Baseline Sensitivity of Echinochloa crus-galli (L.) P.Beauv. and Leptochloa chinensis (L.) Nees to Flusulfinam, a New 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibiting Herbicide in Rice, in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Flusulfinam Dose–Response Assays
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fairhurst, T.; Dobermann, A. Rice in the global food supply. World 2002, 5, 349–511+675. [Google Scholar]
- Zhao, L.; Zhao, C.; Zhou, L.; Wang, C. Current situation and development trends of rice production in China. Jiangsu Agric. Sci. 2015, 43, 105–107. [Google Scholar]
- Zeng, X. Direct seeding rice in Chinese history. Agric. Hist. China 2005, 2, 3–16. [Google Scholar]
- Lu, Q.; Feng, K.Q.; Wu, C.X. Effect of bispyribac-sodium on controlling weeds and its security in direct-seeded rice field. Weed Sci. 2008, 60–62. (In Chinese) [Google Scholar] [CrossRef]
- Sansen, K.; Wongboon, W.; Jairin, J.; Kato, Y. Farmer-participatory evaluation of mechanized dry direct-seeding technology for rice in northeastern Thailand. Plant Prod. Sci. 2019, 22, 46–53. [Google Scholar] [CrossRef]
- Liu, L.C.; Min, J.; Liu, S.X.; Li, X.X.; Pan, X.W.; Liu, W.Q.; Hu, M.; Zhao, Y.; Li, Y.C. Production situation and varieties breeding strategies of direct seeding rice. China Rice 2022, 28, 44–48+56. [Google Scholar]
- Yang, S.; Chen, L.; Zhou, Y.; Tan, X.; Zeng, Y.; Shi, Q. Effects of weeds control on the yield and quality of double-cropping direct-seeded high-quality late indica rice. Crop Mag. 2023, 121–125. [Google Scholar]
- Choi, C.; Moon, B.; Kim, S.; Oh, Y. Ecology and growth of weeds and weedy rice in direct-seeded rice fields. Korean J. Weed Sci. 1995, 15, 39–45. [Google Scholar]
- Lee, I.Y.; Kim, C.S.; Lee, J.; Park, T.S.; Moon, B.C.; Park, J.E. Changes in weed vegetation in paddy fields over the last 50 years in Korea. Weed Turfgrass Sci. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Mukherjee, P.; Maity, S.K. Weed control in transplanted and wet-seeded rainy season rice (Oryza sativa). Indian J. Agric. Sci. 2011, 81, 134–139. [Google Scholar]
- Tshewang, S.; Sindel, B.M.; Ghimiray, M.; Chauhan, B.S. Weed management challenges in rice (Oryza sativa L.) for food security in Bhutan: A review. Crop Prot. 2016, 90, 117–124. [Google Scholar] [CrossRef]
- Xu, X.; Lv, Y.; Zhou, H. Occurrence patterns of weeds in rice cultivation fields and weed control techniques. Jiangsu Agric. Sci. 2000, 4, 33–35. [Google Scholar]
- Ren, Y.F.; Tong, X.M. Survey of weed species and dominant species in live broadcast rice fields in the suburbs of Hangzhou City. J. Zhejiang Agric. Sci. 2000, 5, 241–243. [Google Scholar]
- Zhang, X.L.; Zhang, G.F.; Sun, X.M.; Zhang, J.M.; Zhang, H.J. Characteristics of weed occurrence in live broadcast rice fields and comprehensive management. J. Nanjing Agric. Univ. 2000, 117–118. [Google Scholar]
- Fang, J.; Yang, D.; Zhao, Z.; Chen, J.; Dong, L. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Pest Manag. Sci. 2022, 78, 2560–2570. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Huang, M.; Li, W.; Zeng, D.; Li, J.; Wang, Y. Multiple herbicide resistance in a Cyperus difformis population in rice field from China. Pestic. Biochem. Physiol. 2023, 195, 105576. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Yang, Q.; Chen, Y.; Yang, M.; Xia, Z.; Zhu, J.; Chen, Y.; Cai, J.; Yuan, S. Cyhalofop-butyl and glyphosate multiple-herbicide resistance evolved in an Eleusine indica population collected in Chinese direct-seeding rice. J. Agric. Food Chem. 2020, 68, 2623–2630. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.H.; Tian, Z.H.; Gao, Y.; Shen, G.H. Resistance status of Leptochloa chinensis to three acetyl-CoA carboxylase (ACCase) inhibitors in rice fields in Shanghai and involved ACCase gene mutations. Chin. J. Pestic. Sci. 2022, 24, 492–500. [Google Scholar]
- Heap, I. The International Herbicide-Resistant Weed Database. 1993. Available online: http://www.weedscience.org/ (accessed on 18 March 2025).
