The IAA-Producing Rhizobacterium Bacillus sp. SYM-4 Promotes Maize Growth and Yield
Abstract
:1. Introduction
2. Results
2.1. Qualitative and Quantitative Analyses of Bacterial IAA-Producing Ability and Determination of Movement Ability
2.2. Identification the PGPR of Maize
2.3. The Effect of Bacillus sp. SYM-4 on the Growth of Maize Seedlings
2.4. Antioxidant Enzyme Activity, Chlorophyll Content, and IAA Concentration in Maize Seedlings Following Inoculation with Bacillus sp. SYM-4
2.5. The Effects of Replacement of Different Proportions of Chemical Fertilizer with the Bacillus sp. SYM-4 Microbial Fertilizer on the Growth of Maize Seedlings in the Field
2.6. Treatment with Bacillus sp. SYM-4 Microbial Fertilizer Significantly Enhances Maize Height and Leaf Area Compared to Commercial Microbial Fertilizers
2.7. The Effects of Replacement of Different Proportions of Chemical Fertilizer with Bacillus sp. SYM-4 Microbial Fertilizer on Maize Yield
2.8. The Effects of Replacement of Different Proportions of Chemical Fertilizer with Bacillus sp. SYM-4 Microbial Fertilizer on the Nutrient Content of Maize Kernels
3. Discussion
3.1. Bacillus sp. SYM-4 Is a PGPR for Maize
3.2. The Ability of Bacillus sp. SYM-4 to Synthesize IAA, Thereby Increasing the Chlorophyll Content and Enzyme Activity of Maize Seedlings, Is the Key Reason for Its Promotion of Maize Growth
3.3. The Beneficial Effect on Maize of Replacing a Proportion of Chemical Fertilizer with a Bacillus sp. SYM-4 Microbial Fertilizer
4. Materials and Methods
4.1. Collection of Maize Rhizosphere Soil
4.2. Isolation and Purification of Bacteria from Soil
4.3. Strain Identification
4.4. Determination of IAA Concentration
4.5. Determination of Bacterial Movement
4.6. Cultivation of Maize and Inoculation of Bacillus sp. SYM-4 in the Laboratory
4.7. Determination of IAA Concentration in Maize
4.8. Determination of Leaf Area at the Four Growth Stages of Maize
4.9. Determination of Maize Chlorophyll Content, Soluble Protein Content, and Field Maize Yield
4.10. Determination of Antioxidant Enzyme Activity and Lipid Peroxidation Markers in Potted Maize Seedlings Grown Following Inoculation with Bacillus sp. SYM-4
4.11. Field Cultivation of Maize and Preparation of Bacillus sp. SYM-4 Microbial Fertilizer
4.12. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PGPR | Plant growth-promoting rhizobacteria |
IAA | Indole-3-acetic acid |
CAT | Catalase |
SOD | Superoxide dismutase |
POD | Peroxidase |
References
- Liu, H.W.; Wang, J.J.; Sun, X.; McLaughlin, N.B.; Jia, S.X.; Liang, A.Z.; Zhang, S.X. The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China. Sci. Total Environ. 2023, 884, 163835. [Google Scholar] [CrossRef] [PubMed]
- Sedri, M.H.; Niedbala, G.; Roohi, E.; Niazian, M.; Szulc, P.; Rahmani, H.A.; Feiziasl, V. Comparative analysis of plant growth-promoting rhizobacteria (PGPR) and chemical fertilizers on quantitative and qualitative characteristics of rainfed wheat. Agronomy 2022, 12, 1524. [Google Scholar] [CrossRef]
- Zeng, Q.W.; Ding, X.L.; Wang, J.C.; Han, X.J.; Iqbal, H.M.N.; Bilal, M. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environ. Sci. Pollut. Res. 2022, 29, 45089–45106. [Google Scholar] [CrossRef]
