Next Article in Journal
Distinctive Traits of European Mistletoe (Viscum album spp. austriacum) and Its Impact on Host Tree Wood (Pinus sylvestris)
Previous Article in Journal
Drought-Driven Divergence in Photosynthetic Performance Between Two Cunninghamia lanceolata Provenances: Insights from Gas Exchange and Chlorophyll Fluorescence Dynamics
Previous Article in Special Issue
Conflicting Dynamics of Galling and Pollination: Arastichus gallicola (Hymenoptera, Eulophidae), a Specialized Parasitic Galler in Pistillate Flowers of Thaumatophyllum bipinnatifidum (Araceae)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Plant–Insect Interactions: Host Plant Resistance, Biological Control, and Pollination

by
Francisco Rubén Badenes-Pérez
Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
Plants 2025, 14(10), 1488; https://doi.org/10.3390/plants14101488
Submission received: 12 May 2025 / Accepted: 14 May 2025 / Published: 16 May 2025
(This article belongs to the Special Issue Plant–Insect Interactions—2nd edition)

1. Introduction

The evolving field of plant–insect interactions impacts basic and applied fields of plant sciences, entomology, and agronomy. Within this field, pest management and plant pollination receive a lot of attention because of their implications for maximizing crop yield [1,2,3,4]. Host plant resistance and biological control are important aspects of pest management that can bring alternatives to the problems arising with insecticide use [5,6]. This Special Issue presents a collection of papers addressing the interactions of insects and mites with plants, while highlighting the importance that pest management and pollination have in this field.

2. Overview of Published Articles

  • Zhu et al. (Contribution 1) investigated gene expression response to mechanical damage and feeding by Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) at different time points. Compared to mechanical damage, feeding by P. operculella induced moregenes and resulted in a stronger gene expression.
  • Zhang et al. (Contribution 2) studied the adaptive responses of S. frugiperda Smith (Lepidoptera: Noctuidae) to nutritional and enzymatic variations in different maize cultivars. This study highlights the different adaptations of S. frugiperda’s digestive and detoxification systems.
  • Volp et al. (Contribution 3) investigated the avoidance of and preference for pigeonpea flowers and pods of first-, second-, third-, and fourth-instar larvae of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Early instars were shown to prefer flowers, while older instars preferred to feed on pods. Boring through pigeonpea pod walls imposed a physiological cost for third- but not for fourth-instar larvae.
  • Rodríguez-Leyva et al. (Contribution 4) analyzed the volatile organic compounds (VOCs) released by the cactus pear Opuntia ficus-indica (L.) Miller as a result of herbivory by the cochineals Dactylopius coccus Costa and D. opuntiae Cockerell. Cactus pear produced different VOCs depending on the Dactylopius species affecting the plant. Among the VOCs identified, methyl salicylate, terpenes, and p-vinylguaiacol were suggested as being likely to play a defense role in O. ficus-indica.
  • Abbes et al. Al-Azzazy and Alhewairini (Contribution 5) studied the suitability of three solanaceous crops—eggplant, potato, and tomato—to cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Using age-stage two-sex life tables, the study showed that tomato, followed by potato plants, were more suitable hosts for P. solenopsis than eggplant.
  • Al-Azzazy and Alhewairini (Contribution 6) tested the use of the predatory mites Phytoseius plumifer Canestrini and Fanzago and Euseius scutalis Athias-Henriot (Phytoseiidae) as biological control agents against the grape erineum mite, Colomerus vitis Pagenstecher (Eriophyidae).
  • George et al. (Contribution 7) investigated the potential of different fungal endophytes, specifically Beauveria bassiana strains, in colonizing cotton plants and their efficacy against tarnished plant bug Lygus lineolaris Palisot de Beauvois (Hemiptera: Miridae). These endophytes can colonize different plant parts, affecting cotton plant growth as well as the development and mortality of L. lineolaris adults and nymphs. The new B. bassiana strain JG-1 affected the olfactory response of L. lineolaris adults and caused significant mortality in bioassays.
  • Benvenuti (Contribution 8) reviewed the mutualistic interactions between pollinators and weeds, discussing them in terms of food reward and attractiveness, and analyzed the specialization of these interactions.
  • De Brito Machado et al. (Contribution 9) investigated how the chemodiversity of leaves and reproductive organs affect pollinator visitation in Piper mollicomum Kunth (Piperaceae). They showed the importance of understanding the complex interactions between plant chemistry, environmental factors, and plant–insect interactions in P. mollicomum.
  • Pimkornburee et al. (Contribution 10) investigated the settling preferences and feeding behavior of the silverleaf whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) on six cassava cultivars using electrical penetration graph techniques. They suggest that cultivars with large trichomes and a low trichome density are more resistant to whitefly infestation and the subsequent transmission of Sri Lankan cassava mosaic virus than those with smaller trichomes and a lower trichome density.
  • Jansen-González et al. (Contribution 11) investigated the parasitic relationship between Arastichus gallicola Ferrière (Hymenoptera: Eulophidae), an ovary-galling wasp, and the inflorescences of Thaumatophyllum bipinnatifidum (Schott ex Endl.) Sakur., Calazans & Mayo (Araceae). Although ovule fertilization is not required for gall formation by A. gallicola, pollination substantially enhanced gall retention by reducing T. bipinnatifidum inflorescence abscission.

