MiR5651, miR170-3p, and miR171a-3p Regulate Cadmium Tolerance by Targeting MSH2 in Arabidopsis thaliana
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Growth, and Treatment Conditions
2.2. Bioinformatics Prediction of miRNAs Targeting the AtMSH2
2.3. Plant Expression Vectors Construction and Dual-Luciferase Analysis
2.4. miRNA Overexpression Transgenic Arabidopsis Plants Construction
2.5. RNA Extraction, First-Strand cDNA Synthesis, and qRT-PCR Analysis
2.6. miRNAs Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Bioinformatics Prediction Results of miRNAs Targeting the AtMSH2
3.2. Determination of the Targeting Relationship Between miRNAs and AtMSH2
3.3. The Effect of miRNAs Targeting and Regulating AtMSH2 on Plant Growth Under Cd Stress
3.4. The Effect of miRNAs Targeting and Regulating AtMSH2 on DNA Damage Response Signal Transduction Under Cd Stress
3.5. The Effect of miRNAs Targeting and Regulating AtMSH2 on DNA Mismatch Damage Repair Under Cd Stress
3.6. The Effect of miRNAs Targeting and Regulating AtMSH2 on DNA HR and NHEJ Under Cd Stress
3.7. The Effect of miRNAs Targeting and Regulating AtMSH2 on Cell Cycle Regulation Under Cd Stress
4. Discussion
4.1. miR5651, miR170-3p, and miR171a-3p Downregulate AtMSH2 Expression but Do Not Impair MMR-Mediated DDR
4.2. miR5651, miR170-3p, and miR171a-3p Promote Cd Tolerance Due to Multiple DDR Engagement
4.3. miR5651, miR170-3p, and miR171a-3p Are Capable to Induce Plant-to-Plant Cd Tolerance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ATSDR). Available online: www.atsdr.cdc.gov/ (accessed on 13 April 2025).
- Xie, Q.; Deng, W.; Su, Y.; Ma, L.; Yang, H.; Yao, F.; Lin, W. Transcriptome analysis reveals novel insights into the hyperaccumulator phytolacca acinosa Roxb. responses to cadmium stress. Plants 2024, 13, 297. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Rong, X.; Zhao, H.; Xia, R.; Li, M.; Wang, H.; Cui, H.; Wang, X.; Zhou, J. Bioaccumulation of atmospherically deposited Cadmium in soybean: Three-year field experiment combined with Cadmium isotopes. Environ. Sci. Technol. 2024, 58, 17703–17716. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Li, C.; Wang, W.; Zhang, J.; Scali, M.; Li, W.; Liu, H.; Tai, F.; Hu, X.; Wu, X. Cadmium tolerance and hyperaccumulation in plants—A proteomic perspective of phytoremediation. Ecotoxicol. Environ. Saf. 2023, 256, 114882. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Habib, M.; Kakavand, S.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of Cadmium: Physiological, biochemical, and molecular mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef]
- Hussain, M.; Kaousar, R.; Ali, S.; Shan, C.; Wang, G.; Wang, S.; Lan, Y. Tryptophan seed treatment improves morphological, biochemical, and photosynthetic attributes of the sunflower under Cadmium stress. Plants 2024, 13, 237. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Wang, J.; Zhang, C.; Liu, D.; Wang, C.; Xu, F. The overexpression of LOW PHOSPHATE ROOT 1 (LPR1) negatively regulates Arabidopsis growth in response to Cadmium (Cd) stress. Plant Physiol. Biochem. 2023, 196, 556–566. [Google Scholar] [CrossRef]
- Babar, H.; Muhammad Nadeem, A.; Shafeeq-ur-Rahman Aqleem, A.; Jumei, L.; Muhammad, F. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci. Total Environ. 2021, 754, 142188. [Google Scholar]
- Bucurica, I.; Dulama, I.; Radulescu, C.; Banica, A.; Stanescu, S. Heavy metals and associated risks of wild edible mushrooms consumption: Transfer factor, carcinogenic risk, and health risk index. J. Fungi 2024, 10, 844. [Google Scholar] [CrossRef]
- Yan, Y.; Saleh, A.; Zonghe, Z.; Kejin, Z.; Alisdair, R. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. Plant Biotechnol. J. 2024, 22, 2641–2659. [Google Scholar]
- Ibha, S.; Sinha, S.; Vaibhav, S.; Rajeev Pratap, S. Impact of cadmium pollution on food safety and human health. Curr. Opin. Toxicol. 2021, 27, 1–7. [Google Scholar]