- Qasim, M.; Ju, J.; Zhao, H.T.; Bhatti, S.M.; Saleem, G.; Memon, S.P.; Ali, S.; Younas, M.U.; Rajput, N.; Jamali, Z.H. Morphological and physiological response of tomato to sole and combined application of vermicompost and chemical fertilizers. Agronomy 2023, 13, 1508. [Google Scholar] [CrossRef]
- Gómez-Godínez, L.J.; Aguirre-Noyola, J.L.; Martínez-Romero, E.; Arteaga-Garibay, R.I.; Ireta-Moreno, J.; Ruvalcaba-Gómez, J.M. A look at plant-growth-promoting bacteria. Plants 2023, 12, 1668. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Li, D.H.; Wu, Y.; Liu, S.Y.; Li, L.; Chen, W.Q.; Wu, S.F.; Meng, Q.X.; Feng, H.; Siddique, K.H.M. Mitigating greenhouse gas emissions by replacing inorganic fertilizer with organic fertilizer in wheat-maize rotation systems in China. J. Environ. Manag. 2023, 344, 118494. [Google Scholar] [CrossRef]
- Shang, L.R.; Wan, L.Q.; Zhou, X.X.; Li, S.; Li, X.L. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE 2020, 15, e0240559. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Eberl, L.; Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 2005, 7, 1673–1685. [Google Scholar] [CrossRef]
- Liu, X.L.; Yang, W.P.; Li, W.G.; Ali, A.; Chen, J.; Sun, M.; Gao, Z.Q.; Yang, Z.P. Moderate organic fertilizer substitution for partial chemical fertilizer improved soil microbial carbon source utilization and bacterial community composition in rain-fed wheat fields: Current year. Front. Microbiol. 2023, 14, 1190052. [Google Scholar] [CrossRef]
- Fan, T.; Zhang, Y.L.; Wang, X.D.; Zhao, Y.H.; Shi, A.D.; Zhang, X. Application of various high- density organic materials in soil promotes germination and increases nutrient content of wheat. Environ. Technol. Innov. 2023, 32, 103298. [Google Scholar] [CrossRef]
- Liu, B.; Xia, H.; Jiang, C.C.; Riaz, M.; Yang, L.; Chen, Y.F.; Fan, X.P.; Xia, X.E. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Sci. Total Environ. 2022, 841, 156608. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, R.; Liu, H.J.; Wang, B.B.; Zhang, C.M.; Shen, Q.R. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer. Environ. Technol. 2014, 35, 1658–1667. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira, M.C.M.; Buzetti, S.; Rodrigues, W.L.; Fernandes, G.C.; Boleta, E.H.M.; Neto, M.B.; Pereira, M.R.D.; Rosa, P.A.L.; Pereira, I.T.; et al. Influence of Azospirillum brasilense associated with silicon and nitrogen fertilization on macronutrient contents in corn. Open Agric. 2020, 5, 126–137. [Google Scholar] [CrossRef]
- Hafez, M.; Popov, A.I.; Rashad, M. Integrated use of bio-organic fertilizers for enhancing soil fertility-plant nutrition, germination status and initial growth of corn (Zea mays L.). Environ. Technol. Innov. 2021, 21, 101329. [Google Scholar] [CrossRef]
- Pii, Y.; Aldrighetti, A.; Valentinuzzi, F.; Mimmo, T.; Cesco, S. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants. J. Exp. Bot. 2019, 70, 1313–1324. [Google Scholar] [CrossRef]
- Li, X.Q.; Li, D.Y.; Jiang, Y.G.; Xu, J.; Ren, X.X.; Zhang, Y.; Wang, H.; Lu, Q.J.; Yan, J.L.; Ahmed, T.; et al. The effects of microbial fertilizer based Aspergillus brunneoviolaceus HZ23 on pakchoi growth, soil properties, rhizosphere bacterial community structure, and metabolites in newly reclaimed land. Front. Microbiol. 2023, 14, 1091380. [Google Scholar] [CrossRef]
