Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on Northern Europe and the Arctic
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sampling of Plant Material
4.2. Flow Cytometry Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brochmann, C.; Brysting, A.K.; Alsos, I.G.; Borgen, L.; Grundt, H.H.; Scheen, A.-C.; Elven, R. Polyploidy in arctic plants. Biol. J. Linn. Soc. 2004, 82, 521–536. [Google Scholar] [CrossRef]
- Stebbins, G.L. The origin and success of polyploids in the boreal circumpolar flora: A new analysis. Bot. J. Scot. 2006, 58, 151–164. [Google Scholar] [CrossRef]
- Dang, X.D.; Kelleher, C.T.; Howard-Williams, E.; Meade, C. Rapid identification of chloroplast haplotypes using High Resolution Melting analysis. Mol. Ecol. Resour. 2012, 12, 894–908. [Google Scholar] [CrossRef] [PubMed]
- Berthouzoz, M.; Maendly, S.; Bétrisey, S.; Mangili, S.; Prunier, S.; Lexer, C.; Kozlowski, G. Some like it cold: Distribution, ecology and phylogeny of Arenaria bernensis Favarger (Caryophyllaceae) from western Prealps in Switzerland. Alpine Bot. 2013, 123, 65–75. [Google Scholar] [CrossRef]
- Walker, K.J.; Howard-Williams, E.; Meade, C. The distribution and ecology of Arenaria norvegica Gunn. in Ireland. Irish Nat. J. 2013, 32, 1–12. [Google Scholar]
- Abukrees, F.; Kozlowski, G.; Meade, C. Characterization of diverse ploidy in the arctic-alpine Arenaria ciliata species complex (Caryophyllaceae) using shoot meristem staining and flow cytometry analysis of archived frozen tissue. Plant Spec. Biol. 2018, 33, 144–152. [Google Scholar] [CrossRef]
- Kozlowski, G.; Fragnière, Y.; Clément, B.; Meade, C. Genome size in the Arenaria ciliata species complex (Caryophyllaceae, with special focus on A. ciliata subsp. bernensis, a narrow endemic of the Swiss Northern Alps. Plants 2022, 11, 3489. [Google Scholar] [CrossRef]
- Lauber, K.; Wagner, G.; Gygax, A. Flora Helvetica, 6th ed.; Haupt: Bern, Switzerland, 2018. [Google Scholar]
- Blommaert, J. Genome size evolution: Towards new model systems for old questions. Proc. R. Soc. B 2020, 287, 20201441. [Google Scholar] [CrossRef]
- Bhadra, S.; Leitch, I.J.; Onstein, R.E. From genome size to trait evolution during angiosperm radiation. Trends Genet. 2023, 39, 728–735. [Google Scholar] [CrossRef]
- Bennett, M.D.; Leitch, I.J. Plant genome size research: A field in focus. Ann. Bot. 2005, 95, 1–6. [Google Scholar] [CrossRef]
- Rieseberg, L.; Willis, J.H. Plant Speciation. Science 2007, 317, 910–914. [Google Scholar] [CrossRef]
- Pellicer, J.; Hidalgo, O.; Dodsworth, S.; Leitch, I.J. Genome size diversity and its impact on the evolution of land plants. Genes 2018, 9, 88. [Google Scholar] [CrossRef]
- Loureiro, J.; Castro, M.; Cerca de Oliveira, J.; Mota, L.; Torices, R. Genome size variation and polyploidy incidence in the alpine flora from Spain. Ann. Jard. Bot. Madrid 2013, 70, 39–47. [Google Scholar] [CrossRef]
- Bures, P.; Elliott, T.L.; Vesely, P.; Smarda, P.; Forest, F.; Leitch, I.J.; Lughadha, E.N.; Soto Gomez, S.; Pironon, S.; Brown, M.J.M.; et al. The global distribution of angiosperm genome size is shaped by climate. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, Z.; Li, Y.; Hu, H.; Wang, Z.; Du, X.; Zhang, S.; Zhu, M.; Dong, L.; Ren, G.; et al. Which factors contribute most to genome size variation within angiosperms? Ecol. Evol. 2021, 11, 2660–2668. [Google Scholar] [CrossRef]
- Walker, K.J. The distribution, ecology and conservation of Arenaria norvegica subsp. anglica Halliday (Caryophyllaecae). Watsonia 2000, 23, 197–208. [Google Scholar]
- Panarctic Flora. Available online: https://www.panarcticflora.org (accessed on 13 December 2023).
- Svalbard Flora. Available online: https://www.svalbardflora.no (accessed on 13 December 2023).