- Li, S.F.; Bai, L.Y.; Liu, D.C.; Liu, X.Y.; Ma, G.L.; Peng, Y.J. Resistance and mechanism study of Echinochloa crus-galli in rice fields in Hunan province to penoxsulam. In Proceedings of the 13th National Weed Science Conference, Guiyang, China, 7–10 August 2017. [Google Scholar]
- Liu, X.; Xiang, S.; Zong, T.; Ma, G.; Wu, L.; Liu, K.; Zhou, X.; Bai, L. Herbicide resistance in China: A quantitative review. Weed Sci. 2019, 67, 605–612. [Google Scholar] [CrossRef]
- Xu, P.; Wang, K.; Ju, Y.; Fu, Y.; Zhu, A.; Cao, K.; Wang, H. Herbicide resistance in Leptochloa chinensis (L.) Nees populations from different regions of Jiangsu Province, China: Sensitivity differences and underlying mechanisms. Front. Plant Sci. 2025, 16, 1535877. [Google Scholar] [CrossRef]
- Yu, Y.K. Study on Safety of Seven Herbicides to Water Direct-Seeding Rice. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2017. [Google Scholar]
- Almsick, A. New HPPD-inhibitors-a proven mode of action as a new hope to solve current weed problems. Outlooks Pest Manag. 2009, 20, 27–30. [Google Scholar] [CrossRef]
- Lindblad, B.; Lindstedt, G.; Lindstedt, S. Mechanism of enzymic formation of homogentisate from p-hydroxyphenylpyruvate. J. Am. Chem. Soc. 1970, 92, 7446–7449. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.L.; Prisbylla, M.P.; Cromartie, T.H.; Dagarin, D.P.; Howard, S.W.; Provan, W.M.; Ellis, M.K.; Fraser, T.; Mutter, L.C. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 1997, 45, 601–609. [Google Scholar] [CrossRef]
- Grossmann, K.; Ehrhardt, T. On the mechanism of action and selectivity of the corn herbicide topramezone: A new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Pest Manag. Sci. 2007, 63, 429–439. [Google Scholar] [CrossRef]
- Foyer, C.; Descourvieres, P.; Kunert, K. Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell Environ. 1994, 17, 507–523. [Google Scholar] [CrossRef]
- Niyogi, K.K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Biol. 1999, 50, 333–359. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.R.; Barrette, T.R.; DellaPenna, D. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 1995, 7, 2139–2149. [Google Scholar]
- Anonymous, China Pesticide Information Network. Registered Data. Available online: http://www.icama.org.cn/zwb/dataCenter (accessed on 10 May 2024).
- Kim, S.Y.; Oh, S.H.; Lee, J.Y.; Yeo, U.S.; Lee, J.H.; Cho, J.H.; Song, Y.C.; Oh, M.K.; Han, S.I.; Seo, W.D. Differential sensitivity of rice cultivars to HPPD-inhibiting herbicides and their influences on rice yield. Korean J. Crop Sci. 2012, 57, 160–165. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, C.; Gu, G.; Li, B.; Ren, Y.; Li, X.; Li, S. Herbicidal activity evaluation of benzobicyclon and its safety to rice. Chin. J. Pestic. Sci. 2018, 20, 18–24. [Google Scholar]
- Komatsubara, K.I.; Sekino, K.; Yamada, Y.; Koyanagi, H.; Nakahara, S. Discovery and development of a new herbicide, benzobicyclon. J. Pestic. Sci. 2009, 34, 113–114. [Google Scholar] [CrossRef]
- Wang, H.Z. Study on Mechanism, Feasibility of Weed Control in Paddy Field and Soil Ecological Environment Safety of a New Compound Tripyrasulfone. Ph.D. Thesis, Shandong Agricultural University, Tai’an, China, 2021. [Google Scholar]
