Hazelnut and Walnut Nutshell Features as Emerging Added-Value Byproducts of the Nut Industry: A Review
Abstract
:1. Introduction
2. Productive Context and Expectative of Hazelnut and Walnut Shells: Potential Byproduct Availability/Accessibility
3. Nutshell as Source of Valuable Biochemical Components
3.1. Main Chemical Composition
3.2. Antioxidant Properties
4. Physical Features of Hazelnut and Walnut Shells
4.1. Density and Solubility
4.2. Mass Yield and Morphological Features
4.3. Nutshell Cracking Point
5. Industrial Reincorporation for Potential Applications
6. Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA. Tree Nuts: World Markets and Trade. Available online: https://usda.library.cornell.edu/concern/publications/tm70mv16z?locale=en (accessed on 3 November 2022).
- Du, F.; Tan, T. Recent Studies in Mechanical Properties of Selected Hard Shelled Seeds: A Review. JOM 2021, 73, 1723–1735. [Google Scholar] [CrossRef]
- FAOSTAT. Agriculture Data. 2023. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 3 May 2023).
- Demirbas, A. Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil. Energy 1999, 24, 141–150. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. J. Renew. Sustain. Energy 2017, 9, 063102. [Google Scholar] [CrossRef]
- Rivas, S.; Moure, A.; Parajó, J.C. Pretreatment of hazelnut shells as a key strategy for the solubilization and valorization of hemicelluloses into bioactive compounds. Agronomy 2020, 10, 760. [Google Scholar] [CrossRef]
- Barbu, M.C.; Reh, R.; Çavdar, A.D. Non-Wood Lignocellulosic Composites. In Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017; pp. 947–977. [Google Scholar]
- ChileNut, Reportes de Embarques. 2021. Available online: https://www.chilenut.cl/ourharvest/ (accessed on 5 October 2022).
- Manterola-Barroso, C.; Godoy, K.; Alarcón, D.; Padilla, D.; Meriño-Gergichevich, C. Antioxidants in Shell and Nut Yield Components after Ca, Mg and K Preharvest Spraying on Hazelnut Plantations in Southern Chile. Plants 2022, 11, 3536. [Google Scholar] [CrossRef]
- Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, G. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem. 2008, 110, 659–669. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khazaeian, A.; Tabarsa, T. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos. B Eng. 2012, 43, 3276–3280. [Google Scholar] [CrossRef]
- Hoşgün, E.Z.; Berikten, D.; Kıvanç, M.; Bozan, B. Ethanol production from hazelnut shells through enzymatic saccharification and fermentation by low-temperature alkali pretreatment. Fuel 2017, 196, 280–287. [Google Scholar] [CrossRef]
- Queirós, C.S.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefin. 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Argenziano, R.; Moccia, F.; Esposito, R.; D’Errico, G.; Panzella, L.; Napolitano, A. Recovery of lignins with potent antioxidant properties from shells of edible nuts by a green ball milling/deep eutectic solvent (des) based protocol. Antioxidants 2022, 11, 1860. [Google Scholar] [CrossRef]
- Sandoval, G.; Thenoux, G.; Molenaar AA, A.; Gonzalez, M. The antioxidant effect of grape pomace in asphalt binder. Int. J. Pavement Eng. 2019, 20, 163–171. [Google Scholar] [CrossRef]
- Denise Isperto, C.; Labra, K.L.; Landicho, J.M.B.; De Jesus, R. Optimized preparation of rice husk ash (RHA) as a supplementary cementitious material. Int. J. GEOMATE 2019, 16, 56–61. [Google Scholar]
- Baran, Y.; Gökçe, H.S.; Durmaz, M. Physical and mechanical properties of cement containing regional hazelnut shell ash wastes. J. Clean. Prod. 2020, 259, 120965. [Google Scholar] [CrossRef]
- Agrichile Ferrero Hazelnut Company. Available online: https://agrichile.cl/noticias/agrichile-participa-en-webinaroportunidades-dedesarrollo-de-la-agroindustria-en-la-araucania-produccion-de-avellano-europeo/ (accessed on 15 December 2022).
- ODEPA-CIREN. Catastro Frutícola y Principales Resultados, Región de La Araucanía. 2022. Available online: https://www.odepa. (accessed on 27 December 2022).
