe | 46.80°–46.95° | 133.75°–133.90° | SF |
Heilongjiang | Shangzhi | 45.22°–45.40° | 127.10°–127.26° | SF, PP |
Heilongjiang | Shuangyashan | 46.36°–46.53° | 131.09°–131.20° | BF, SF, RPDBF |
Heilongjiang | Wuying | 48.05°–48.20° | 129.17°–129.61° | FP |
Heilongjiang | Yichun | 47.48°–47.81° | 128.95°–129.39° | BF, SF, LP |
Jilin | Antu | 42.17°–42.29° | 128.14°–128.20° | SF, PP, SF |
Jilin | Fusong | 42.16°–42.23° | 127.50°–127.52° | RPDBF |
Jilin | Jiangyuan | 41.92°–41.95° | 126.52°–126.56° | LP |
Jilin | Jingyu | 42.43°–42.56° | 126.76°–126.80° | SF, PP |
Jilin | Linjiang | 41.80°–41.86° | 127.04°–127.05° | RPDBF, LP |
Host County | USAFS Code | Sampling Date |
---|---|---|
Boli | 509780 | 9 May |
Hegang | 507750 | 14 May |
Hulin | 509830 | 10 May |
Jiamusi | 508730 | 13 May |
Mudanjiang | 509630 | 5 May |
Raohe | 508880 | 8 May |
Shangzhi | 509530 | 28 April |
Shuangyashan | 509780 | 12 May |
Wuying | 507750 | 14 May |
Yichun | 507740 | 13 May |
Antu | 543860 | 3 May |
Fusong | 542840 | 28 April |
Jiangyuan | 543770 | 25 April |
Jingyu | 542730 | 21 April |
Linjiang | 543740 | 23 April |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zang, D.; Zhao, W.; Sun, Y.; Zhang, W.; Duan, Y. Ecophysiological Responses of Triterpene Glycosides in Buds of Aralia elata (Miq.) Seem. to Late Spring Frost with Soil-Mediated Effects. Plants 2025, 14, 2115. https://doi.org/10.3390/plants14142115
Wang N, Zang D, Zhao W, Sun Y, Zhang W, Duan Y. Ecophysiological Responses of Triterpene Glycosides in Buds of Aralia elata (Miq.) Seem. to Late Spring Frost with Soil-Mediated Effects. Plants. 2025; 14(14):2115. https://doi.org/10.3390/plants14142115
Chicago/Turabian StyleWang, Ning, Dandan Zang, Wenbo Zhao, Yudong Sun, Wei Zhang, and Yadong Duan. 2025. "Ecophysiological Responses of Triterpene Glycosides in Buds of Aralia elata (Miq.) Seem. to Late Spring Frost with Soil-Mediated Effects" Plants 14, no. 14: 2115. https://doi.org/10.3390/plants14142115
APA StyleWang, N., Zang, D., Zhao, W., Sun, Y., Zhang, W., & Duan, Y. (2025). Ecophysiological Responses of Triterpene Glycosides in Buds of Aralia elata (Miq.) Seem. to Late Spring Frost with Soil-Mediated Effects. Plants, 14(14), 2115. https://doi.org/10.3390/plants14142115