3. Key Messages

The impact that insects have as pollinators in angiosperms is one of the most prominent aspects of studying plant–insect interactions [7]. With the decline in pollinators [8,9], their conservation is very important. Weeds can be an important part of pollinator conservation [10,11]. The process of insect galling by eulophid wasps can interact with pollination and fruit retention in trees [12,13]. Plant chemistry also plays an important role in plant–insect interactions [14]. Besides being a key part of the integrated pest management of insect pests, host plant resistance can prevent damage caused by insect-transmitted diseases [15,16]. Studies on host plant resistance and biological control are important in both generalist species that cause important economic losses in many crops, like the generalists B. tabaci, H. armigera, L. lineolaris, P. solenopsis, and S. frugiperda [17,18,19,20,21], and in specialists like P. operculella, D. coccus, and D. opuntiae that damage only a few crop species [22,23]. Endophytic entomopathogenic fungi can be used as part of the integrated pest management of some of the insect pests included in this Special Issue [24,25]. Some of these insect pests have also developed resistance to many insecticides and insecticide use presents the risk of disrupting the biological control of insect and mite pests [18,26,27,28,29,30].

4. Future Directions

Plant–insect interactions encompass many relationships deserving further research [31,32,33]. With climate change and habitat loss being such pressing issues [34,35], the effects that these can have on plant–insect interactions should be further studied. Studies conducted in geographical locations that are biodiversity hotspots should offer many opportunities for the study of plant–insect interactions and conservation [36]. Alternatives to insecticides should also be investigated further, especially in insect pest species that can easily develop resistance to insecticides. The compatibility of different biological control agents for improving pest management should be further investigated [37,38,39]. In terms of host–plant resistance, plants like Barbarea vulgaris W. T. Aiton (Brassicaceae), which can provide resistance to several types of pests, are of particular interest for further research [40,41,42,43].

Funding

This research received no external funding.

Acknowledgments

I thank the authors who contributed to this Special Issue. I also thank Rene Lv, the Managing Editor of this Special Issue of Plants, for all his help.

Conflicts of Interest

The author declares no conflicts of interest.