- Wang, M.; Mu, C.; Lin, X.; Ma, W.; Wu, H.; Si, D.; Ge, C.; Cheng, C.; Zhao, L.; Li, H.; et al. Foliar application of nanoparticles reduced cadmium content in wheat (Triticum aestivum L.) grains via long-distance “leaf–root–microorganism” regulation. Environ. Sci. Technol. 2024, 58, 6900–6912. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, M.; Guo, Z.; Chen, J.; Wu, J.; Xia, Z. The transcription factor ZmbHLH105 confers cadmium tolerance by promoting abscisic acid biosynthesis in maize. J. Hazard. Mater. 2024, 480, 135826. [Google Scholar] [CrossRef] [PubMed]
- Sljivic, H.; Bergant, M.; Jankovic, S.; Zizek, S.; Smajlovic, A.; Softic, A.; Music, O.; Antonijevic, B. Assessment of Pb, Cd and Hg soil contamination and its potential to cause cytotoxic and genotoxic effects in human cell lines (CaCo-2 and HaCaT). Environ. Geochem. Health 2018, 40, 1557–1572. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, L.; Song, J.; Cui, W.; Zhang, Y.; Jia, C.; Francis, D.; Rogers, H.; Sun, L.; Tai, P.; et al. Cadmium-induced genomic instability in Arabidopsis: Molecular toxicological biomarkers for early diagnosis of cadmium stress. Chemosphere 2016, 150, 258–265. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Q.; Zhao, Q.; Arfan, M.; Liu, W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. Chemosphere 2020, 246, 125614. [Google Scholar] [CrossRef]
- Oh, J.; Kang, Y.; Park, J.; Sung, Y.; Kim, D.; Seo, Y.; Lee, E.; Ra, J.; Amarsanaa, E.; Park, Y. MSH2-MSH3 promotes DNA end resection during homologous recombination and blocks polymerase theta-mediated end-joining through interaction with SMARCAD1 and EXO1. Nucleic Acids Res. 2023, 51, 5584–5602. [Google Scholar] [CrossRef]
- Cao, X.; Wang, H.; Zhuang, D.; Zhu, H.; Du, Y.; Cheng, Z.; Cui, W.; Rogers, H.; Zhang, Q.; Jia, C. Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots. Chemosphere 2018, 201, 586. [Google Scholar] [CrossRef]
- Salem, M.; Bodor, J.; Puccini, A.; Xiu, J.; Goldberg, R.; Grothey, A.; Korn, W.; Shields, A.; Worrilow, W.; Kim, E.; et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int. J. Cancer 2020, 147, 2948–2956. [Google Scholar] [CrossRef]
- Campregher, C.; Luciani, M.; Gasche, C. Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells. Gut 2008, 57, 780–787. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.; Du, Y.; Rogers, H.; Wu, Z.; Jia, S.; Yao, X.; Xie, F.; Liu, W. MSH2 and MSH6 in mismatch repair system account for Soybean (Glycine max (L.) Merr.) tolerance to Cadmium toxicity by determining DNA damage response. J. Agric. Food Chem. 2020, 68, 1974–1985. [Google Scholar] [CrossRef]
- Zou, L.; Elledge, S. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003, 300, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Cools, T.; De, V. Mechanisms used by plants to cope with DNA damage. Annu. Rev. Plant Biol. 2016, 67, 439–462. [Google Scholar] [CrossRef] [PubMed]
- Betti, F.; Ladera, C.; Weits, D.; Ferri, G.; Iacopino, S.; Novi, G.; Svezia, B.; Kunkowska, A.; Santaniello, A.; Piaggesi, A.; et al. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nat. Plants 2021, 7, 1379–1388. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, Y.; Liang, X.; Wang, H.; Zhu, Y.; Shao, Q. Double insurance for OC: miRNA-mediated Platinum resistance and immune escape. Front. Immunol. 2021, 12, 641937. [Google Scholar] [CrossRef]
- Wang, T.; Hao, D.; Yang, S.; Ma, J.; Yang, W.; Zhu, Y.; Weng, M.; An, X.; Wang, X.; Li, Y.; et al. miR-211 facilitates platinum chemosensitivity by blocking the DNA damage response (DDR) in ovarian cancer. Cell Death Dis. 2019, 10, 495. [Google Scholar] [CrossRef]
- Wu, P.; Li, D.; Zhang, C.; Dai, B.; Tang, X.; Liu, J.; Wu, Y.; Wang, X.; Shen, A.; Zhao, J.; et al. A unique circulating microRNA pairs signature serves as a superior tool for early diagnosis of pan-cancer. Cancer Lett. 2024, 588, 216655. [Google Scholar] [CrossRef]
- Agirre, X.; Martínez-Climent, J.; Odero, M.; Prósper, F. Epigenetic regulation of miRNA genes in acute leukemia. Leukemia 2011, 26, 395–403. [Google Scholar] [CrossRef]
- Su, B.; Wang, W.; Lin, X.; Liu, S.; Huang, X. Identifying the potential miRNA biomarkers based on multi-view networks and reinforcement learning for diseases. Brief. Bioinform. 2023, 25, bbad427. [Google Scholar] [CrossRef]
- Sonali, B.; Jolly, B. MicroRNAs: The potential biomarkers in plant stress response. Am. J. Plant Sci. 2014, 5, 748–759. [Google Scholar]
- Puja, S.; Prasanna, D.; Debasis, C. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. Plant Cell Rep. 2021, 40, 1617–1630. [Google Scholar]
- Jin, J.; Qin, J.; Qi, X.; Zhang, J.; Zhang, Y. Serum exosomal miRNA contributes to the diagnosis of leptomeningeal carcinomatosis. J. Neuro-Oncol. 2025, 173, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Moumita, R.; Jolly, B. Tiny yet indispensable plant microRNAs are worth to explore as key components for combating genotoxic stresses. Front. Plant Sci. 2019, 10, 1197. [Google Scholar]
- Xie, S.; Jiang, H.; Ding, T.; Xu, Q.; Chai, W.; Cheng, B. Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway. Mol. Plant Pathol. 2018, 19, 1612–1623. [Google Scholar] [CrossRef] [PubMed]
- Heidi, G.; Tony, R.; Jaco, V.; Ann, C. MicroRNAs in Metal Stress: Specific Roles or Secondary Responses? Int. J. Mol. Sci. 2012, 13, 15826–15847. [Google Scholar]
- Wang, C.; Fu, T.; Wang, Z.; Hou, S.; Rong, K.; Wang, J.; Yin, Y.; Yang, X.; Yu, R.; Xiao, D.; et al. miRNA-seq analysis revealed a potential strategy underlying poplar root responses to low nitrogen stress. Planta 2025, 261, 87. [Google Scholar] [CrossRef]
- Gao, Z.; Nie, J.; Wang, H. MicroRNA biogenesis in plant. Plant Growth Regul. 2020, 93, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, T.; Sun, H.; Teotia, S.; Wen, H.; Du, Y.; Zhang, J.; Li, J.; Tang, G.; Xue, H.; et al. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnol. J. 2018, 17, 712–723. [Google Scholar] [CrossRef]
- Bai, S.; Tian, Y.; Tan, C.; Bai, S.; Hao, J.; Hasi, A. Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon (Cucumis melo). Hortic. Res. 2020, 7, 106. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, D.; Chen, Z.; Zhang, M.; Zhang, G.; Jiang, M.; Tan, M. Bioinformatic Exploration of the Targets of Xylem Sap miRNAs in Maize under Cadmium Stress. Int. J. Mol. Sci. 2019, 20, 1474. [Google Scholar] [CrossRef]
- He, L.; Wang, H.; Zhao, Q.; Cheng, Z.; Tai, P.; Liu, W. Tomato grafting onto Torubamu (Solanum melongena): miR166a and miR395b reduce scion Cd accumulation by regulating sulfur transport. Plant Soil. 2020, 452, 267–279. [Google Scholar] [CrossRef]
- Ding, Y.; Gong, S.; Wang, Y.; Wang, F.; Bao, H.; Sun, J.; Cai, C.; Yi, K.; Chen, Z.; Zhu, C. MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol. 2018, 177, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Valeri, N.; Gasparini, P.; Fabbri, M.; Braconi, C.; Veronese, A.; Lovat, F.; Adair, B.; Vannini, I.; Fanini, F.; Bottoni, A. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl. Acad. Sci. USA 2010, 107, 6982–6987. [Google Scholar] [CrossRef] [PubMed]
- Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.; Alder, H.; Amadori, D.; Patel, T.; et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA 2010, 107, 21098–21103. [Google Scholar] [CrossRef] [PubMed]
- Liccardo, R.; Sessa, R.; Trombetti, S.; De, R.; Izzo, P.; Grosso, M.; Duraturo, F. Mir-137 targets the 3′ untranslated region of msh2: Potential implications in lynch syndrome-related colorectal cancer. Cancers 2021, 13, 4662. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Liu, Q.; Axtell, M.J. Quantitating plant microRNA-mediated target repression using a dual-luciferase transient expression system. In Plant Functional Genomics: Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1284, pp. 287–303. [Google Scholar]
- Cheng, Z.; Wang, H.; Zhao, Q.; Zhang, Y.; Jia, C.; He, L.; Cui, W.; Tai, P.; Liu, W. MiRNA172b-5p, miRNA172e-5p and miRNA472-3p responded to Cd stress by targeting MSH6 gene in Arabidopsis thaliana. Chin. J. Ecol. 2019, 38, 3738–3746. [Google Scholar]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- David, P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar]
- Bartel, D. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Rohan, E.; Wang, T.; Weinmann, S.; Wang, Y.; Lin, J.; Ginsberg, M.; Loudig, O. A miRNA expression signature in breast tumor tissue is associated with risk of distant metastasis. Cancer Res. 2019, 79, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Marek, M. MicroRNA: A new signal in plant-to-plant communication. Trends Plant Sci. 2022, 27, 418–419. [Google Scholar]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, H.; Fan, X.; Zhu, J.; Shi, J.; Zhao, W.; Xiao, Y.; Xu, Y.; Chen, J.; Cui, F. Extracellular vesicle-mediated plant miRNA trafficking regulates viral infection in insect vector. Cell Rep. 2025, 44, 2211–2247. [Google Scholar] [CrossRef]
- Skopelitis, D.; Hill, K.; Klesen, S.; Marco, C.; Born, P.; Chitwood, D.; Timmermans, M. Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nat. Commun. 2018, 9, 3107. [Google Scholar] [CrossRef]
- Chen, X.; Rechavi, O. Plant and animal small RNA communications between cells and organisms. Nat. Rev. Mol. Cell Biol. 2022, 23, 185–203. [Google Scholar] [CrossRef]
- Buhtz, A.; Pieritz, J.; Springer, F.; Kehr, J. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol. 2010, 10, 64. [Google Scholar] [CrossRef]
- Pant, B.; Buhtz, A.; Kehr, J.; Scheible, W.R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 2008, 53, 731–738. [Google Scholar] [CrossRef]
- Ma, L.; Li, S.; Wang, H. MicroRNA: A mobile signal mediating information exchange within and beyond plant organisms. Crit. Rev. Plant Sci. 2024, 43, 313–325. [Google Scholar] [CrossRef]
- Bhogale, S.; Mahajan, A.; Natarajan, B.; Rajabhoj, M.; Thulasiram, H.; Banerjee, A. MicroRNA156: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 2014, 164, 1011–1027. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Adam, H.; Diaz-Mendoza, M.; Zurczak, M.; González-Schain, N.; Suárez-López, P. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 2009, 136, 2873–2881. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, L.; Wu, R. Plant grafting: How genetic exchange promotes vascular reconnection. New Phytol. 2016, 214, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, X.; Liu, J.; Dong, L.; Chen, Q.; Liu, J.; Kong, H.; Zhang, Q.; Qi, X.; Hou, D.; et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2014, 25, 39–49. [Google Scholar] [CrossRef]
- Borniego, M.; Roger, W. Extracellular RNA: Mechanisms of secretion and potential functions. J. Exp. Bot. 2023, 74, 2389–2404. [Google Scholar] [CrossRef]
miRNA ID | miRNA Sequence | Target Sequence | Target Gene |
---|---|---|---|
ath-miR5651 | TTGTGCGGTTCAAATAGTAAC | ATAACTATGGGAACTTCACAA | AtMSH2 |
ath-miR170-3p | TGATTGAGCCGTGTCAATATC | CTTACTGCCTTGGCTCAAGCA | AtMSH2 |
ath-miR171a-3p | TGATTGAGCCGCGCCAATATC | CTTACTGCCTTGGCTCAAGCA | AtMSH2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, H.; Sun, X.; Tang, Z.; Liu, Z.; Ludlow, R.A.; Zhang, M.; Cao, Q.; Liu, W.; Zhao, Q. MiR5651, miR170-3p, and miR171a-3p Regulate Cadmium Tolerance by Targeting MSH2 in Arabidopsis thaliana. Plants 2025, 14, 2028. https://doi.org/10.3390/plants14132028
Wang X, Wang H, Sun X, Tang Z, Liu Z, Ludlow RA, Zhang M, Cao Q, Liu W, Zhao Q. MiR5651, miR170-3p, and miR171a-3p Regulate Cadmium Tolerance by Targeting MSH2 in Arabidopsis thaliana. Plants. 2025; 14(13):2028. https://doi.org/10.3390/plants14132028
Chicago/Turabian StyleWang, Xianpeng, Hetong Wang, Xiuru Sun, Zihan Tang, Zhouli Liu, Richard A. Ludlow, Min Zhang, Qijiang Cao, Wan Liu, and Qiang Zhao. 2025. "MiR5651, miR170-3p, and miR171a-3p Regulate Cadmium Tolerance by Targeting MSH2 in Arabidopsis thaliana" Plants 14, no. 13: 2028. https://doi.org/10.3390/plants14132028
APA StyleWang, X., Wang, H., Sun, X., Tang, Z., Liu, Z., Ludlow, R. A., Zhang, M., Cao, Q., Liu, W., & Zhao, Q. (2025). MiR5651, miR170-3p, and miR171a-3p Regulate Cadmium Tolerance by Targeting MSH2 in Arabidopsis thaliana. Plants, 14(13), 2028. https://doi.org/10.3390/plants14132028