- Meriño-Gergichevich, C.; Luengo-Escobar, A.; Alarcón, D.; Reyes-Díaz, M.; Ondrasek, G.; Morina, F.; Ogass, K. Combined spraying of boron and zinc during fruit set and premature stage improves yield and fruit quality of European hazelnut cv. Tonda di Giffoni. Front. Plant Sci. 2021, 12, 984. [Google Scholar] [CrossRef]
- Husainie, S.M.; Deng, X.; Ghalia, M.A.; Robinson, J.; Naguib, H.E. Natural fillers as reinforcement for closed-molded polyurethane foam plaques: Mechanical, morphological, and thermal properties. Mater. Today Commun. 2021, 27, 102187. [Google Scholar] [CrossRef]
- Kocaman, S.; Ahmetli, G. Effects of various methods of chemical modification of lignocellulose hazelnut shell waste on a newly synthesized bio-based epoxy composite. J. Polym. Environ. 2020, 28, 1190–1203. [Google Scholar] [CrossRef]
- Domingos, I.; Ferreira, J.; Cruz-Lopes, L.P.; Esteves, B. Liquefaction and chemical composition of walnut shells. Open Agric. 2022, 7, 249–256. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, X.; Zhao, Z.; Zhang, S.; Liu, S. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. Anal. Appl. Pyrolysis 2010, 88, 149–154. [Google Scholar] [CrossRef]
- Jovičić, N.; Antonović, A.; Matin, A.; Antolović, S.; Kalambura, S.; Krička, T. Biomass valorization of walnut shell for liquefaction efficiency. Energies 2022, 15, 495. [Google Scholar] [CrossRef]
- Masullo, M.; Cerulli, A.; Mari, A.; de Souza Santos, C.C.; Pizza, C.; Piacente, S. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res. Int. 2017, 101, 180–187. [Google Scholar] [CrossRef]
- Di Michele, A.; Pagano, C.; Allegrini, A.; Blasi, F.; Cossignani, L.; Raimo, E.D.; Faieta, M.; Oliva, E.; Pittia, P.; Primavilla, S.; et al. Hazelnut shells as source of active ingredients: Extracts preparation and characterization. Molecules 2021, 26, 6607. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018, 244, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Samaranayaka AG, P.; John, J.A.; Shahidi, F. Antioxidant activity of english walnut (Juglans regia L.). J. Food Lipids 2008, 15, 384–397. [Google Scholar] [CrossRef]
- Herrera, R.; Hemming, J.; Smeds, A.; Gordobil, O.; Willför, S.; Labidi, J. Recovery of bioactive compounds from hazelnuts and walnuts shells: Quantitative–qualitative analysis and chromatographic purification. Biomolecules 2020, 10, 1363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liao, L.; Moore, J.; Wu, T.; Wang, Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009, 113, 160–165. [Google Scholar] [CrossRef]
- Pelvan, E.; Olgun, E.Ö.; Karadağ, A.; Alasalvar, C. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 2018, 244, 102–108. [Google Scholar] [CrossRef]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional walnut liqueur—Cocktail of phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Han, H.; Wang, S.; Rakita, M.; Wang, Y.; Han, Q.; Xu, Q. Effect of ultrasound-assisted extraction of phenolic compounds on the characteristics of walnut shells. Food Nutr. Sci. 2018, 9, 1034–1045. [Google Scholar] [CrossRef]
- Balart, J.F.; Fombuena, V.; Fenollar, O.; Boronat, T.; Sánchez-Nacher, L. Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos. B Eng. 2016, 86, 168–177. [Google Scholar] [CrossRef]
- Balart, J.F.; Montanes, N.; Fombuena, V.; Boronat, T.; Sánchez-Nacher, L. Disintegration in compost conditions and water uptake of green composites from poly (lactic acid) and hazelnut shell flour. J. Polym. Environ. 2018, 26, 701–715. [Google Scholar] [CrossRef]
- Barczewski, M.; Sałasińska, K.; Szulc, J. Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polym. Test. 2019, 75, 1–11. [Google Scholar] [CrossRef]
- Matin, A.; Krička, T.; Grubor, M.; Jurišić, V.; Majdak, T.; Špelić, K.; Majdak, J.; Matin, B.; Jovičić, N.; Antonović, A.; et al. Energy properties of agricultural biomass after the pyrolysis. J. Process. Energy Agric. 2023, 27, 39–44. [Google Scholar] [CrossRef]
- Matin, A.; Brandić, I.; Voća, N.; Bilandžija, N.; Matin, B.; Jurišić, V.; Antonović, A.; Krička, T. Changes in the Properties of Hazelnut Shells Due to Conduction Drying. Agriculture 2023, 13, 589. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N. Determination of size and shape features of hazelnuts using multivariate analysis. Acta Sci. Pol. Hortorum Cultus 2017, 16, 49–61. [Google Scholar] [CrossRef]
- Ozkan, G.; Koyuncu, M.A. Physical and chemical composition of some walnut (Juglans regia L.) genotypes grown in Turkey. Grasas Aceites 2005, 56, 141–146. [Google Scholar] [CrossRef]
- Angmo, S.; Acharyya, P.; Hasan, M.A. Performance of indigenous walnut selections under climatic conditions of Ladakh. In Proceedings of the International Symposium on Agri-Foods for Health and Wealth, Bangkok, Thailand, 5–8 August 2013; pp. 167–176. [Google Scholar]
- Koyuncu, M.A.; Ekinci, K.; Savran, E. Cracking characteristics of walnut. Biosyst. Eng. 2004, 87, 305–311. [Google Scholar] [CrossRef]
- Valentini, N.; Moraglio, S.T.; Rolle, L.; Tavella, L.; Botta, R. Nut and kernel growth and shell hardening in eighteen hazelnut cultivars (Corylus avellana L.). Hortic. Sci. 2015, 42, 149–158. [Google Scholar] [CrossRef]
- Kabas, O. Cracking simulation of hazelnut shell using finite element method. Mitteilungen Klosterneubg. 2020, 70, 148–156. [Google Scholar]
- Cetin, N.; Yaman, M.; Karaman, K.; Demir, B. Determination of some physicomechanical and biochemical parameters of hazelnut (Corylus avellana L.) cultivars. Turk. J. Agric. For. 2020, 44, 439–450. [Google Scholar] [CrossRef]
- Sharifian, F.; Derafshi, M.H. Mechanical behavior of walnut under cracking conditions. J. Appl. Sci. 2008, 8, 886–890. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, L.; Lan, H.; Li, Y.; Liu, Y.; Tang, Y.; Li, W. Mechanical properties and finite element analysis of walnut under different cracking parts. Int. J. Agric. Biol. Eng. 2018, 11, 81–88. [Google Scholar] [CrossRef]
- Demirbas, A. Direct and alkaline glycerol liquefaction of hazelnut shell. Energy Sources Part A Recovery Util. Environ. Eff. 2010, 32, 689–696. [Google Scholar] [CrossRef]
- Merkel, K.; Rydarowski, H.; Kazimierczak, J.; Bloda, A. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibres isolated from waste plant biomass such as hemp. Compos. B Eng. 2014, 67, 138–144. [Google Scholar] [CrossRef]
- Yu, X.; Xu, H. Lightweight Composites Reinforced by Agricultural Byproducts. In Lightweight Materials from Biopolymers and Biofibers; American Chemical Society: Omaha, NE, USA, 2014; pp. 209–238. [Google Scholar]
- Akbari, V.; Jamei, R.; Heidari, R.; Esfahlan, A.J. Antiradical activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chem. 2012, 135, 2404–2410. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Lee, K. Systematic approach to mimic phenolic natural polymers for biofabrication. Polymers 2022, 14, 1282. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. J. Polym. Process. Inst. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, M.; Su, G.; Cai, M.; Zhou, C.; Huang, J.; Lin, L. The antioxidant activities and the xanthine oxidase inhibition effects of walnut (Juglans regia L.) fruit, stem and leaf. Int. J. Food Sci. Technol. 2015, 50, 233–239. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E.; Li, L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 2019, 220, 235–252. [Google Scholar] [CrossRef]
Nutshell Species | Lignin | Hemicellulose | Cellulose | Extractives | RSA | TPC | AC | References |
---|---|---|---|---|---|---|---|---|
(%) | (μg TE g−1 DW) | (mg GAE g−1 DW) | (μmol TE g−1 DW) | |||||
Hazelnut | 36–46 | 21–30 | 26–34 | 3–3.4 | - | 56.6 | - | [7,9,10,11,14,22,26,27,28,29] |
1110 | 0.18 | 2119 | ||||||
- | 0.34 | - | ||||||
- | 3.5–12 | - | ||||||
- | 72.25 | - | ||||||
1.01 mg mL−1 | - | 1219 | ||||||
Walnut | 29–53 | 21–24.9 | 25–32 | 4–10.6 | 18,860 | 31.79 | - | [13,23,24,25,30,31] |
3.14–7.17 μg mL−1 | 3.49 μg g−1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manterola-Barroso, C.; Padilla Contreras, D.; Ondrasek, G.; Horvatinec, J.; Gavilán CuiCui, G.; Meriño-Gergichevich, C. Hazelnut and Walnut Nutshell Features as Emerging Added-Value Byproducts of the Nut Industry: A Review. Plants 2024, 13, 1034. https://doi.org/10.3390/plants13071034
Manterola-Barroso C, Padilla Contreras D, Ondrasek G, Horvatinec J, Gavilán CuiCui G, Meriño-Gergichevich C. Hazelnut and Walnut Nutshell Features as Emerging Added-Value Byproducts of the Nut Industry: A Review. Plants. 2024; 13(7):1034. https://doi.org/10.3390/plants13071034
Chicago/Turabian StyleManterola-Barroso, Carlos, Daniela Padilla Contreras, Gabrijel Ondrasek, Jelena Horvatinec, Gabriela Gavilán CuiCui, and Cristian Meriño-Gergichevich. 2024. "Hazelnut and Walnut Nutshell Features as Emerging Added-Value Byproducts of the Nut Industry: A Review" Plants 13, no. 7: 1034. https://doi.org/10.3390/plants13071034