List of Contributions

  • Zhu, C.; Yi, X.; Yang, M.; Liu, Y.; Yao, Y.; Zi, S.; Chen, B.; Xiao, G. Comparative Transcriptome Analysis of Defense Response of Potato to Phthorimaea operculella Infestation. Plants 2023, 12, 3092. https://doi.org/10.3390/plants12173092.
  • Zhang, Q.; Zhang, Y.; Zhang, K.; Liu, H.; Gou, Y.; Li, C.; Haq, I.U.; Quandahor, P.; Liu, C. Molecular Characterization Analysis and Adaptive Responses of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Nutritional and Enzymatic Variabilities in Various Maize Cultivars. Plants 2024, 13, 597. https://doi.org/10.3390/plants13050597.
  • Volp, T.M.; Zalucki, M.P.; Furlong, M.J. Ontogenetic Changes in the Feeding Behaviour of Helicoverpa armigera Larvae on Pigeonpea (Cajanus cajan) Flowers and Pods. Plants 2024, 13, 696. https://doi.org/10.3390/plants13050696.
  • Rodríguez-Leyva, E.; García-Pascual, E.; González-Chávez, M.M.; Méndez-Gallegos, S.d.J.; Morales-Rueda, J.A.; Posadas-Hurtado, J.C.; Bravo-Vinaja, Á.; Franco-Vega, A. Interactions of Opuntia ficus-indica with Dactylopius coccus and D. opuntiae (Hemiptera: Dactylopiidae) through the Study of Their Volatile Compounds. Plants 2024, 13, 963. https://doi.org/10.3390/plants13070963.
  • Abbes, K.; Harbi, A.; Guerrieri, E.; Chermiti, B. Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus solenopsis Tinsley. Plants 2024, 13, 1381. https://doi.org/10.3390/plants13101381.
  • Al-Azzazy, M.M.; Alhewairini, S.S. The Potential of Two Phytoseiid Mites as Predators of the Grape Erineum Mite, Colomerus vitis. Plants 2024, 13, 1953. https://doi.org/10.3390/plants13141953.
  • George, J.; Glover, J.P.; Perera, O.P.; Reddy, G.V.P. Role of Endophytic Entomopathogenic Fungi in Mediating Host Selection, Biology, Behavior, and Management of Tarnished Plant Bug, Lygus lineolaris (Hemiptera: Miridae). Plants 2024, 13, 2012. https://doi.org/10.3390/plants13152012.
  • Benvenuti, S. Weed Role for Pollinator in the Agroecosystem: Plant–Insect Interactions and Agronomic Strategies for Biodiversity Conservation. Plants 2024, 13, 2249. https://doi.org/10.3390/plants13162249.
  • De Brito Machado, D.; Felisberto, J.S.; Queiroz, G.A.d.; Guimarães, E.F.; Ramos, Y.J.; Moreira, D.d.L. From Leaves to Reproductive Organs: Chemodiversity and Chemophenetics of Essential Oils as Important Tools to Evaluate Piper mollicomum Kunth Chemical Ecology Relevance in the Neotropics. Plants 2024, 13, 2497. https://doi.org/10.3390/plants13172497.
  • Pimkornburee, S.; Pombud, S.; Buensanteai, K.; Namanusart, W.; Aiamla-or, S.; Roddee, J. Impact of Cassava Cultivars on Stylet Penetration Behavior and Settling of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Plants 2024, 13, 3218. https://doi.org/10.3390/plants13223218.
  • Jansen-González, S.; Teixeira, S.P.; Pereira, R.A.S. Conflicting Dynamics of Galling and Pollination: Arastichus gallicola (Hymenoptera, Eulophidae), a Specialized Parasitic Galler in Pistillate Flowers of Thaumatophyllum bipinnatifidum (Araceae). Plants 2024, 13, 3520. https://doi.org/10.3390/plants13243520.