- Koskey, G.; Mburu, S.W.; Awino, R.; Njeru, E.M.; Maingi, J.M. Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front. Sustain. Food Syst. 2021, 5, 606308. [Google Scholar] [CrossRef]
- Ma, C.H.; Hua, J.; Li, H.D.; Zhang, J.M.; Luo, S.H. Inoculation with carbofuran-degrading rhizobacteria promotes maize growth through production of IAA and regulation of the release of plant-specialized metabolites. Chemosphere 2022, 307, 136027. [Google Scholar] [CrossRef]
- Pantoja-Guerra, M.; Burkett-Cadena, M.; Cadena, J.; Dunlap, C.A.; Ramírez, C.A. Lysinibacillus spp.: An IAA-producing endospore forming-bacteria that promotes plant growth. Antonie Van. Leeuwenhoek 2023, 116, 615–630. [Google Scholar] [CrossRef]
- Alam, M.; Khan, M.A.; Imtiaz, M.; Khan, M.A.; Naeem, M.; Shah, S.A.; Samiullah; Ahmad, S.H.; Khan, L. Indole-3-acetic acid rescues plant growth and yield of salinity stressed tomato (Lycopersicon esculentum L.). Gesunde Pflanz. 2020, 72, 87–95. [Google Scholar] [CrossRef]
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Gange, A.C.; Gadhave, K.R. Plant growth-promoting rhizobacteria promote plant size inequality. Sci. Rep. 2018, 8, 13828. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, S.L.; Chen, Q.L.; Delgado-Baquerizo, M.; Guo, Z.F.; Wang, F.H.; Xu, Y.Y.; Zhu, Y.G. Fertilization regulates global thresholds in soil bacteria. Glob. Change Biol. 2024, 30, e117466. [Google Scholar] [CrossRef]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Chen, W.M.; Wu, Z.S.; Liu, C.H.; Zhang, Z.Y.; Liu, X.C. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. Ecotox Environ. Safe 2023, 251, 114509. [Google Scholar] [CrossRef]
- Do, T.Q.; Nguyen, T.T.; Dinh, V. Application of endophytic bacterium Bacillus velezensis BTR11 to control bacterial leaf blight disease and promote rice growth. Egypt. J. Biol. Pest. Control 2023, 33, 97. [Google Scholar] [CrossRef]
- Lambrecht, M.; Okon, Y.; Vande Broek, A.; Vanderleyden, J. Indole-3-acetic acid: A reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 2000, 8, 298–300. [Google Scholar] [CrossRef]
- Shi, J.H.; Yang, Z.B. Is ABP1 an auxin receptor yet? Mol. Plant 2011, 4, 635–640. [Google Scholar] [CrossRef]
- Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Alikhani, H.A.; Hosseini, H.M. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. Methodsx 2015, 2, 72–78. [Google Scholar] [CrossRef]
- Strafella, S.; Simpson, D.J.; Khanghahi, M.Y.; De Angelis, M.; Gänzle, M.; Minervini, F.; Crecchio, C. Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere. Microorganisms 2021, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Mazoyon, C.; Catterou, M.; Alahmad, A.; Mongelard, G.; Guénin, S.; Sarazin, V.; Dubois, F.; Duclercq, J. Sphingomonas sediminicola Dae20 is a highly promising beneficial bacteria for crop biostimulation due to its positive effects on plant growth and development. Microorganisms 2023, 11, 2061. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.K.; Liu, K.; Zhang, J.; Zhang, Y.; Xu, K.D.; Yu, D.S.; Wang, J.; Hu, L.Z.; Chen, L.; Li, C.W. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 2017, 419, 1–11. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Liang, Y.Z.; Anwar, M.; Fatima, A.; Hassan, M.J.; Ali, A.; Tang, Q.L.; Peng, Y. Overexpression of auxin/indole-3-acetic acid gene TrIAA27 enhances biomass, drought, and salt tolerance in Arabidopsis thaliana. Plants 2024, 13, 2684. [Google Scholar] [CrossRef]
- Lan, X.J.; Shan, J.; Huang, Y.; Liu, X.M.; Lv, Z.Z.; Ji, J.H.; Hou, H.Q.; Xia, W.J.; Liu, Y.R. Effects of long-term manure substitution regimes on soil organic carbon composition in a red paddy soil of southern China. Soil Tillage Res. 2022, 221, 105395. [Google Scholar] [CrossRef]
- Ahsan, T.; Tian, P.C.; Gao, J.; Wang, C.; Liu, C.; Huang, Y.Q. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system. J. Adv. Res. 2024, 64, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.J.; Ding, W.X.; Yu, H.Y.; He, X.H. Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: Result of 20 years compost and inorganic fertilizers repeated application experiment. Biol. Fertil. Soils 2015, 51, 137–150. [Google Scholar] [CrossRef]
- Ling, N.; Deng, K.Y.; Song, Y.; Wu, Y.C.; Zhao, J.; Raza, W.; Huang, Q.W.; Shen, Q.R. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiol. Res. 2014, 169, 570–578. [Google Scholar] [CrossRef]
- Li, H.D.; Kang, Z.L.; Hua, J.; Feng, Y.L.; Luo, S.H. Root exudate sesquiterpenoids from the invasive weed Ambrosia trifida regulate rhizospheric Proteobacteria. Sci. Total Environ. 2022, 834, 155263. [Google Scholar] [CrossRef]
- Wang, A.Q.; Hua, J.; Wang, Y.Y.; Zhang, G.S.; Luo, S.H. Stereoisomers of nonvolatile acetylbutanediol metabolites produced by Bacillus velezensis WRN031 improved root elongation of maize and rice. J. Agric. Food Chem. 2020, 68, 6308–6315. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xu, Y.T.; Yan, J.Y.; Bai, L.P.; Hua, J.; Luo, S.H. Polymethoxylated flavones from the leaves of Vitex negundo have fungal-promoting and antibacterial activities during the production of broad bean koji. Front. Microbiol. 2024, 15, 1401436. [Google Scholar] [CrossRef]
- Xie, J.J.; Yang, J.; Zhu, S.W.; Hou, X.; Chen, H.Y.; Bai, X.M.; Zhang, Z.F. Study on seed-borne cultivable bacterial diversity and antibiotic resistance of Poa pratensis L. Front. Microbiol. 2024, 15, 1347760. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, H.D.; Liu, J.Y.; Shao, H.; Hua, J.; Luo, S.H. Degraded metabolites of phlorizin promote germination of Valsa mali var. mali in its host Malus spp. J. Agric. Food Chem. 2022, 70, 149–156. [Google Scholar] [PubMed]
- Han, D.X.; Hu, H.R.; Yang, J.; Liang, X.L.; Ai, J.M.; Abula, A.; Li, M.D.; Wang, Y.J.; Xi, H.J.; Li, L.; et al. The ideal harvest time for seed production in maize (Zea mays L.) varieties of different maturity groups. J. Sci. Food Agric. 2022, 102, 5867–5874. [Google Scholar] [CrossRef]
- Cho, J.B.; Guinness, J.; Kharel, T.P.; Sunoj, S.; Kharel, D.; Oware, E.K.; van Aardt, J.; Ketterings, Q.M. Spatial estimation methods for mapping corn silage and grain yield monitor data. Precis. Agric. 2021, 22, 1501–1520. [Google Scholar] [CrossRef]
- Jin, X.; Liu, Z.; Wu, W.F. Corn harvesting time based on growth curve and antioxidant enzyme activity. Int. J. Food Prop. 2024, 27, 1–11. [Google Scholar] [CrossRef]
- Wang, T.H.; Ahmad, S.; Yang, L.; Yan, X.N.; Zhang, Y.F.; Zhang, S.J.; Wang, L.Y.; Luo, Y.P. Preparation, biocontrol activity and growth promotion of biofertilizer containing Streptomyces aureoverticillatus HN6. Front. Plant Sci. 2022, 13, 1090689. [Google Scholar] [CrossRef]
- Hua, J.; Liu, J.Y.; Zhou, W.; Ma, C.H.; Luo, S.H. A new perspective on plant defense against foliar gall-forming aphids through activation of the fruit abscission pathway. Plant Physiol. Biochem. 2023, 196, 1046–1054. [Google Scholar] [CrossRef]
0% | 20% | 40% | 60% | 80% | 100% | Control Group | |
---|---|---|---|---|---|---|---|
Spike length (cm) | 19.88 ± 2.43 ** | 20.50 ± 1.13 *** | 19.40 ± 1.71 ** | 21.11 ± 2.23 *** | 19.85 ± 2.47 ** | 18.52 ± 2.74 * | 14.16 ± 2.44 |
Spike diameter (cm) | 4.99 ± 0.21 *** | 4.96 ± 0.15 *** | 4.92 ± 0.17 *** | 4.98 ± 0.11 *** | 4.80 ± 0.31 ** | 4.75 ± 0.23 ** | 4.12 ± 0.24 |
Bare top length (cm) | 1.15 ± 0.83 ** | 1.02 ± 0.89 *** | 1.37 ± 0.54 * | 1.16 ± 0.54 ** | 1.15 ± 0.83 ** | 1.16 ± 0.92 ** | 3.35 ± 0.37 |
Rows of kernels (lines) | 15.11 ± 1.50 ** | 15.90 ± 1.88 ** | 16.36 ± 1.75 *** | 16.13 ± 0.22 *** | 15.82 ± 1.89 ** | 15.64 ± 1.50 ** | 14.67 ± 2.00 |
Number of kernels per row (grains) | 38.06 ± 4.62 ** | 39.92 ± 3.48 *** | 37.30 ± 3.43 ** | 37.28 ± 0.33 ** | 36.55 ± 5.96 ** | 34.73 ± 7.64 * | 21.89 ± 5.37 |
100-seed weight (g) | 33.06 ± 4.62 ** | 34.49 ± 0.38 *** | 33.30 ± 3.43 ** | 32.70 ± 0.77 * | 32.76 ± 0.33 * | 33.24 ± 0.55 ** | 31.94 ± 0.62 |
Maize yield (kg/mu) | 756.16 ± 13.51 ** | 883.18 ± 13.71 *** | 768.68 ± 0.78 ** | 733.45 ± 2.02 ** | 734.55 ± 0.69 ** | 684.14 ± 7.01 * | 603.62 ± 10.68 |
Growth Period of Maize | Fertilizer Type | 0% (g) | 20% (g) | 40% (g) | 60% (g) | 80% (g) | 100% (g) |
---|---|---|---|---|---|---|---|
Seeding stage | Chemical fertilizer | 1.5 | 1.2 | 0.9 | 0.6 | 0.3 | 0 |
Microbial fertilizer | 0 | 0.3 | 0.6 | 0.9 | 1.2 | 1.5 | |
Big trumpet period | Chemical fertilizer | 3 | 2.4 | 1.8 | 1.2 | 0.6 | 0 |
Microbial fertilizer | 0 | 0.6 | 1.2 | 1.8 | 2.4 | 3 | |
During grain-filling period | Chemical fertilizer | 1.5 | 1.2 | 0.9 | 0.6 | 0.3 | 0 |
Microbial fertilizer | 0 | 0.3 | 0.6 | 0.9 | 1.2 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Chen, Q.; Hua, J.; Zhang, S.; Luo, S. The IAA-Producing Rhizobacterium Bacillus sp. SYM-4 Promotes Maize Growth and Yield. Plants 2025, 14, 1587. https://doi.org/10.3390/plants14111587
Song Y, Chen Q, Hua J, Zhang S, Luo S. The IAA-Producing Rhizobacterium Bacillus sp. SYM-4 Promotes Maize Growth and Yield. Plants. 2025; 14(11):1587. https://doi.org/10.3390/plants14111587
Chicago/Turabian StyleSong, Yumeng, Qifei Chen, Juan Hua, Shaobin Zhang, and Shihong Luo. 2025. "The IAA-Producing Rhizobacterium Bacillus sp. SYM-4 Promotes Maize Growth and Yield" Plants 14, no. 11: 1587. https://doi.org/10.3390/plants14111587
APA StyleSong, Y., Chen, Q., Hua, J., Zhang, S., & Luo, S. (2025). The IAA-Producing Rhizobacterium Bacillus sp. SYM-4 Promotes Maize Growth and Yield. Plants, 14(11), 1587. https://doi.org/10.3390/plants14111587