The Transcription Factor ZmMYBR24 Gene Is Involved in a Variety of Abiotic Stresses in Maize (Zea mays L.)
Abstract
1. Introduction
2. Results
2.1. Basic Characterization of ZmMYBR24
2.2. Functional Characterization of ZmMYBR24 in Stress Resistance
2.3. Transcriptome Analysis and Expression Profiling of Key Pathway Genes
2.4. Sequence Variation Analysis of the ZmMYBR24 Gene
3. Discussion
3.1. ZmMYBR24 Is a Genetic Manipulation Target for Improving Salt, Alkali, and Low-Temperature Tolerance
3.2. Phenotypic Characterization of Maize Under Salt, Alkali, and Low-Temperature Stress
3.3. Transcriptomic Network Construction and Analysis in Maize Under Combined Abiotic Stresses
3.4. Potential Regulatory Mechanisms of ZmMYBR24 Under Salt and Alkali Stress
4. Materials and Methods
4.1. Plant Materials
4.2. Characterization of ZmMYBR24
4.3. Characterization of Functional Mutant Lines
4.4. Expression Pattern Analysis of ZmMYBR24
4.5. Field Characterization of Salt and Alkali Stress Phenotypes
4.6. Transcriptome Analysis and Expression Profiling of Critical Pathway Genes
4.7. Sequence Variation Analysis of the ZmMYBR24 Gene
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, S.; Hou, X.; Liang, X. Response Mechanisms of Plants Under Saline-Alkali Stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Guo, R.; Shi, L.; Yan, C.; Zhong, X.; Gu, F.; Liu, Q.; Xia, X.; Li, H. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol. 2017, 17, 41. [Google Scholar] [CrossRef]
- Zhi, M.; Li, X. Effect of NaCl Stress on Germination and Seedling’s Physiology of Maize. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2009; Volume 37, pp. 31–33. [Google Scholar]
- Palmgren, M.G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu. Rev. Plant Biol. 2001, 52, 817–845. [Google Scholar] [CrossRef]
- Guo, K.; Xu, Z.; Huo, Y.; Sun, Q.; Wang, Y.; Che, Y.; Wang, J.; Li, W.; Zhang, H. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signal. Behav. 2020, 15, 1832373. [Google Scholar]
- Li, R.; Shi, F.; Fukuda, K. Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae). S. Afr. J. Bot. 2010, 76, 380–387. [Google Scholar] [CrossRef]
- Ma, L.; Liu, X.H.; Lv, W.J.; Yang, Y.Q. Molecular Mechanisms of Plant Responses to Salt Stress. Front. Plant Sci. 2022, 13, 934877. [Google Scholar] [CrossRef]
- Zeng, R.; Shi, Y.; Guo, L.; Fu, D.; Li, M.; Zhang, X.; Li, Z.; Zhuang, J.; Yang, X.; Zuo, J.; et al. A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize. Cell 2025, 188, 1315–1329.E13. [Google Scholar] [CrossRef]
- Wei, H.; Wang, X.; Zhang, Z.; Yang, L.; Zhang, Q.; Li, Y.; He, H.; Chen, D.; Zhang, B.; Zheng, C.; et al. Uncovering key salt-tolerant regulators through a combined eQTL and GWAS analysis using the super pan-genome in rice. Natl. Sci. Rev. 2024, 11, nwae043. [Google Scholar] [CrossRef]
- Deng, P.; Jing, W.; Cao, C.; Sun, M.; Chi, W.; Zhao, S.; Dai, J.; Shi, X.; Wu, Q.; Zhang, B.; et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proc. Natl. Acad. Sci. USA 2022, 119, e2210338119. [Google Scholar] [CrossRef]
- Guo, S.-Q.; Chen, Y.-X.; Ju, Y.-L.; Pan, C.-Y.; Shan, J.-X.; Ye, W.-W.; Dong, N.-Q.; Kan, Y.; Yang, Y.-B.; Zhao, H.-Y.; et al. Fine-tuning gibberellin improves rice alkali–thermal tolerance and yield. Nature 2025, 639, 162–171. [Google Scholar] [CrossRef]
- Guo, H.; Gao, S.; Li, H.; Yang, J.; Li, J.; Gu, Y.; Lou, Q.; Su, R.; Ye, W.; Zou, A.; et al. Natural variation of CTB5 confers cold adaptation in plateau japonica rice. Nat. Commun. 2025, 16, 1032. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Liang, X.; Zhuang, J.; Wang, X.; Qin, F.; Jiang, C. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat. Commun. 2022, 13, 2222. [Google Scholar] [CrossRef]
- Pan, Y.; Han, T.; Xiang, Y.; Wang, C.; Zhang, A. The transcription factor ZmNAC84 increases maize salt tolerance by regulating ZmCAT1 expression. Crop J. 2024, 12, 1344–1356. [Google Scholar] [CrossRef]
- Xiao, S.; Song, W.; Xing, J.; Su, A.; Zhao, Y.; Li, C.; Shi, Z.; Li, Z.; Wang, S.; Zhang, R.; et al. ORF355 confers enhanced salinity stress adaptability to S-type cytoplasmic male sterility maize by modulating the mitochondrial metabolic homeostasis. J. Integr. Plant Biol. 2023, 65, 656–673. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, F.; Xie, P.; Sun, S.; Qiao, X.; Tang, S.; Chen, C.; Yang, S.; Mei, C.; Yang, D.; et al. A Gγ protein regulates alkaline sensitivity in crops. Science 2023, 379, eade8416. [Google Scholar] [CrossRef]
- Gao, L.; Pan, L.; Shi, Y.; Zeng, R.; Li, M.; Li, Z.; Zhang, X.; Zhao, X.; Gong, X.; Huang, W.; et al. Genetic variation in a heat shock transcription factor modulates cold tolerance in maize. Mol. Plant 2024, 17, 1423–1438. [Google Scholar] [CrossRef]
- Dai, X.; Xu, Y.; Ma, Q.; Xu, W.; Wang, T.; Xue, Y.; Chong, K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 2007, 143, 1739–1751. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; et al. Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef]
- Xiong, H.; Li, J.; Liu, P.; Duan, J.; Zhao, Y.; Guo, X.; Li, Y.; Zhang, H.; Ali, J.; Li, Z. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 2014, 9, e92913. [Google Scholar] [CrossRef]
- Yang, A.; Dai, X.; Zhang, W.H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 2012, 63, 2541–2556. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Y.; Liang, Y.; Chen, L.; Chen, W.; Cheng, B. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol. Biochem. 2019, 137, 179–188. [Google Scholar] [CrossRef]
- Chen, Y.H.; Cao, Y.Y.; Wang, L.J.; Li, L.M.; Yang, J.; Zou, M.X. Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biol. Plant. 2018, 62, 222–230. [Google Scholar] [CrossRef]
- Meng, C.; Sui, N. Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. Plant Physiol. Biochem. 2019, 135, 167–173. [Google Scholar] [CrossRef]
- Xia, W.; Luo, T.; Zhang, W.; Mason, A.S.; Huang, D.; Huang, X.; Tang, W.; Dou, Y.; Zhang, C.; Xiao, Y. Development of High-Density SNP Markers and Their Application in Evaluating Genetic Diversity and Population Structure in Elaeis guineensis. Front. Plant Sci. 2019, 10, 130. [Google Scholar] [CrossRef]
- Enyew, M.; Feyissa, T.; Carlsson, A.S.; Tesfaye, K.; Hammenhag, C.; Geleta, M. Genetic Diversity and Population Structure of Sorghum [Sorghum bicolor (L.) Moench] Accessions as Revealed by Single Nucleotide Polymorphism Markers. Front. Plant Sci. 2022, 12, 799482. [Google Scholar] [CrossRef]
- Rana, M.M.; Takamatsu, T.; Baslam, M.; Kaneko, K.; Itoh, K.; Harada, N.; Sugiyama, T.; Ohnishi, T.; Kinoshita, T.; Takagi, H.; et al. Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. Int. J. Mol. Sci. 2019, 20, 2585. [Google Scholar] [CrossRef]
- Li, C.; Jia, Y.; Zhou, R.; Liu, L.; Cao, M.; Zhou, Y.; Wang, Z.; Di, H. GWAS and RNA-seq analysis uncover candidate genes associated with alkaline stress tolerance in maize (Zea mays L.) seedlings. Front. Plant Sci. 2022, 13, 963874. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Xu, Q.; Wang, D.; Di, H.; Huang, J.; Yang, X.; Wang, Z.; Zhang, L.; Dong, L.; et al. Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seqapproaches. BMC Plant Biol. 2020, 20, 333. [Google Scholar] [CrossRef]
- Mei, X.; Zhao, Z.; Bai, Y.; Yang, Q.; Gan, Y.; Wang, W.; Li, C.; Wang, J.; Cai, Y. Salt Tolerant Gene 1 contributes to salt tolerance by maintaining photosystem II activity in maize. Plant Cell Environ. 2023, 46, 1833–1848. [Google Scholar] [CrossRef]
- Kong, M.; Luo, M.; Li, J.; Feng, Z.; Zhang, Y.; Song, W.; Zhang, R.; Wang, R.; Wang, Y.; Zhao, J.; et al. Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics 2021, 113, 1940–1951. [Google Scholar] [CrossRef]
- Wei, X.; Fan, X.; Zhang, H.; Jiao, P.; Jiang, Z.; Lu, X.; Liu, S.; Guan, S.; Ma, Y. Overexpression of ZmSRG7 Improves Drought and Salt Tolerance in Maize (Zea mays L.). Int. J. Mol. Sci. 2022, 23, 13349. [Google Scholar] [CrossRef]
- Yan, Z.; Li, K.; Li, Y.; Wang, W.; Leng, B.; Yao, G.; Zhang, F.; Mu, C.; Liu, X. The ZmbHLH32-ZmIAA9-ZmARF1 module regulates salt tolerance in maize. Int. J. Biol. Macromol. 2023, 253, 126978. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Chen, X.; Zhang, T.; Zhang, H.; Du, Y.; Zhao, Q.; Zhang, Z.; Cai, D.; Liu, J.; et al. ZmL75 is required for colonization by arbuscular mycorrhizal fungi and for saline–alkali tolerance in maize. J. Genet. Genom. 2025, 52, 334–345. [Google Scholar] [CrossRef]
- Jiang, D.; Xia, M.; Xing, H.; Gong, M.; Jiang, Y.; Liu, H.; Li, H.L. Exploring the Heat Shock Transcription Factor (HSF) Gene Family in Ginger: A Genome-Wide Investigation on Evolution, Expression Profiling, and Response to Developmental and Abiotic Stresses. Plants 2023, 12, 2999. [Google Scholar] [CrossRef]
- Peng, Z.; Rehman, A.; Li, X.; Jiang, X.; Tian, C.; Wang, X.; Li, H.; Wang, Z.; He, S.; Du, X. Comprehensive Evaluation and Transcriptome Analysis Reveal the Salt Tolerance Mechanism in Semi-Wild Cotton (Gossypium purpurascens). Int. J. Mol. Sci. 2023, 24, 12853. [Google Scholar] [CrossRef]
- Li, Q.; Xu, F.; Chen, Z.; Teng, Z.; Sun, K.; Li, X.; Yu, J.; Zhang, G.; Liang, Y.; Huang, X.; et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat. Plants 2021, 7, 1108–1118. [Google Scholar] [CrossRef]
- Ma, Z.; Jin, Y.M.; Wu, T.; Hu, L.; Zhang, Y.; Jiang, W.; Du, X. OsDREB2B, an AP2/ERF transcription factor, negatively regulates plant height by conferring GA metabolism in rice. Front. Plant Sci. 2022, 13, 1007811. [Google Scholar] [CrossRef]
- Baldoni, E.; Genga, A.; Cominelli, E. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int. J. Mol. Sci. 2015, 16, 15811–15851. [Google Scholar] [CrossRef]