- Sun, H.; Yu, S.; Huang, T.; Lian, L.; Jin, T.; Peng, X.; Hao, G.; Wang, J.; Liu, W.; Wang, H. Physiological basis for the mechanism of selectivity of tripyrasulfone between rice (Oryza sativa) and barnyard grass (Echinochloa crus-galli). J. Agric. Food Chem. 2024, 72, 14402–14410. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, W.; Zhao, K.; Yu, H.; Zhang, J.; Wang, J. Evaluation of weed control efficacy and crop safety of the new HPPD-inhibiting herbicide-QYR301. Sci. Rep. 2018, 8, 7910. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Zhu, J.; Liang, L.; Zhang, H.; Liao, Y.; Li, J.; Lian, L.; Tan, H.; Zhao, F. Novel herbicide flusulfinam: Absolute configuration, enantioseparation, enantioselective bioactivity, toxicity and degradation in paddy soils. Pest Manag. Sci. 2024, 80, 5244–5255. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, X.; Heng, Z.; Qin, S.; Liang, L.; Liao, Y.; Zhu, J.; Tan, H.; Zhao, F. Comprehensive study of chiral herbicide flusulfinam uptake, translocation, degradation, and subcellular distribution in rice (Oryza sativa L.). Pestic. Biochem. Physiol. 2024, 204, 106018. [Google Scholar] [CrossRef] [PubMed]
- Hausman, N.E.; Singh, S.; Tranel, P.J.; Riechers, D.E.; Kaundun, S.S.; Polge, N.D.; Thomas, D.A.; Hager, A.G. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag. Sci. 2011, 67, 258–261. [Google Scholar] [CrossRef]
- Jhala, A.J.; Sandell, L.D.; Rana, N.; Kruger, G.R.; Knezevic, S.Z. Confirmation and control of triazine and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska. Weed Technol. 2014, 28, 28–38. [Google Scholar] [CrossRef]
- Küpper, A.; Peter, F.; Zöllner, P.; Lorentz, L.; Tranel, P.J.; Beffa, R.; Gaines, T.A. Tembotrione detoxification in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer amaranth (Amaranthus palmeri S. Wats.). Pest Manag. Sci. 2018, 74, 2325–2334. [Google Scholar] [CrossRef]
- McMullan, P.M.; Green, J.M. Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol. 2011, 25, 514–518. [Google Scholar] [CrossRef]
- Nakka, S.; Godar, A.S.; Wani, P.S.; Thompson, C.R.; Peterson, D.E.; Roelofs, J.; Jugulam, M. Physiological and molecular characterization of hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor resistance in Palmer amaranth (Amaranthus palmeri S. Wats.). Front. Plant Sci. 2017, 8, 555. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Jhala, A.J.; Gaines, T.; Irmak, S.; Amundsen, K.; Scott, J.E.; Knezevic, S.Z. Confirmation and control of HPPD-inhibiting herbicide–resistant waterhemp (Amaranthus tuberculatus) in Nebraska. Weed Technol. 2017, 31, 67–79. [Google Scholar] [CrossRef]
- Varanasi, V.K.; Brabham, C.; Norsworthy, J.K. Confirmation and characterization of non–target site resistance to fomesafen in Palmer amaranth (Amaranthus palmeri). Weed Sci. 2018, 66, 702–709. [Google Scholar] [CrossRef]
- Busi, R.; Zhang, B.; Goggin, D.; Bryant, G.; Beckie, H.J. Identification of field resistance to HPPD-inhibiting herbicides in wild radish (Raphanus raphanistrum). Weed Sci. 2022, 70, 529–536. [Google Scholar] [CrossRef]
- Lu, H.; Yu, Q.; Han, H.; Owen, M.J.; Powles, S.B. Evolution of resistance to HPPD-inhibiting herbicides in a wild radish population via enhanced herbicide metabolism. Pest Manag. Sci. 2020, 76, 1929–1937. [Google Scholar] [CrossRef]
- Ju, B.; Liu, M.; Fang, Y.; Liu, L.; Pan, L. First report on resistance to HPPD herbicides mediated by nontarget-site mechanisms in the grass Leptochloa chinensis. J. Agric. Food Chem. 2023, 71, 17669–17677. [Google Scholar] [CrossRef] [PubMed]
- Gressel, J. Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manag. Sci. 2011, 67, 253–257. [Google Scholar] [CrossRef]
- Paterson, E.A.; Shenton, Z.L.; Straszewski, A.E. Establishment of the baseline sensitivity and monitoring response of Papaver rhoeas populations to florasulam. Pest Manag. Sci. 2002, 58, 964–966. [Google Scholar] [CrossRef]
- Ulber, L.; Nordmeyer, H.; Zwerger, P. Resistance risk assessment within herbicide authorization-a call for sensitivity data. Pest Manag. Sci. 2013, 69, 160–164. [Google Scholar] [CrossRef]
- Moss, S. Baseline sensitivity to herbicides: A guideline to methodologies. In Proceedings of the Brighton Crop Protection Conference-Weeds, Brighton, UK, 12–15 November 2001; pp. 769–774. [Google Scholar]
- EPPO (European and Mediterranean Plant Protection Organization). Efficacy evaluation of plant protection products. Resistance risk analysis. PP1/213 (3). EPPO Bull. 2015, 45, 371–387. [Google Scholar]
- Wang, H.; Li, Y.; Wang, L.; Liu, W.; Wang, J. Baseline sensitivity of Echinochloa crus-galli (L.) P. Beauv. to tripyrasulfone, a new HPPD-inhibiting herbicide, in China. Crop Prot. 2022, 158, 105993. [Google Scholar] [CrossRef]
- Seefeldt, S.S.; Jensen, J.E.; Fuerst, E.P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
- Escorial, M.-C.; Chueca, M.-C.; Pérez-Fernández, A.; Loureiro, I. Glyphosate sensitivity of selected weed species commonly found in maize fields. Weed Sci. 2019, 67, 633–641. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Herbicide-resistant barnyardgrass (Echinochloa crus-galli) in global rice production. Weed Biol. Manag. 2023, 23, 23–33. [Google Scholar] [CrossRef]
- Russel, P. Sensitivity Baselines in Fungicide Resistance Research and Management, FRAC Monograph 3; CropLife International: Brussels, Belgium, 2004. [Google Scholar]
- Lim, S.H.; Kim, H.; Noh, T.K.; Lim, J.S.; Yook, M.J.; Kim, J.W.; Yi, J.H.; Kim, D.S. Baseline sensitivity of Echinochloa crus-galli and E. oryzicola to florpyrauxifen-benzyl, a new synthetic auxin herbicide, in Korea. Front. Plant Sci. 2021, 12, 656642. [Google Scholar] [CrossRef] [PubMed]
- Moss, S. Black-grass (Alopecurus myosuroides): Why has this weed become such a problem in Western Europe and what are the solutions? Outlooks Pest Manag. 2017, 28, 207–212. [Google Scholar] [CrossRef]
- Espeby, L.Å.; Fogelfors, H.; Milberg, P. Susceptibility variation to new and established herbicides: Examples of inter-population sensitivity of grass weeds. Crop Prot. 2011, 30, 429–435. [Google Scholar] [CrossRef]
- Patzoldt, W.L.; Tranel, P.J.; Hager, A.G. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot. 2002, 21, 707–712. [Google Scholar] [CrossRef]
- Schulz, A.; Mathiassen, S.K.; de Mol, F. Approaches to early detection of herbicide resistance in Apera spica-venti regarding intra-and inter-field situations. J. Plant Dis. Prot. 2014, 121, 138–148. [Google Scholar] [CrossRef]
- Claerhout, S.; Reheul, D.; De Cauwer, B. Sensitivity of Echinochloa crus-galli populations to maize herbicides: A comparison between cropping systems. Weed Res. 2015, 55, 470–481. [Google Scholar] [CrossRef]
- Kniss, A.R.; Miller, S.D.; Westra, P.H.; Wilson, R.G. Glyphosate susceptibility in common lambsquarters (Chenopodium album) is influenced by parental exposure. Weed Sci. 2007, 55, 572–577. [Google Scholar] [CrossRef]
- Tharp, B.E.; Schabenberger, O.; Kells, J.J. Response of annual weed species to glufosinate and glyphosate. Weed Technol. 1999, 13, 542–547. [Google Scholar] [CrossRef]
Population | Sampling Sites | Latitude/Longitude | Flusulfinam (g a.i. ha−1) | |
---|---|---|---|---|
a GR50 | b SE | |||
JX-1 | Jiangxi Province | 28.70° N/116.69° E | 12.29 | 0.34 |
JX-2 | 28.54° N/115.94° E | 10.21 | 0.58 | |
JS-1 | Jiangsu Province | 34.72° N/116.93° E | 2.79 | 0.25 |
JS-2 | 32.04° N/118.76° E | 5.77 | 0.26 | |
JS-3 | 30.47° N/118.36° E | 6.59 | 1.21 | |
JS-4 | 34.72° N/116.93° E | 16.27 | 3.24 | |
SH-1 | Shanghai City | 31.23° N/121.47° E | 7.46 | 0.64 |
SH-2 | 30.74° N/121.34° E | 19.39 | 1.88 | |
SH-3 | 30.91° N/121.47° E | 13.80 | 4.02 | |
ZJ-1 | Zhejiang Province | 30.50° N/120.68° E | 9.58 | 1.24 |
ZJ-2 | 30.67° N/121.01° E | 5.04 | 1.33 | |
ZJ-3 | 30.52° N/120.90° E | 9.12 | 1.03 | |
AH-1 | Anhui Province | 33.16° N/115.62° E | 1.30 | 0.53 |
AH-2 | 33.63° N/116.98° E | 4.02 | 0.67 | |
AH-3 | 31.41° N/117.60° E | 11.30 | 1.83 | |
HLJ-1 | Heilongjiang Province | 46.80° N/130.37° E | 4.17 | 0.24 |
HLJ-3 | 46.48° N/132.29° E | 4.44 | 3.05 | |
XJ-1 | Xinjiang Uighur Autonomous Region | 43.79° N/87.62° E | 0.57 | 1.20 |
XJ-2 | 43.47° N/87.41° E | 1.35 | 0.16 | |
hn-1 | Henan Province | 36.10° N/114.35° E | 1.58 | 0.45 |
hn-2 | 35.74° N/114.29° E | 7.15 | 0.47 | |
hn-3 | 34.74° N/113.61° E | 2.72 | 0.35 | |
NX-1 | Ningxia Hui Autonomous Region | 38.46° N/106.27° E | 0.45 | 0.34 |
HB-1 | Hebei Province | 39.62° N/118.15° E | 9.15 | 0.17 |
HB-2 | 38.04° N/114.50° E | 4.07 | 0.39 | |
JL-1 | Jilin Province | 43.90° N/125.32° E | 6.78 | 0.27 |
YN-1 | Yunnan Province | 25.03° N/102.70° E | 5.67 | 0.54 |
YN-2 | 25.68° N/104.26° E | 14.76 | 2.49 | |
FJ-1 | Fujian Province | 26.08° N/119.30° E | 2.68 | 0.13 |
SD-1 | Shandong Province | 36.19° N/117.13° E | 2.11 | 0.19 |
HLJ-2 | 35.40° N/116.59° E | 11.73 | 0.95 | |
SX-1 | Shanxi Province | 37.85° N/112.54° E | 4.08 | 0.58 |
GD-1 | Guangdong Province | 23.15° N/113.27° E | 6.59 | 0.35 |
HN-1 | Hunan Province | 28.34° N/111.20° E | 1.58 | 0.45 |
HN-2 | 28.14° N/111.46° E | 0.15 | 0.47 | |
GX-1 | Guangxi Zhuang Autonomous Region | 24.39° N/109.53° E | 9.31 | 1.11 |
GX-2 | 23.71° N/109.46° E | 8.30 | 0.78 | |
GZ-1 | Guizhou Province | 27.91° N/108.86° E | 3.33 | 0.64 |
GZ-2 | 28.20° N/108.38° E | 5.18 | 0.85 |
Population | Sampling Sites | Latitude/Longitude | Flusulfinam (g a.i. ha−1) | |
---|---|---|---|---|
a GR50 | b SE | |||
AH-1 | Anhui Province | 30.92° N/118.34° E | 48.72 | 4.30 |
AH-2 | 31.25° N/117.29° E | 22.80 | 1.04 | |
AH-3 | 31.22° N/117.23° E | 10.17 | 0.65 | |
AH-4 | 31.29° N/117.95° E | 26.74 | 2.94 | |
AH-5 | 31.47° N/116.94° E | 21.84 | 3.14 | |
FJ-1 | Fujian Province | 26.08° N/119.30° E | 32.19 | 2.05 |
FJ-2 | 25.96° N/119.52° E | 11.10 | 0.80 | |
GD-1 | Guangdong Province | 21.64° N/110.92° E | 30.03 | 0.92 |
GD-2 | 21.38° N/110.25° E | 35.87 | 0.97 | |
GD-3 | 21.19° N/110.39° E | 13.79 | 0.97 | |
GX-1 | Guangxi Zhuang Autonomous Region | 22.85° N/108.37° E | 23.80 | 1.17 |
GX-2 | 25.27° N/110.30° E | 18.75 | 5.97 | |
HB-1 | Hubei Province | 30.68° N/113.50° E | 12.26 | 2.12 |
HB-2 | 32.29° N/112.21° E | 9.56 | 1.34 | |
hn-1 | Henan Province | 32.60° N/114.39° E | 31.65 | 5.32 |
HN-1 | Hunan Province | 28.64° N/112.61° E | 12.45 | 1.35 |
HN-2 | 28.72° N/112.68° E | 25.47 | 0.73 | |
HN-3 | 28.25° N/112.56° E | 18.63 | 0.85 | |
JS-1 | Jiangsu Province | 33.47° N/119.80° E | 44.62 | 4.67 |
JS-2 | 33.46° N/118.22° E | 35.83 | 2.90 | |
JS-3 | 33.46° N/118.22° E | 12.93 | 0.97 | |
JS-4 | 33.47° N/119.80° E | 8.36 | 0.68 | |
JX-1 | Jiangxi Province | 29.00° N/116.05° E | 13.64 | 1.47 |
JX-2 | 29.04° N/116.06° E | 20.35 | 0.68 | |
SC-1 | Sichuan Province | 30.68° N/103.85° E | 21.86 | 1.13 |
SC-2 | 26.69° N/101.85° E | 49.92 | 4.89 | |
SC-3 | 26.50° N/101.74° E | 23.22 | 1.63 | |
SD-1 | Shandong Province | 35.00° N/116.65° E | 7.82 | 0.98 |
SH-1 | Shanghai City | 31.15° N/121.12° E | 19.95 | 0.99 |
SH-2 | 31.22° N/121.54° E | 30.31 | 0.92 | |
SH-3 | 31.12° N/121.15° E | 16.41 | 0.97 | |
SH-4 | 31.21° N/121.54° E | 11.78 | 0.93 | |
SX-1 | Shaanxi Province | 32.70° N/109.03° E | 15.65 | 0.55 |
SX-2 | 34.33° N/108.71° E | 21.34 | 1.55 | |
SX-3 | 34.27° N/108.96° E | 20.55 | 1.45 | |
SX-4 | 34.27° N/108.94° E | 9.96 | 0.94 | |
YN-1 | Yunnan Province | 24.67° N/102.91° E | 24.64 | 2.89 |
ZJ-1 | Zhejiang Province | 29.99° N/120.58° E | 18.74 | 6.46 |
ZJ-2 | 30.13° N/120.76° E | 35.93 | 0.96 | |
ZJ-3 | 29.97° N/120.60° E | 23.62 | 0.75 | |
ZJ-4 | 29.95° N/120.64° E | 16.32 | 0.98 | |
HLJ-1 | Heilongjiang Province | 46.65° N/131.17° E | 23.32 | 1.35 |
GZ-1 | Guizhou Province | 26.44° N/108.71° E | 29.32 | 2.34 |
Weed Species | SI50 (g a.i. ha−1) a | SI50b (g a.i. ha−1) b |
---|---|---|
E. crus-galli | 129.27 | 2.99 |
L. chinensis | 6.38 | 2.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Sun, X.; Yu, S.; Sun, H.; Lian, L.; Peng, X.; Jin, T.; Liu, W.; Wang, H. Baseline Sensitivity of Echinochloa crus-galli (L.) P.Beauv. and Leptochloa chinensis (L.) Nees to Flusulfinam, a New 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibiting Herbicide in Rice, in China. Plants 2025, 14, 1425. https://doi.org/10.3390/plants14101425
Li Z, Sun X, Yu S, Sun H, Lian L, Peng X, Jin T, Liu W, Wang H. Baseline Sensitivity of Echinochloa crus-galli (L.) P.Beauv. and Leptochloa chinensis (L.) Nees to Flusulfinam, a New 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibiting Herbicide in Rice, in China. Plants. 2025; 14(10):1425. https://doi.org/10.3390/plants14101425
Chicago/Turabian StyleLi, Zihao, Xinyu Sun, Shuo Yu, He Sun, Lei Lian, Xuegang Peng, Tao Jin, Weitang Liu, and Hengzhi Wang. 2025. "Baseline Sensitivity of Echinochloa crus-galli (L.) P.Beauv. and Leptochloa chinensis (L.) Nees to Flusulfinam, a New 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibiting Herbicide in Rice, in China" Plants 14, no. 10: 1425. https://doi.org/10.3390/plants14101425
APA StyleLi, Z., Sun, X., Yu, S., Sun, H., Lian, L., Peng, X., Jin, T., Liu, W., & Wang, H. (2025). Baseline Sensitivity of Echinochloa crus-galli (L.) P.Beauv. and Leptochloa chinensis (L.) Nees to Flusulfinam, a New 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibiting Herbicide in Rice, in China. Plants, 14(10), 1425. https://doi.org/10.3390/plants14101425