- Sliwinska, E.; Loureiro, J.; Leitch, I.J.; Šmarda, P.; Bainard, J.; Bureš, P.; Chumová, Z.; Horová, L.; Koutecký, P.; Lučanová, M.; et al. Application-based guidelines for best practices in plant flow cytometry. Cytometry Part A 2022, 101, 749–781. [Google Scholar] [CrossRef] [PubMed]
- Temsch, E.M.; Koutecký, P.; Urfus, T.; Šmarda, P.; Doležel, J. Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytometry Part A 2021, 99, 710–724. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, A.; Iriondo, J.M.; Vallès, J.; Orellana, J.; Escidero, A. Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Plant Syst. Evol. 2012, 298, 139–146. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Guo, Z.; Guan, Y.; Guo, Y.; Yan, X. Variation in ploidy level and genome size of Cynodon dactylon (L.) Pers. along latitudinal gradient. Folia Geobot. 2019, 54, 267–278. [Google Scholar] [CrossRef]
- Greimler, J.; Temsch, E.M.; Xue, Z.; Weiss-Schneeweiss, H.; Volkova, P.; Peintinger, M.; Wasowicz, P.; Shang, H.; Schanzer, I.; Chiapella, J.O. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Syst. Evol. 2022, 308, 9. [Google Scholar] [CrossRef]
- Plaschil, S.; Abel, S.; Klocke, E. The variability of nuclear DNA content of different Pelargonium species estimated by flow cytometry. PLoS ONE 2022, 17, e0267496. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, J.; Čertner, M.; Lučanová, M.; Śliwińska, E.; Kolář, F.; Doležel, J.; Garcia, S.; Castro, S.; Galbraith, D.W. The use of flow cytometry for estimating genome sizes and DNA ploidy levels in plants. In Plant Cytogenetics and Cytogenomics: Methods and Protocols, Methods in Molecular Biology; Heithkam, T., Garcia, S., Eds.; Springer: New York, NY, USA, 2023; Volume 2672, pp. 25–64. [Google Scholar]
- Komarov, V.L. Flora URSS (Flora Unionis Rerumpublicarum Sovieticum Socialisticarum); Academy of Sciences of the USSR: Moscow, Russia, 1936; Volume 6, p. 537. [Google Scholar]
- Mossberg, B.; Stenberg, L. Nordens Flora; Livonia Print: Riga, Latvia, 2019. [Google Scholar]
- Rune, F. Wild Flowers of Greenland; Narayana Press: Gylling, Denmark, 2011. [Google Scholar]
- Matveyeva, N.V.; Lavrinenko, O.V.; Lavrinenko, I.A. Plant communities with Arenaria pseudofrigida (Ostenf. et Dahl) Juz. Ex Schischk. on islands of the south-eastern part of Barents Sea. Veg. Russ. 2013, 22, 78–85. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. (Eds.) Flora Europaea. In Pslotaceae to Plantanaceae, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 1, p. 587. [Google Scholar]
- Gunnerus, J.E. Flora Norvegica—Observationibus Praesertim Oeconomics Panosque Norvegici Locupletata; Nidrosiae: Trondheim, Norway, 1766. [Google Scholar]
- Halliday, G. The identity of Arenaria gothica auct. angl. Watsonia 1960, 4, 207–210. [Google Scholar]
- Anderson, F.W.; Falk, P. Observations on ecology of the central desert of Iceland. J. Ecol. 1935, 23, 406–421. [Google Scholar] [CrossRef]
- Wahlenberg, G. Gothlandiae plantae rariores annis 1816, 1817 et 1818 detecta: A Joh. Petr. Rosén, et jam conjunctim cum eo recensitae. Nova Acta Regiae Soc. Sci. Upsal. 1821, 8, 203–225. [Google Scholar]
- Fries, E. Novitarium Florae Suecicae Mantissa Altera; Leffler et Sebell: Uppsala, Sweden, 1839. [Google Scholar]
- Grenier, C.; Gordon, D.A. Flore de France; Jean-Baptiste Baillière: Paris, France, 1848. [Google Scholar]
- Grenier, C. Notes critiques sur quelques plantes jurassiques. Bull. Soc. Bot. 1869, 16, LXI. [Google Scholar] [CrossRef]
- Albertson, N. Österplana hed ett Alvarområde på Kinnekulle; Almquist & Wiksells Boktryckeri AB: Uppsala, Sweden, 1946. [Google Scholar]
- Tralau, H. On the distribution of Arenaria gothica Fries and the significance of postglacial plant migration. Ber. Schweiz. Bot. Ges. 1959, 69, 342–345. [Google Scholar]
- Duckert-Henriod, M.-M. Sur l’Arenaria gothica Fries de la Vallée de Joux. Bull. Soc. Neuch. Sc. Nat. 1962, 85, 97–101. [Google Scholar]
- Dengler, J. The basiphilous dry grasslands of shallow, skeletal soils (Alysso-Sedetalia) on the island of Öland (Sweden), in the context of North and Central Europe. Phytocoenologia 2006, 36, 343–391. [Google Scholar] [CrossRef]
- Favarger, C. Recherches cytotaxonomiques sur les populations alpines d’Arenaria ciliata L. (sens. lat.). Bull. Soc. Bot. Suisse 1960, 70, 126–140. [Google Scholar]
- Favarger, C. Nouvelles recherches sur les populations alpines et carpathiques d’Arenaria ciliata L. sens. lat. Bull. Soc. Bot. Suisse 1963, 73, 161–178. [Google Scholar]
- Favarger, C. A striking polyploid complex in the alpine flora: Arenaria ciliata L. Bot. Notiser 1965, 118, 273–280. [Google Scholar]
- Stebbins, G.L. Polyploid complexes in relation to ecology and the history of floras. Am. Nat. 1942, 76, 36–45. [Google Scholar] [CrossRef]
- Brysting, A.K.; Hagen, A. Species in Polyploid Complexes? The Cerastium alpinum—C. arcticum Complex. 2005. Panarctic Flora Project. 2005. Available online: https://www.binran.ru (accessed on 22 December 2023).
- Popp, M.; Erixon, P.; Eggens, F.; Oxelman, B. Origin and evolution of a circumpolar polyploid species complex in Silene (Caryophyllaceae) inferred from low copy nuclear DNA polymerase introns, rDNA, and chloroplast DNA. Syst. Bot. 2005, 30, 302–313. [Google Scholar] [CrossRef]
- Grundt, H.H.; Popp, M.; Brochmann, C.; Oxelman, B. Polyploid origins in a circumpolar complex in Draba (Brassicaceae) inferred from cloned nuclear DNA sequences and fingerprints. Mol. Phylogenet. Evol. 2004, 32, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Guggisberg, A.; Mansion, G.; Conti, E. Disentangling reticulate evolution in an arctic-alpine polyploid complex. Syst. Biol. 2009, 58, 55–73. [Google Scholar] [CrossRef]
- Casazza, G.; Granato, L.; Minuto, L.; Conti, E. Polyploid evolution and Pleistocene glacial cycles: A case study from the alpine primrose Primula marginata (Primulaceae). Evol. Biol. 2012, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Eggenberg, S.; Champoud, L.; Leibundgut, M.; Parisod, C.; Wyss, L.; Kozlowski, G. Calamagrostis lonana (Poaceae): A new grass species from the Pennine Alps (Switzerland). Candollea 2023, 78, 1–9. [Google Scholar] [CrossRef]
- Stebbins, G.L. Chromosomal Evolution in Higher Plants; Edward Arnold Publishers Ltd.: London, UK, 1971. [Google Scholar]
- Schinkel, C.C.F.; Kirchheimer, B.; Dellinger, A.S.; Klatt, S.; Winkler, M.; Dullinger, S.; Hörandl, E. Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB Plants 2016, 8, plw064. [Google Scholar] [CrossRef] [PubMed]
- Packer, J.G. Polyploidy in the Canadian Arctic archipelago. Arct. Antarct. Alp. Res. 1969, 1, 15–28. [Google Scholar] [CrossRef]
- Stebbins, G.L. Polyploidy and the distribution of the arctic-alpine flora: New evidence and a review approach. Bot. Helv. 1984, 94, 1–13. [Google Scholar]
- Brochmann, C.; Brysting, A.K. The Arctic—An evolutionary freezer? Plant Ecol. Divers. 2008, 1, 181–195. [Google Scholar] [CrossRef]
- Parisod, C. Plant speciation in the face of recent climate changes in the Alps. Alpine Bot. 2022, 132, 21–28. [Google Scholar] [CrossRef]
Taxon | 2c Nuclear DNA Amount (pg DNA), Mean (± SD) | Estimated Ploidy Level |
---|---|---|
Nordic taxa: | ||
Arenaria pseudofrigida | 1.65 (±0.11) | 2n = 4x = 40 |
Arenaria norvegica | 2.80 (±0.02) | 2n = 8x = 80 |
Arenaria gothica (Gotland) | 4.14 (±0.26) | 2n = 10x = 100 |
Alpine taxa: | ||
Arenaria multicaulis | 1.50 (±0.06) | 2n = 4x = 40 |
Arenaria ciliata subsp. ciliata | 1.63 (±0.06) | 2n = 4x = 40 |
Arenaria ciliata subsp. bernensis | 6.77 (±0.03) | 2n = 20x = 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlowski, G.; Fragnière, Y.; Clément, B.; Gilg, O.; Sittler, B.; Lang, J.; Eidesen, P.B.; Lang, S.I.; Wasowicz, P.; Meade, C. Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on Northern Europe and the Arctic. Plants 2024, 13, 635. https://doi.org/10.3390/plants13050635
Kozlowski G, Fragnière Y, Clément B, Gilg O, Sittler B, Lang J, Eidesen PB, Lang SI, Wasowicz P, Meade C. Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on Northern Europe and the Arctic. Plants. 2024; 13(5):635. https://doi.org/10.3390/plants13050635
Chicago/Turabian StyleKozlowski, Gregor, Yann Fragnière, Benoît Clément, Olivier Gilg, Benoît Sittler, Johannes Lang, Pernille Bronken Eidesen, Simone I. Lang, Pawel Wasowicz, and Conor Meade. 2024. "Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on Northern Europe and the Arctic" Plants 13, no. 5: 635. https://doi.org/10.3390/plants13050635