- Li, J.; Han, G.; Sun, C.; Sui, N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal. Behav. 2019, 14, 1613131. [Google Scholar] [CrossRef]
- Roy, S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal. Behav. 2016, 11, e1117723. [Google Scholar] [CrossRef]
- Huang, L.; Liang, Z.; Suarez, D.L.; Wang, Z.; Wang, M.M.; Yang, H.; Liu, M. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci. 2015, 154, 632–646. [Google Scholar] [CrossRef]
- Wang, M.; Liang, Z.-W.; Wang, Z.-C.; Huang, L.; Ma, H.-Y.; Liu, M.; Gu, X. Effect of sand application and flushing during the sensitive stages on rice biomass allocation and yield in a saline sodic soil. J. Food Agric. Environ. 2010, 8, 692–697. [Google Scholar]
- Zhang, H.; Liu, X.L.; Zhang, R.X.; Yuan, H.Y.; Wang, M.M.; Yang, H.Y.; Ma, H.Y.; Liu, D.; Jiang, C.J.; Liang, Z.W. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.). Front. Plant Sci. 2017, 8, 1580. [Google Scholar] [CrossRef]
- Schijlen, E.G.W.M.; Ric de Vos, C.H.; van Tunen, A.J.; Bovy, A.G. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 2004, 65, 2631–2648. [Google Scholar] [CrossRef]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y.; Ji, J.; Zhao, W.; Guo, W.; Li, J.; Bai, Y.; Wang, D.; Yan, Z.; Guo, C. Flavonol synthase gene MsFLS13 regulates saline-alkali stress tolerance in alfalfa. Crop J. 2023, 11, 1218–1229. [Google Scholar] [CrossRef]
- Feng, S.; Yao, Y.T.; Wang, B.B.; Li, Y.M.; Li, L.; Bao, A.K. Flavonoids are involved in salt tolerance through ROS scavenging in the halophyte Atriplex canescens. Plant Cell Rep. 2023, 43, 5. [Google Scholar] [CrossRef]
- Han, J.; Li, R.; Zhang, Z.; Liu, S.; Liu, Q.; Xu, Z.; Zhou, Z.; Lu, X.; Shangguan, X.; Zhou, T.; et al. Genome-wide association and co-expression uncovered ZmMYB71 controls kernel starch content in maize. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Liu, C.; Weng, J.; Zhang, D.; Zhang, X.; Yang, X.; Shi, L.; Meng, Q.; Yuan, J.; Guo, X.; Hao, Z.; et al. Genome-wide association study of resistance to rough dwarf disease in maize. Eur. J. Plant Pathol. 2014, 139, 205–216. [Google Scholar] [CrossRef]
- Weng, J.; Xie, C.; Hao, Z.; Wang, J.; Liu, C.; Li, M.; Zhang, D.; Bai, L.; Zhang, S.; Li, X. Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines. PLoS ONE 2011, 6, e29229. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Fu, J.; Li, L.; Jia, G.; Ren, L.; Lubberstedt, T.; Wang, G.; Wang, J.; Gu, R. QTL Mapping in Three Connected Populations Reveals a Set of Consensus Genomic Regions for Low Temperature Germination Ability in Zea mays L. Front. Plant Sci. 2018, 9, 65. [Google Scholar] [CrossRef]
Treatment | NaCl | Na2CO3 | Low Temperature | |||
---|---|---|---|---|---|---|
Lines | B73 | zmmybr24 | B73 | zmmybr24 | B73 | zmmybr24 |
RGP | 0.53 ± 0.24 | 0.21 ± 0.78 ** | 0.33 ± 0.23 | 0.08 ± 0.23 * | 0.23 ± 0.34 | 0.13 ± 0.21 * |
RSL | 0.11 ± 0.88 | 0.17 ± 0.55 * | 0.33 ± 0.05 | 0.27 ± 0.45 ** | 0.15 ± 1.01 | 0.09 ± 0.34 ** |
RSFW | 0.17 ± 0.91 | 0.12 ± 0.93 | 0.25 ± 0.08 | 0.21 ± 0.11 | 0.07 ± 0.01 | 0.05 ± 0.34 * |
RSDW | 0.13 ± 0.26 | 0.14 ± 0.28 | 0.32 ± 0.22 | 0.18 ± 0.12 | 0.21 ± 0.01 | 0.14 ± 0.23 * |
