A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Genomic Information About 1825 Melon Germplasm Resources
2.3. Protocols for Phenotypic Characterization of Fruit
2.4. Development and Implementation of Molecular Markers for Fine-Mapping
2.5. Genomic DNA and Total RNA Sequencing
2.5.1. Library Preparation and DNA Sequencing
2.5.2. Library Preparation for Transcriptome Sequencing
2.6. Prediction and Analysis of Candidate Genes
2.7. Cloning of CmACS7 in No. 9 and HuangPi
2.8. Genetic Diversity Assessment
2.9. Data Analysis
3. Results
3.1. Morphological Differences in Ovaries and Fruits in Melon
3.2. Universality of the Major QTL Controlling Fruit Shape in C. melo
3.2.1. Identification of Sequence Variations in the fsq2 Candidate Interval
3.2.2. Molecular Insights into Ovary Shape Regulation
3.2.3. CmACS-H May Play a Vital Role in Melon Breeding
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahwar, D.; Khan, Z.; Park, Y. Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review. Int. J. Mol. Sci. 2023, 24, 15490. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Lian, Q.; Zhang, Z.; Fu, Q.; He, Y.; Ma, S.; Ruggieri, V.; Monforte, A.J.; Wang, P.; Julca, I.; et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 2019, 51, 1607–1615. [Google Scholar] [CrossRef]
- Boualem, A.; Berthet, S.; Devani, R.S.; Camps, C.; Fleurier, S.; Morin, H.; Troadec, C.; Giovinazzo, N.; Sari, N.; Dogimont, C.; et al. Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr. Biol. 2022, 32, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; McGregor, C.; Liu, S.; Luan, F.; Gao, M.; Weng, Y. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theor. Appl. Genet. 2020, 133, 1–21. [Google Scholar] [CrossRef]
- Martínez-Martínez, C.; Gonzalo, M.J.; Sipowicz, P.; Campos, M.; Martínez-Fernández, I.; Leida, C.; Zouine, M.; Alexiou, K.G.; Garcia-Mas, J.; Gómez, M.D.; et al. A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1. Theor. Appl. Genet. 2021, 135, 785–801. [Google Scholar] [CrossRef]
- Fernandez-Silva, I.; Moreno, E.; Essafi, A.; Fergany, M.; Garcia-Mas, J.; Martín-Hernandez, A.M.; Álvarez, J.M.; Monforte, A.J. Shaping melons: Agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor. Appl. Genet. 2010, 121, 931–940. [Google Scholar] [CrossRef]
- Amanullah, S.; Gao, P.; Osae, B.A.; Saroj, A.; Yang, T.; Liu, S.; Weng, Y.; Luan, F. Genetic linkage mapping and QTLs identification for morphology and fruit quality related traits of melon by SNP based CAPS markers. Sci. Hortic. 2021, 278, 109849. [Google Scholar] [CrossRef]
- Roy, A.; Bal, S.S.; Fergany, M.; Kaur, S.; Singh, H.; Malik, A.A.; Singh, J.; Monforte, A.J.; Dhillon, N.P.S. Wild melon diversity in India (Punjab State). Genet. Resour. Crop. Evol. 2011, 59, 755–767. [Google Scholar] [CrossRef]
- Gur, A.; Tzuri, G.; Meir, A.; Sa’aR, U.; Portnoy, V.; Katzir, N.; Schaffer, A.A.; Li, L.; Burger, J.; Tadmor, Y. Genome-Wide Linkage-Disequilibrium Mapping to the Candidate Gene Level in Melon (Cucumis melo). Sci. Rep. 2017, 7, 9770. [Google Scholar] [CrossRef]