References

  1. Waterfield, G.; Zilberman, D. Pest Management in food Systems: An economic perspective. Annu. Rev. Environ. Resour. 2012, 37, 223–245. [Google Scholar] [CrossRef]
  2. Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
  3. Zalucki, M.P.; Shabbir, A.; Silva, R.; Adamson, D.; Shu-Sheng, L.; Furlong, M.J. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? J. Econ. Entomol. 2012, 105, 1115–1129. [Google Scholar] [CrossRef]
  4. Badenes-Pérez, F.R. Benefits of insect pollination in Brassicaceae: A meta-analysis of self-compatible and self-incompatible crop species. Agriculture 2022, 12, 446. [Google Scholar] [CrossRef]
  5. Stout, M.J.; Bernaola, L.; Acevedo, F. Recent history and future trends in host–plant resistance. Ann. Entomol. Soc. Am. 2024, 117, 139–149. [Google Scholar] [CrossRef]
  6. Naranjo, S.E.; Ellsworth, P.C.; Frisvold, G.B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 2015, 60, 621–645. [Google Scholar] [CrossRef]
  7. Peris, D.; Ollerton, J.; Sauquet, H.; Hidalgo, O.; Peñalver, E.; Magrach, A.; Álvarez-Parra, S.; Peña-Kairath, C.; Condamine, F.L.; Delclòs, X.; et al. Evolutionary implications of a deep-time perspective on insect pollination. Biol. Rev. 2025. [Google Scholar] [CrossRef]
  8. Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
  9. Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef]
  10. Rollin, O.; Benelli, G.; Benvenuti, S.; Decourtye, A.; Wratten, S.D.; Canale, A.; Desneux, N. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agron. Sustain. Dev. 2016, 36, 1–22. [Google Scholar] [CrossRef]
  11. Benvenuti, S. Wildflower strips in the agroecosystem for pollinator biodiversity restoration: Which plant species are capable of self-seeding? Ecol. Eng. 2025, 212, 107486. [Google Scholar] [CrossRef]
  12. Badenes-Pérez, F.R.; Johnson, M.T. Ecology and impact of Allorhogas sp. (Hymenoptera: Braconidae) and Apion sp. (Coleoptera: Curculionoidea) on fruits of Miconia calvescens DC (Melastomataceae) in Brazil. Biol. Control 2007, 43, 317–322. [Google Scholar] [CrossRef]
  13. Jansen-González, S.; de Padua Teixeira, S.; Kjellberg, F.; Pereira, R.A.S. Same but different: Larval development and gall-inducing process of a non-pollinating fig wasp compared to that of pollinating fig-wasps. Acta Oecologica 2014, 57, 44–50. [Google Scholar] [CrossRef]
  14. de Brito Machado, D.; Ramos, Y.J.; de Queiroz, G.A.; e Defaveri, A.C.A.; Gobatto, A.A.; de Lima Moreira, D. Study of volatile chemical constituents and insect-plant interaction in Piper mollicomum Kunth (Piperaceae) from Tijuca Forest, Rio de Janeiro—RJ, Brazil. Rev. Virtual Quim. 2021, 13, 1216–1225. [Google Scholar] [CrossRef]
  15. Roddee, J.; Kobori, Y.; Hanboonsong, Y. Characteristics of sugarcane white leaf phytoplasma transmission by the leafhopper Matsumuratettix hiroglyphicus. Entomol. Exp. Appl. 2019, 167, 108–117. [Google Scholar] [CrossRef]
  16. Heck, M. Insect transmission of plant pathogens: A systems biology perspective. mSystems 2018, 3, e00168-17. [Google Scholar] [CrossRef]
  17. Bellotti, A.C.; Arias, B. Host plant resistance to whiteflies with emphasis on cassava as a case study. Crop Prot. 2001, 20, 813–823. [Google Scholar] [CrossRef]
