High-Throughput Phenotyping for Agronomic Traits in Cassava Using Aerial Imaging
Abstract
:1. Introduction
2. Results
2.1. Heritability and Correlation Between Agronomic Traits and Vegetation Indices
2.2. Prediction of Agronomic Traits Based on Vegetation Indices at Different Flight Height
3. Discussion
3.1. Efficiency of Measuring Cassava Plant Height Using Digital Elevation Models
3.2. Correlation Between Vegetation Indices and Agronomic Data in Cassava
3.3. Influence of Flight Height on Vegetation Indices
3.4. Heritability of Vegetation Indices and Agronomic Traits
3.5. Performance of Vegetation Index-Based Models for Predicting Agronomic Traits in Cassava
3.6. Applications of Aerial Imaging in Cassava Breeding
4. Conclusions
5. Materials and Methods
5.1. Plant Material and Experimental Design
5.2. Evaluation of Agronomic Traits
5.3. Image Acquisition
5.4. Orthomosaic Construction, Processing, and Radiometric Calibration
5.5. Estimation of Plant Height from Aerial Images
5.6. Acquisition of Vegetation Indices
5.7. Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hormhuan, P.; Viboonjun, U.; Sojikul, P.; Narangajavana, J. Enhancing of anthracnose disease resistance indicates a potential role of antimicrobial peptide genes in cassava. Genetica 2020, 148, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Jansson, C.; Westerbergh, A.; Zhang, J.; Hu, X.; Sun, C. Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl. Energy 2009, 86, S95–S99. [Google Scholar] [CrossRef]
- Tomlinson, K.R.; Bailey, A.M.; Alicai, T.; Seal, S.; Foster, G.D. Cassava brown streak disease: Historical timeline, current knowledge and future prospects. Mol. Plant Pathol. 2018, 19, 1282–1294. [Google Scholar] [CrossRef] [PubMed]
- FAO, Foundation Agricultural Organization. FAOSTAT Database. Available online: https://www.fao.org/faostat/en/#home (accessed on 7 March 2022).
- de Andrade, L.R.B.; e Sousa, M.B.; Oliveira, E.J.; de Resende, M.D.V.; Azevedo, C.F. Cassava yield traits predicted by genomic selection methods. PLoS ONE 2019, 14, e0224920. [Google Scholar] [CrossRef]
- Chawade, A.; van Ham, J.; Blomquist, H.; Bagge, O.; Alexandersson, E.; Ortiz, R. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 2019, 9, 258. [Google Scholar] [CrossRef]
- Quirós Vargas, J.J.; Zhang, C.; Smitchger, J.A.; McGee, R.J.; Sankaran, S. Phenotyping of plant biomass and performance traits using remote sensing techniques in pea (Pisum Sativum L.). Sensors 2019, 19, 2031. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Du, J.; Guo, X.; Wen, W.; Gu, S.; Wang, J.; Fan, J. Crop phenomics: Current status and perspectives. Front. Plant Sci. 2019, 10, 714. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Verger, A.; Vigneau, N.; Chéron, C.; Gilliot, J.-M.; Comar, A.; Baret, F. Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sens. Environ. 2014, 152, 654–664. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Harmse, C.J.; Gerber, H.; van Niekerk, A. Evaluating Several vegetation indices derived from sentinel-2 imagery for quantifying localized overgrazing in a semi-arid region of South Africa. Remote Sens. 2022, 14, 1720. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting Grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Qian, C.; Shao, L.; Hou, X.; Zhang, B.; Chen, W.; Xia, X. Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: A Case Study in Shaanxi Province. CATENA 2019, 183, 104182. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Bernardi, A.C.d.C.; Bosi, C.; Crippa, P.H.; Santos, P.M.; Nardachione, E.C. Assessment of Piatã palisadegrass forage mass in integrated livestock production systems using a proximal canopy reflectance sensor. Eur. J. Agron. 2019, 103, 130–139. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Bernardi, A.C.d.C.; Rabello, L.M.; Inamasu, R.Y.; Grego, C.R.; Andrade, R.G. Variabilidade espacial de parâmetros físico-químicas do solo e biofísicos de superfície em cultivo do sorgo. Rev. Bras. Eng. Agríc. Ambient. 2014, 18, 623–630. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; del Campo, A.; Moreno, M.A. Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 66–75. [Google Scholar] [CrossRef]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef]
- Selvaraj, M.G.; Valderrama, M.; Guzman, D.; Valencia, M.; Ruiz, H.; Acharjee, A. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (Manihot esculenta Crantz). Plant Methods 2020, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of vegetation indices derived by UAV Imagery for durum wheat phenotyping under a water limited and heat stressed Mediterranean environment. Front. Plant Sci. 2017, 8, 1114. [Google Scholar] [CrossRef]
- Santos Silva, P.P.; e Sousa, M.B.; de Oliveira, E.J. Prediction models and selection of agronomic and physiological traits for tolerance to water deficit in cassava. Euphytica 2019, 215, 73. [Google Scholar] [CrossRef]
- Adu, M.O.; Asare, P.A.; Asare-Bediako, E.; Amenorpe, G.; Ackah, F.K.; Afutu, E.; Amoah, M.N.; Yawson, D.O. Characterising shoot and root system trait variability and contribution to genotypic variability in juvenile cassava (Manihot esculenta Crantz) Plants. Heliyon 2018, 4, e00665. [Google Scholar] [CrossRef]
- Elbasi, E.; Zaki, C.; Topcu, A.E.; Abdelbaki, W.; Zreikat, A.I.; Cina, E.; Shdefat, A.; Saker, L. Crop prediction model using machine learning algorithms. Appl. Sci. 2023, 13, 9288. [Google Scholar] [CrossRef]
- Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A Comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction. IEEE Access 2021, 9, 63406–63439. [Google Scholar] [CrossRef]
- Hu, P.; Guo, W.; Chapman, S.C.; Guo, Y.; Zheng, B. Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding. ISPRS J. Photogramm. Remote Sens. 2019, 154, 1–9. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.-J.; Notario García, M.D.; Meroño de Larriva, J.E.; García-Ferrer, A. An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors 2016, 16, 1838. [Google Scholar] [CrossRef]
- Rattanasopa, K.; Saengprachatanarug, K.; Wongpichet, S.; Posom, J.; Saikaew, K.; Ungsathittavorn, K.; Pilawut, S.; Chinapas, A.; Taira, E. UAV-based multispectral imagery for estimating cassava tuber yields. Eng. Agric. Environ. Food 2022, 15, 1–12. [Google Scholar] [CrossRef]
- Zhao, J.; Kumar, A.; Banoth, B.N.; Marathi, B.; Rajalakshmi, P.; Rewald, B.; Ninomiya, S.; Guo, W. Deep-learning-based multispectral image reconstruction from single natural color RGB image—Enhancing UAV-based phenotyping. Remote Sens. 2022, 14, 1272. [Google Scholar] [CrossRef]
- Lipovac, A.; Bezdan, A.; Moravčević, D.; Djurović, N.; Ćosić, M.; Benka, P.; Stričević, R. Correlation between ground measurements and UAV sensed vegetation indices for yield prediction of common bean grown under different irrigation treatments and sowing periods. Water 2022, 14, 3786. [Google Scholar] [CrossRef]
- Avtar, R.; Suab, S.A.; Syukur, M.S.; Korom, A.; Umarhadi, D.A.; Yunus, A.P. Assessing the influence of UAV altitude on extracted biophysical parameters of young oil palm. Remote Sens. 2020, 12, 3030. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; De Castro, A.I.; López-Granados, F. Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis. Agric. 2014, 15, 44–56. [Google Scholar] [CrossRef]
- Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; LeClair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B. Remote sensing of the environment with small unmanned aircraft systems (UASs), Part 2: Scientific and commercial applications. J. Unmanned Veh. Syst. 2014, 2, 86–102. [Google Scholar] [CrossRef]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef]
- Assmann, J.J.; Kerby, J.T.; Cunliffe, A.M.; Myers-Smith, I.H. Vegetation monitoring using multispectral sensors—Best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 2019, 7, 54–75. [Google Scholar] [CrossRef]
- Stow, D.; Nichol, C.J.; Wade, T.; Assmann, J.J.; Simpson, G.; Helfter, C. Illumination geometry and flying height influence surface reflectance and NDVI derived from multispectral UAS imagery. Drones 2019, 3, 55. [Google Scholar] [CrossRef]
- Perroy, R.L.; Sullivan, T.; Stephenson, N. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system. ISPRS J. Photogramm. Remote Sens. 2017, 125, 174–183. [Google Scholar] [CrossRef]
- Quirós, J.J.; Khot, L.R. Potential of low altitude multispectral imaging for in-field apple tree nursery inventory mapping. IFAC-PapersOnLine 2016, 49, 421–425. [Google Scholar] [CrossRef]
- e Silva, C.M.; Mezzomo, H.C.; Ribeiro, J.P.O.; Signorini, V.S.; Lima, G.W.; Vieira, E.F.T.; Portes, M.F.; Morota, G.; de Paula Corredo, L.; Nardino, M. Insights on multi-spectral vegetation indices derived from UAV-based high-throughput phenotyping for indirect selection in tropical wheat breeding. Euphytica 2024, 220, 35. [Google Scholar] [CrossRef]
- Tao, X.; Li, Y.; Yan, W.; Wang, M.; Tan, Z.; Jiang, J.; Luan, Q. Heritable variation in tree growth and needle vegetation indices of slash pine (Pinus elliottii) using unmanned aerial vehicles (UAVs). Ind. Crops Prod. 2021, 173, 114073. [Google Scholar] [CrossRef]
- Ferreira, F.M.; Leite, R.V.; Malikouski, R.G.; Peixoto, M.A.; Bernardeli, A.; Alves, R.S.; de Magalhães Júnior, W.C.P.; Andrade, R.G.; Bhering, L.L.; Machado, J.C. Bioenergy elephant grass genotype selection leveraged by spatial modeling of conventional and high-throughput phenotyping data. J. Clean. Prod. 2022, 363, 132286. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Benjamin Cummings: Harlow, UK, 1996. [Google Scholar]
- Ceballos, H.; Pérez, J.C.; Joaqui Barandica, O.; Lenis, J.I.; Morante, N.; Calle, F.; Pino, L.; Hershey, C.H. Cassava breeding I: The value of breeding value. Front. Plant Sci. 2016, 7, 1227. [Google Scholar] [CrossRef]
- Sampaio Filho, J.S.; Olivoto, T.; Campos, M.d.S.; de Oliveira, E.J. Multi-trait selection in multi-environments for performance and stability in cassava genotypes. Front. Plant Sci. 2023, 14, 1282221. [Google Scholar] [CrossRef]
- da Conceicão, L.V.; Cortes, D.F.M.; Klauser, D.; Robinson, M.; de Oliveira, E.J. New Protocol for rapid cassava multiplication in field conditions: A perspective on speed breeding. Front. Plant Sci. 2023, 14, 1258101. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Q.; Li, F.; Yan, L.; Huang, Y.; Wang, Q.; Luo, L. Effects of growth stage development on paddy rice leaf area index prediction models. Remote Sens. 2019, 11, 361. [Google Scholar] [CrossRef]
- Ganeva, D.; Roumenina, E.; Dimitrov, P.; Gikov, A.; Jelev, G.; Dyulgenova, B.; Valcheva, D.; Bozhanova, V. Remotely sensed phenotypic traits for heritability estimates and grain yield prediction of barley using multispectral imaging from UAVs. Sensors 2023, 23, 5008. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Cheng, Q.; Duan, F.; Sui, R.; Huang, X.; Xu, H. UAV-based hyperspectral and ensemble machine learning for predicting yield in winter wheat. Agronomy 2022, 12, 202. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Dong, Y.; Ye, H.; Ma, H.; Liu, B.; Wu, W.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [Google Scholar] [CrossRef]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Dong, Y.; Guo, A.; Ren, Y.; Jin, Y. Recognition of Banana Fusarium Wilt Based on UAV Remote Sensing. Remote Sens. 2020, 12, 938. [Google Scholar] [CrossRef]
- Wang, X.; Reddy, C.K.; Xu, B. A systematic comparative study on morphological, crystallinity, pasting, thermal and functional characteristics of starches resources utilized in China. Food Chem. 2018, 259, 81–88. [Google Scholar] [CrossRef]
- Iizuka, K.; Kato, T.; Silsigia, S.; Soufiningrum, A.Y.; Kozan, O. Estimating and Examining the Sensitivity of Different Vegetation Indices to Fractions of Vegetation Cover at Different Scaling Grids for Early Stage Acacia Plantation Forests Using a Fixed-Wing UAS. Remote Sens. 2019, 11, 1816. [Google Scholar] [CrossRef]
- Wolfe, M.D.; Del Carpio, D.P.; Alabi, O.; Ezenwaka, L.C.; Ikeogu, U.N.; Kayondo, I.S.; Lozano, R.; Okeke, U.G.; Ozimati, A.A.; Williams, E.; et al. Prospects for genomic selection in cassava breeding. Plant Genome 2017, 10, plantgenome2017.03.0015. [Google Scholar] [CrossRef]
- Torres, L.G.; Vilela de Resende, M.D.; Azevedo, C.F.; Fonseca e Silva, F.; de Oliveira, E.J. Genomic selection for productive traits in biparental cassava breeding populations. PLoS ONE 2019, 14, e0220245. [Google Scholar] [CrossRef]
- Bongomin, O.; Lamo, J.; Guina, J.M.; Okello, C.; Ocen, G.G.; Obura, M.; Alibu, S.; Owino, C.A.; Akwero, A.; Ojok, S. UAV image acquisition and processing for high-throughput phenotyping in agricultural research and breeding programs. Plant Phenome J. 2024, 7, e20096. [Google Scholar] [CrossRef]
- Chivasa, W.; Mutanga, O.; Biradar, C. Phenology-Based Discrimination of Maize (Zea mays L.) Varieties using multitemporal hyperspectral data. J. Appl. Remote Sens. 2019, 13, 017504. [Google Scholar] [CrossRef]
- Herzig, P.; Borrmann, P.; Knauer, U.; Klück, H.-C.; Kilias, D.; Seiffert, U.; Pillen, K.; Maurer, A. Evaluation of RGB and multispectral unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping and yield prediction in barley breeding. Remote Sens. 2021, 13, 2670. [Google Scholar] [CrossRef]
- da Silva Souza, L.; Farias, A.R.N.; de Mattos, P.L.P.; Fukuda, W.M.G. Livro Aspectos Socioeconomicos e Agronomicos da Mandioca; Embrapa Mandioca e Fruticultura: Cruz das Almas, Brazil, 2006; Volume 1. [Google Scholar]
- Kawano, K.; Fukuda, W.M.G.; Cenpukdee, U. Genetic and environmental effects on dry matter content of cassava root. Crop Sci. 1987, 27, 69–74. [Google Scholar] [CrossRef]
- Matias, F.I.; Caraza-Harter, M.V.; Endelman, J.B. FIELDimageR: An R package to analyze orthomosaic images from agricultural field trials. Plant Phenome J. 2020, 3, e20005. [Google Scholar] [CrossRef]
- R Development Core Team. R A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=3131254 (accessed on 11 March 2022).
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Escadafal, R. Soil spectral properties and their relationships with environmental parameters—Examples from arid regions. In Imaging Spectrometry—A Tool for Environmental Observations; Hill, J., Mégier, J., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 71–87. [Google Scholar] [CrossRef]
- Mathieu, R.; Pouget, M.; Cervelle, B.; Escadafal, R. Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment. Remote Sens. Environ. 1998, 66, 17–28. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote Spectral Measurements as a Method for Determining Plant Cover; Technical Report No. 167 (U.S. National Committee for the International Biological Program); U.S. International Biological Program: Ft. Collins, CO, USA, 1972. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Cullis, B.R.; Smith, A.B.; Coombes, N.E. On the design of early generation variety trials with correlated data. J. Agric. Biol. Environ. Stat. 2006, 11, 381–393. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation—Dplyr-Package, R Package Version 1.1.4; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://dplyr.tidyverse.org/reference/dplyr-package.html (accessed on 7 September 2024).
- Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. Available online: https://rpkgs.datanovia.com/ggpubr/authors.html (accessed on 7 September 2024).
- Kuhn, M. Building predictive models in r using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
Flight Altitude (m) | Number of Images | Flight Duration | Flight Time (h/m/s) | Processing Time (RGB) h/m | Processing Time (Multispectral) h/m |
---|---|---|---|---|---|
20 | 222 | 10 min | 10:17:46 | 02:52 | 02:12 |
30 | 129 | 7 min | 10:00:10 | 02:12 | 01:44 |
40 | 69 | 5 min | 09:46:56 | 01:32 | 01:29 |
60 | 50 | 4 min | 09:29:29 | 01:22 | 01:15 |
PlVig | ShY | FRY | DMC | LeRet | LeDis |
---|---|---|---|---|---|
0.93 | 0.98 | 0.98 | 0.99 | 0.98 | 0.98 |
Traits | Model 1 | Flight Height (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
20 | 30 | 40 | 60 | ||||||
RMSE | RMSE | RMSE | RMSE | ||||||
Plant vigor | GLMSS | 0.84 | 0.19 | 0.94 | 0.13 | 0.83 | 0.20 | 0.97 | 0.13 |
KNN | 0.80 | 0.30 | 0.91 | 0.13 | 0.80 | 0.26 | 0.91 | 0.09 | |
PLS | 0.82 | 0.30 | 0.86 | 0.18 | 0.82 | 0.22 | 0.85 | 0.19 | |
SVM | 0.84 | 0.20 | 1.12 | 0.14 | 0.84 | 0.25 | 1.07 | 0.18 | |
Leaf retention | GLMSS | 0.77 | 0.29 | 0.69 | 0.27 | 0.84 | 0.18 | 0.92 | 0.03 |
KNN | 0.80 | 0.15 | 0.74 | 0.21 | 0.83 | 0.09 | 0.80 | 0.13 | |
PLS | 0.79 | 0.13 | 0.69 | 0.27 | 0.76 | 0.05 | 0.77 | 0.11 | |
SVM | 0.95 | 0.13 | 0.71 | 0.21 | 0.86 | 0.14 | 0.94 | 0.14 | |
Above-ground biomass yield | GLMSS | 7.66 | 0.15 | 7.49 | 0.12 | 7.26 | 0.13 | 6.64 | 0.11 |
KNN | 7.29 | 0.11 | 7.37 | 0.09 | 7.30 | 0.06 | 6.83 | 0.11 | |
PLS | 6.94 | 0.08 | 6.96 | 0.17 | 6.92 | 0.17 | 6.83 | 0.12 | |
SVM | 8.70 | 0.09 | 8.47 | 0.07 | 8.87 | 0.11 | 7.98 | 0.22 | |
Fresh root yield | GLMSS | 7.33 | 0.08 | 7.12 | 0.11 | 7.58 | 0.07 | 7.39 | 0.16 |
KNN | 7.29 | 0.09 | 7.18 | 0.17 | 7.26 | 0.06 | 7.18 | 0.06 | |
PLS | 6.83 | 0.11 | 6.93 | 0.08 | 6.72 | 0.12 | 6.82 | 0.15 | |
SVM | 8.43 | 0.14 | 8.23 | 0.04 | 8.36 | 0.15 | 8.41 | 0.08 | |
Dry matter content in roots | GLMSS | 1.81 | 0.24 | 1.81 | 0.29 | 1.98 | 0.24 | 2.00 | 0.25 |
KNN | 1.84 | 0.20 | 1.83 | 0.25 | 1.94 | 0.18 | 1.86 | 0.24 | |
PLS | 1.78 | 0.34 | 1.76 | 0.27 | 1.90 | 0.16 | 2.04 | 0.10 | |
SVM | 1.78 | 0.25 | 1.77 | 0.27 | 5.25 | 0.10 | 3.11 | 0.07 | |
Leaf spot resistance | GLMSS | 1.04 | 0.10 | 0.70 | 0.12 | 0.76 | 0.12 | 0.68 | 0.09 |
KNN | 0.70 | 0.11 | 0.67 | 0.16 | 0.71 | 0.15 | 0.67 | 0.11 | |
PLS | 0.67 | 0.05 | 0.65 | 0.20 | 0.67 | 0.09 | 0.67 | 0.05 | |
SVM | 0.74 | 0.14 | 0.92 | 0.08 | 0.85 | 0.13 | 0.77 | 0.09 |
Description | Indices 1 | Formula 2 | Related Traits | Reference |
---|---|---|---|---|
Blue Green Pigment Index | BGI rgb, M | Chlorophyll and leaf area index | [66] | |
Green Leaf Index | GLI rgb, M | Chlorophyll | [67] | |
Normalized Green–Red Difference Index | NGRD rgb, M | Chlorophyll, biomass, water content | [68] | |
Visible Atmospherically Resistant Index | VARI rgb, M | Canopy, biomass, chlorophyll | [69] | |
Plant Senescence Reflectance Index | PSRI rgb, M | Chlorophyll, nitrogen, and maturation | [70] | |
Spectral Slope Saturation Index | SI rgb, M | Saturation index | [71] | |
Soil Color Index | SCI rgb, M | Soil color | [72] | |
Primary Colors Hue Index | HI rgb, M | Hue index | [71] | |
Hue Index | HUE rgb, M | General Hue index | [71] | |
Brightness Index | BI rgb, M | Vegetation cover | [73] | |
Chlorophyll Index—green | CIG M | Chlorophyll content | [74] | |
Normalized Difference Red Edge Index | NDRE rgb, M | Chlorophyll content | [75] | |
Red-edge Chlorophyll Index | CIRE rgb, M | Leaf chlorophyll content | [74] | |
Difference Vegetation Index | DVI rgb, M | Nitrogen and chlorophyll | [75] | |
Normalized Difference Vegetation Index | NDVI rgb, M | Chlorophyll, leaf area, biomass, and yield | [18] | |
Green Normalized Difference Vegetation Index | GNDVI rgb, M | Chlorophyll, leaf area, nitrogen, and proteins | [76] | |
Ratio Vegetation Index | RV M | Biomass, water, and nitrogen | [77] | |
Chlorophyll Vegetation Index | CVI M | Chlorophyll | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, J.H.B.; Cortes, D.F.M.; Andrade, L.R.B.d.; Gallis, R.B.d.A.; Barbosa, R.L.; Oliveira, E.J.d. High-Throughput Phenotyping for Agronomic Traits in Cassava Using Aerial Imaging. Plants 2025, 14, 32. https://doi.org/10.3390/plants14010032
Nascimento JHB, Cortes DFM, Andrade LRBd, Gallis RBdA, Barbosa RL, Oliveira EJd. High-Throughput Phenotyping for Agronomic Traits in Cassava Using Aerial Imaging. Plants. 2025; 14(1):32. https://doi.org/10.3390/plants14010032
Chicago/Turabian StyleNascimento, José Henrique Bernardino, Diego Fernando Marmolejo Cortes, Luciano Rogerio Braatz de Andrade, Rodrigo Bezerra de Araújo Gallis, Ricardo Luis Barbosa, and Eder Jorge de Oliveira. 2025. "High-Throughput Phenotyping for Agronomic Traits in Cassava Using Aerial Imaging" Plants 14, no. 1: 32. https://doi.org/10.3390/plants14010032
APA StyleNascimento, J. H. B., Cortes, D. F. M., Andrade, L. R. B. d., Gallis, R. B. d. A., Barbosa, R. L., & Oliveira, E. J. d. (2025). High-Throughput Phenotyping for Agronomic Traits in Cassava Using Aerial Imaging. Plants, 14(1), 32. https://doi.org/10.3390/plants14010032