RRL | 0.40 ± 0.44 | 0.29 ± 0.11 * | 0.39 ± 0.27 | 0.28 ± 0.21 * | 0.13 ± 0.24 | 0.08 ± 0.34 * |
RRFW | 0.50 ± 0.54 | 0.34 ± 0.34 * | 0.50 ± 0.11 | 0.35 ± 0.34 | 0.46 ± 0.33 | 0.32 ± 0.65 ** |
RRDW | 0.21 ± 0.56 | 0.20 ± 0.67 | 0.28 ± 0.01 | 0.34 ± 0.48 | 0.21 ± 0.36 | 0.07 ± 0.34 ** |
Treatment | NaCl | Na2CO3 | Low Temperature | |||
---|---|---|---|---|---|---|
Lines | B73 | zmmybr24 | B73 | zmmybr24 | B73 | zmmybr24 |
RRL | 0.92 ± 0.21 | 0.87 ± 0.53 | 0.92 ± 1.01 | 0.81 ± 0.35 ** | 0.78 ± 0.01 | 0.66 ± 0.01 * |
RRFW | 0.79 ± 0.56 | 0.55 ± 0.23 * | 0.77 ± 0.56 | 0.49 ± 0.56 ** | 0.78 ± 0.01 | 0.66 ± 0.01 * |
RRDW | 0.68 ± 0.02 | 0.55 ± 0.22 * | 0.71 ± 0.89 | 0.54 ± 0.58 ** | 0.78 ± 0.01 | 0.66 ± 0.03 * |
RRAD | 0.76 ± 0.25 | 0.67 ± 0.23 | 0.85 ± 0.07 | 0.70 ± 0.27 * | 0.78 ± 0.02 | 0.66 ± 0.01 * |
RRV | 0.75 ± 0.02 | 0.62 ± 0.35 * | 0.77 ± 0.02 | 0.64 ± 0.57 ** | 0.78 ± 0.08 | 0.66 ± 0.03 * |
RSL | 0.88 ± 0.01 | 0.86 ± 0.34 * | 0.91 ± 0.02 | 0.87 ± 0.35 ** | 0.72 ± 0.02 | 0.64 ± 0.45 ** |
RSFW | 0.66 ± 0.46 | 0.52 ± 0.56 * | 0.70 ± 0.04 | 0.57 ± 0.71 * | 0.76 ± 0.34 | 0.50 ± 0.65 ** |
RSDW | 0.63 ± 0.34 | 0.52 ± 0.82 | 0.63 ± 0.01 | 0.56 ± 1.01 * | 0.91 ± 0.47 | 0.54 ± 0.26 ** |
Treatment | Ordinary Soil | Saline-Alkali Pool | ||
---|---|---|---|---|
Lines | B73 | zmmybr24 | B73 | zmmybr24 |
Plant height (cm) | 229.22 ± 0.84 | 230.89 ± 3.98 | 218.44 ± 5.97 | 215.22 ± 4.53 |
Ear height (cm) | 107.78 ± 3.27 | 105.22 ± 1.35 | 91.56 ± 184 | 90.44 ± 0.84 |
Ear length (cm) | 16.82 ± 0.62 | 16.55 ± 0.37 | 16.09 ± 0.08 | 14.11 ± 0.16 ** |
Rows grains | 36.2 ± 0.20 | 29.53 ± 4.21 | 24.96 ± 0.71 | 23.38 ± 0.41 * |
Bald tip length(cm) | 0.21 ± 0.09 | 0.25 ± 0.19 | 1.28 ± 0.02 | 1.37 ± 0.01 ** |
100-grain weight (g) | 24.96 ± 2.48 | 24.40 ± 2.64 | 28.52 ± 0.01 | 27.02 ± 0.52 ** |
Yield (kg) | 2.79 ± 0.27 | 2.73 ± 0.08 | 2.55 ± 0.01 | 1.54 ± 0.01 ** |
Haplotype | Materials |
---|---|
HAP12 | C649, 502, LX9801, Liao540, Liao184, Dan360, Dan340, Ji81162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, L.; Sun, W.; Wang, J.; Zhou, Y.; Wang, J.; Wang, Q.; Sun, D.; Lin, H.; Fan, J.; Zhou, Y.; et al. The Transcription Factor ZmMYBR24 Gene Is Involved in a Variety of Abiotic Stresses in Maize (Zea mays L.). Plants 2025, 14, 2054. https://doi.org/10.3390/plants14132054
Bao L, Sun W, Wang J, Zhou Y, Wang J, Wang Q, Sun D, Lin H, Fan J, Zhou Y, et al. The Transcription Factor ZmMYBR24 Gene Is Involved in a Variety of Abiotic Stresses in Maize (Zea mays L.). Plants. 2025; 14(13):2054. https://doi.org/10.3390/plants14132054
Chicago/Turabian StyleBao, Liangliang, Wen Sun, Jiaxin Wang, Yuyang Zhou, Jiahao Wang, Qi Wang, Dequan Sun, Hong Lin, Jinsheng Fan, Yu Zhou, and et al. 2025. "The Transcription Factor ZmMYBR24 Gene Is Involved in a Variety of Abiotic Stresses in Maize (Zea mays L.)" Plants 14, no. 13: 2054. https://doi.org/10.3390/plants14132054
APA StyleBao, L., Sun, W., Wang, J., Zhou, Y., Wang, J., Wang, Q., Sun, D., Lin, H., Fan, J., Zhou, Y., Zhang, L., Wang, Z., Li, C., & Di, H. (2025). The Transcription Factor ZmMYBR24 Gene Is Involved in a Variety of Abiotic Stresses in Maize (Zea mays L.). Plants, 14(13), 2054. https://doi.org/10.3390/plants14132054