  18. George, J.; Glover, J.P.; Gore, J.; Crow, W.D.; Reddy, G.V.P. Biology, ecology, and pest management of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) in Southern Row Crops. Insects 2021, 12, 807. [Google Scholar] [CrossRef]
  19. Waqas, M.S.; Shi, Z.; Yi, T.-C.; Xiao, R.; Shoaib, A.A.; Elabasy, A.S.; Jin, D.-C. Biology, ecology, and management of cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Pest Manag. Sci. 2021, 77, 5321–5333. [Google Scholar] [CrossRef]
  20. Downes, S.; Kriticos, D.; Parry, H.; Paull, C.; Schellhorn, N.; Zalucki, M.P. A Perspective on management of Helicoverpa armigera: Transgenic Bt cotton, IPM, and landscapes. Pest Manag. Sci. 2017, 73, 485–492. [Google Scholar] [CrossRef]
  21. Prasanna, B.M.; Bruce, A.; Beyene, Y.; Makumbi, D.; Gowda, M.; Asim, M.; Martinelli, S.; Head, G.P.; Parimi, S. Host plant resistance for fall armyworm management in maize: Relevance, status and prospects in Africa and Asia. Theor. Appl. Genet. 2022, 135, 3897–3916. [Google Scholar] [CrossRef] [PubMed]
  22. Kebede, T.G.; Birhane, E.; Ayimut, K.-M.; Egziabher, Y.G.; Belay, T. Arbuscular mycorrhizal fungi-induced resistance in Opuntia ficus-indica (L.) Miller plant against cochineal insects under various soil water levels. Arthropod-Plant Interact. 2024, 18, 253–264. [Google Scholar] [CrossRef]
  23. Rondon, S.I. The potato tuberworm: A literature review of its biology, ecology, and control. Am. J. Potato Res. 2010, 87, 149–166. [Google Scholar] [CrossRef]
  24. Panwar, N.; Szczepaniec, A. Endophytic entomopathogenic fungi as biological control agents of insect pests. Pest Manag. Sci. 2024, 80, 6033–6040. [Google Scholar] [CrossRef]
  25. Russo, M.L.; Jaber, L.R.; Scorsetti, A.C.; Vianna, F.; Cabello, M.N.; Pelizza, S.A. Effect of entomopathogenic fungi introduced as corn endophytes on the development, reproduction, and food preference of the invasive fall armyworm Spodoptera frugiperda. J. Pest Sci. 2021, 94, 859–870. [Google Scholar] [CrossRef]
  26. Zalucki, M.P.; Adamson, D.; Furlong, M.J. The future of IPM: Whither or wither? Aust. J. Entomol. 2009, 48, 85–96. [Google Scholar] [CrossRef]
  27. Van den Berg, J.; du Plessis, H. Chemical control and insecticide resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2022, 115, 1761–1771. [Google Scholar] [CrossRef]
  28. Wang, Q.; Luo, C.; Wang, R. Insecticide resistance and its management in two invasive cryptic species of Bemisia tabaci in China. Int. J. Mol. Sci. 2023, 24, 6048. [Google Scholar] [CrossRef]
  29. Walsh, T.K.; Heckel, D.G.; Wu, Y.; Downes, S.; Gordon, K.H.J.; Oakeshott, J.G. Determinants of insecticide resistance evolution: Comparative analysis among heliothines. Annu. Rev. Entomol. 2022, 67, 387–406. [Google Scholar] [CrossRef]
  30. Alhewairini, S.S.; Al-Azzazy, M.M. Side effects of abamectin and hexythiazox on seven predatory mites. Braz. J. Biol. 2023, 83, e251442. [Google Scholar] [CrossRef]
  31. Giron, D.; Dubreuil, G.; Bennett, A.; Dedeine, F.; Dicke, M.; Dyer, L.A.; Erb, M.; Harris, M.O.; Huguet, E.; Kaloshian, I.; et al. Promises and challenges in insect–plant interactions. Entomol. Exp. Appl. 2018, 166, 319–343. [Google Scholar] [CrossRef]
  32. Sharma, G.; Malthankar, P.A.; Mathur, V. Insect-plant interactions: A multilayered relationship. Ann. Entomol. Soc. Am. 2021, 114, 1–16. [Google Scholar] [CrossRef]