- Nimmakayala, P.; Tomason, Y.R.; Abburi, V.L.; Alvarado, A.; Saminathan, T.; Vajja, V.G.; Salazar, G.; Panicker, G.K.; Levi, A.; Wechter, W.P.; et al. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. Front. Plant Sci. 2016, 7, 1437. [Google Scholar] [CrossRef]
- Eduardo, I.; Arús, P.; Monforte, A.J.; Obando, J.; Fernández-Trujillo, J.P.; Martínez, J.A.; Alarcón, A.L.; Álvarez, J.M.; van der Knaap, E. Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. J. Am. Soc. Hortic. Sci. 2007, 132, 80–89. [Google Scholar] [CrossRef]
- Perpiñá, G.; Esteras, C.; Gibon, Y.; Monforte, A.J.; Picó, B. A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol. 2016, 16, 154. [Google Scholar] [CrossRef]
- Lotti, C.; Marcotrigiano, A.R.; De Giovanni, C.; Resta, P.; Ricciardi, A.; Zonno, V.; Fanizza, G.; Ricciardi, L. Univariate and multivariate analysis performed on bio-agronomical traits of Cucumis melo L. germplasm. Genet. Resour. Crop. Evol. 2007, 55, 511–522. [Google Scholar] [CrossRef]
- Perin, C.; Hagen, L.S.; Giovinazzo, N.; Besombes, D.; Dogimont, C.; Pitrat, M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol. Genet. Genom. 2002, 266, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Tian, Y.; Tan, C.; Bai, S.; Hao, J.; Hasi, A. Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon (Cucumis melo). Hortic. Res. 2020, 7, 106. [Google Scholar] [CrossRef]
- Boualem, A.; Fergany, M.; Fernandez, R.; Troadec, C.; Martin, A.; Morin, H.; Sari, M.-A.; Collin, F.; Flowers, J.M.; Pitrat, M.; et al. A Conserved Mutation in an Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Melons. Science 2008, 321, 836–838. [Google Scholar] [CrossRef]
- Martin, A.; Troadec, C.; Boualem, A.; Rajab, M.; Fernandez, R.; Morin, H.; Pitrat, M.; Dogimont, C.; Bendahmane, A. A transposon-induced epigenetic change leads to sex determination in melon. Nature 2009, 461, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Luan, F.; Zhang, X.; Zhao, J.; Yang, Z.; Liu, S. Biparental genetic mapping reveals that CmCLAVATA3 (CmCLV3) is responsible for the variation in carpel number in melon (Cucumis melo L.). Theor. Appl. Genet. 2022, 135, 1909–1921. [Google Scholar] [CrossRef]
- Ma, J.; Li, C.; Zong, M.; Qiu, Y.; Liu, Y.; Huang, Y.; Xie, Y.; Zhang, H.; Wang, J.; Melzer, R. CmFSI8/CmOFP13 encoding an OVATE family protein controls fruit shape in melon. J. Exp. Bot. 2021, 73, 1370–1384. [Google Scholar] [CrossRef]
- Switzenberg, J.A.; Beaudry, R.M.; Grumet, R. Effect of CRC::etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res. 2015, 24, 497–507. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, J.; Sun, H.; Salse, J.; Lucas, W.J.; Zhang, H.; Zheng, Y.; Mao, L.; Ren, Y.; Wang, Z.; et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 2013, 45, 51–58. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4712–4734. [Google Scholar] [CrossRef]
- Snouffer, A.; Kraus, C.; van der Knaap, E. The shape of things to come: Ovate family proteins regulate plant organ shape. Curr. Opin. Plant Biol. 2020, 53, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Q.; Keyhaninejad, N.; Taitano, N.; Sapkota, M.; Snouffer, A.; van der Knaap, E. A combinatorial TRM-OFP module bilaterally fine-tunes tomato fruit shape. New Phytol. 2023, 238, 2393–2409. [Google Scholar] [CrossRef] [PubMed]
- Monforte, A.J.; Diaz, A.; Cano-Delgado, A.; van der Knaap, E. The genetic basis of fruit morphology in horticultural crops: Lessons from tomato and melon. J. Exp. Bot. 2014, 65, 4625–4637. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.A.; Wagner, W.L.; Hoch, P.C.; Nepokroeff, M.; Pires, J.C.; Zimmer, E.A.; Sytsma, K.J. Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am. J. Bot. 2003, 90, 107–115. [Google Scholar] [CrossRef]
- Vallejo-Marín, M.; Rausher, M.D. The role of male flowers in andromonoecious species: Energetic costs and siring success in Solanum carolinense L. Evolution 2007, 61, 404–412. [Google Scholar] [CrossRef]
- Castanera, R.; Ruggieri, V.; Pujol, M.; Garcia-Mas, J.; Casacuberta, J.M. An Improved Melon Reference Genome with Single-Molecule Sequencing Uncovers a Recent Burst of Transposable Elements with Potential Impact on Genes. Front. Plant Sci. 2020, 10, 1815. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Alamar, M.C.; Vanstreels, E.; Oey, M.L.; Moltó, E.; Nicolaï, B. Micromechanical behaviour of apple tissue in tensile and compression tests: Storage conditions and cultivar effect. J. Food Eng. 2008, 86, 324–333. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
Primer | F | R |
---|---|---|
CMBR008 | TTTCACTTTTTCCCGCCG | AATGGAAAAGGGAAGTGCAA |
Melab004 | CGGACTTATTATTCCCACAA | CGTTTCTTCGAGGTGTTA |
Melab005 | ATCAGGCATGAAGCGGAAA | CGACCAACCATTGCTCACTC |
Melab006 | AATTTTGATTTAGGCTTGG | ATAAACCAAACATCCCCAC |
Melab009 | GACATAGCCATGATGTTGAG | TTCTTCTATACCCATCTTTTC |
Melab010 | ATAAACATAGGACACCGAGAA | GGATTGATTTTACCGCACA |
A3 | ATCTCAACATCTACCAAA | CCTCCTATTACATTTTC |
Melab021 | CTCTTTATTACCCACTTCTC | TCTAATGTTTGAGCAAGTCC |
Melab034 | GGGAAGTCCTACGCATCATA | TAAGTTTGGGGTGGTGAGCA |
Melab037 | ACCATAAATCTTGCCAAAATA | TTGACCGTAAGTTCTTGTTGG |
Melab067 | GATAATCAAATCCTTAGTAGAA | TCTAAATCTATTCATCGATCAC |
Melab091 | ACTTGGTCGTTGTAATAAAA | CTCTACTCGTAAACATTGCC |
For cloning | ||
Melab048 | CGGGATCCTTGTCCCTAAAATACTCCAT | GGGGTACCAGACAAAGGAAATCAGCAA |
Accessions | Number of Cells per Unit Area | Cell Size | Morphology | ||||
---|---|---|---|---|---|---|---|
Single-Cell Area/μm2 | Perimeter/μm | Length/μm | Width/μm | Aspect Ratio | Roundness | ||
No. 9 | 30 | 13,120.08 | 496.96 | 158.42 | 95.75 | 1.74 | 0.62 |
HuangPi | 25 | 21,162.96 | 667.42 | 208.31 ** | 129.64 *** | 1.67 | 0.65 |
GENE | Name | Predicted Gene Function |
---|---|---|
1 | MELO3C015444 | 1-Aminocyclopropane-1-carboxylate synthase |
2 | MELO3C015445 | Peroxidase |
3 | MELO3C015446 | xaa-Pro dipeptidase |
4 | MELO3C015447 | Protein arginine N-methyltransferase |
5 | MELO3C015448 | AT4G29520-like protein |
6 | MELO3C015449 | DNA ligase 4 |
7 | MELO3C015450 | Pollen-specific protein SF21 |
8 | MELO3C015451 | Inorganic pyrophosphatase 2-like |
9 | MELO3C015452 | Mitochondrial carrier protein |
10 | MELO3C015453 | Protein EFFECTOR OF TRANSCRIPTION 2 |
11 | MELO3C015454 | Inactive protein kinase SELMODRAFT_444075 |
12 | MELO3C015455 | Acyl--UDP-N-acetylglucosamine O-acyltransferase |
Chr | Position | Ref | No. 9 | HuangPi | Variation | Gene | Ref | No. 9 | HuangPi |
---|---|---|---|---|---|---|---|---|---|
chr02 | 1679775 | T | C | T | synonymous | MELO3C015444 | IIe | IIe | IIe |
chr02 | 1679936 | T | C | T | missense | MELO3C015444 | Val | Ala | Val |
chr02 | 1681416 | T | T | / | frameshift | MELO3C015444 | Premature | ||
chr02 | 1799392 | T | T | C | synonymous | MELO3C015454 | Thr | Thr | Thr |
chr02 | 1801149 | A | A | T | missense | MELO3C015454 | Met | Met | Ieu |
chr02 | 1801547 | C | C | A | synonymous | MELO3C015454 | Gly | Gly | Gly |
chr02 | 1804515 | C | T | C | synonymous | MELO3C015455 | Ieu | Ieu | Ieu |
chr02 | 1805623 | T | T | A | missense | MELO3C015455 | Ieu | Ieu | His |
CHR | POS | PI-Wild | PI-Landrace_Agrestis | PI-Cultivar_Agrestis | PI-Landrace_Melon | PI-Cultivar_Melon |
---|---|---|---|---|---|---|
chr02 | 1679889 | 0.0251552 | 0.0262685 | 0.0061633 | 0.0653953 | 0.027059 |
chr02 | 1679936 | 0.325083 | 0.267292 | 0.131725 | 0.222248 | 0.187948 |
chr02 | 1680051 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1680066 | 0.142928 | 0 | 0 | 0 | 0.0322935 |
chr02 | 1680114 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1680147 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1680189 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1680223 | 0.120761 | 0 | 0 | 0 | 0 |
chr02 | 1680267 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1680291 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1681034 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1681076 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1681094 | 0.142928 | 0 | 0 | 0 | 0 |
chr02 | 1681113 | 0.142928 | 0 | 0 | 0 | 0 |
chr02 | 1681163 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1681224 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1681229 | 0.293477 | 0.0129237 | 0.0183193 | 0.00667776 | 0 |
chr02 | 1681256 | 0.151913 | 0 | 0 | 0 | 0 |
chr02 | 1681259 | 0.12528 | 0 | 0 | 0 | 0 |
chr02 | 1681262 | 0.146392 | 0 | 0 | 0 | 0 |
chr02 | 1681346 | 0.142928 | 0 | 0 | 0 | 0 |
chr02 | 1681367 | 0.14464 | 0 | 0 | 0 | 0 |
chr02 | 1681385 | 0.142928 | 0 | 0 | 0 | 0 |
chr02 | 1681415 | 0 | 0 | 0 | 0.0200317 | 0.0321207 |
chr02 | 1681421 | 0.141256 | 0 | 0 | 0 | 0 |
chr02 | 1681449 | 0.142928 | 0 | 0 | 0 | 0 |
chr02 | 1681496 | 0 | 0.050681 | 0.00620152 | 0.0976292 | 0.0269134 |
chr02 | 1681586 | 0.14464 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Ma, X.; Deng, Q.; Zhong, Z.; Ning, X.; Zhong, L.; Zhang, X.; Wang, X. A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.). Plants 2025, 14, 2087. https://doi.org/10.3390/plants14142087
Zhou J, Ma X, Deng Q, Zhong Z, Ning X, Zhong L, Zhang X, Wang X. A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.). Plants. 2025; 14(14):2087. https://doi.org/10.3390/plants14142087
Chicago/Turabian StyleZhou, Jiyang, Xiaobing Ma, Qianqian Deng, Zhicong Zhong, Xuefei Ning, Li Zhong, Xianliang Zhang, and Xianlei Wang. 2025. "A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.)" Plants 14, no. 14: 2087. https://doi.org/10.3390/plants14142087
APA StyleZhou, J., Ma, X., Deng, Q., Zhong, Z., Ning, X., Zhong, L., Zhang, X., & Wang, X. (2025). A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.). Plants, 14(14), 2087. https://doi.org/10.3390/plants14142087