  33. Badenes-Pérez, F.R. Plant-insect interactions. Plants 2022, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
  34. Harvey, J.A.; Tougeron, K.; Gols, R.; Heinen, R.; Abarca, M.; Abram, P.K.; Basset, Y.; Berg, M.; Boggs, C.; Brodeur, J.; et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 2023, 93, e1553. [Google Scholar] [CrossRef]
  35. Hanski, I. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 2011, 40, 248–255. [Google Scholar] [CrossRef]
  36. Fonseca, C.R. The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv. Biol. 2009, 23, 1507–1515. [Google Scholar] [CrossRef]
  37. Al-Azzazy, M.M.; Alhewairini, S.S. Life history of the two predacious mites species, Amblyseius swirskii, and Neoseiulus cucumeris (Acari: Phytoseiidae), as biological control agents of the date palm mite, Oligonychus afrasiaticus (Acari: Tetranychidae). Braz. J. Biol. 2024, 84, e283484. [Google Scholar] [CrossRef]
  38. Hernández-Valencia, V.; Santillán-Galicia, M.T.; Guzmán-Franco, A.W.; Rodríguez-Leyva, E.; Santillán-Ortega, C. Combined application of entomopathogenic fungi and predatory mites for biological control of Tetranychus urticae on Chrysanthemum. Pest Manag. Sci. 2024, 80, 4199–4206. [Google Scholar] [CrossRef]
  39. Badenes-Pérez, F.R.; Márquez, B.P.; Petitpierre, E. Can flowering Barbarea spp. (Brassicaceae) be used simultaneously as a trap crop and in conservation biological control? J. Pest Sci. 2017, 90, 623–633. [Google Scholar] [CrossRef]
  40. Agerbirk, N.; Olsen, C.E.; Bibby, B.M.; Frandsen, H.O.; Brown, L.D.; Nielsen, J.K.; Renwick, J.A.A. A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J. Chem. Ecol. 2003, 29, 1417–1433. [Google Scholar] [CrossRef]
  41. Shinoda, T.; Nagao, T.; Nakayama, M.; Serizawa, H.; Koshioka, M.; Okabe, H.; Kawai, A. Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J. Chem. Ecol. 2002, 28, 587–599. [Google Scholar] [CrossRef] [PubMed]
  42. Christensen, S.; Enge, S.; Jensen, K.R.; Müller, C.; Kiær, L.P.; Agerbirk, N.; Heimes, C.; Hauser, T.P. Different herbivore responses to two co-occurring chemotypes of the wild crucifer Barbarea vulgaris. Arthropod-Plant Interact. 2018, 13, 19–30. [Google Scholar] [CrossRef]
  43. Badenes-Pérez, F.R.; López-Pérez, J.A. Resistance and susceptibility to powdery mildew, root-knot nematode, and western flower thrips in two types of winter cress (Brassicaceae). Crop Prot. 2018, 110, 41–47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Badenes-Pérez, F.R. Plant–Insect Interactions: Host Plant Resistance, Biological Control, and Pollination. Plants 2025, 14, 1488. https://doi.org/10.3390/plants14101488

AMA Style

Badenes-Pérez FR. Plant–Insect Interactions: Host Plant Resistance, Biological Control, and Pollination. Plants. 2025; 14(10):1488. https://doi.org/10.3390/plants14101488

Chicago/Turabian Style

Badenes-Pérez, Francisco Rubén. 2025. "Plant–Insect Interactions: Host Plant Resistance, Biological Control, and Pollination" Plants 14, no. 10: 1488. https://doi.org/10.3390/plants14101488

APA Style

Badenes-Pérez, F. R. (2025). Plant–Insect Interactions: Host Plant Resistance, Biological Control, and Pollination. Plants, 14(10), 1488. https://doi.org/10.3390/plants14101488

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop