Physiological Responses of Populus cathayana and Salix babylonica to Combined Stress of Diesel Fuel and Sr2+ Stress in Soil
Abstract
:1. Introduction
2. Results
2.1. Sr2+ Enrichment in Tissues of P. cathayana and S. babylonica
2.2. Gas Exchange Parameters of P. cathayana and S. babylonica
2.3. Antioxidant Enzymes in P. cathayana and S. babylonica
2.4. Soluble Matter in P. cathayana and S. babylonica
2.5. Soil Enzyme Activities of P. cathayana and S. babylonica
2.6. Correlation Analysis
3. Materials and Methods
3.1. Experiment Design
3.2. Measurement Methods
3.2.1. Determination of Sr Content in Plant Tissues
3.2.2. Gas Exchange Measurements
3.2.3. Determination of Antioxidant Enzyme Activity and Malondialdehyde
3.2.4. Determination of Free Proline and Soluble Sugar Contents
3.2.5. Measurement of Soil Enzyme Activity
3.3. Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M.; Nisar, J.; Adil, M.; Abbas, M.; Riaz, M.; Tahir, M.A.; Younus, M.; Shahid, M. Mutagenicity and cytotoxicity evaluation of photo-catalytically treated petroleum refinery wastewater using an array of bioassays. Chemosphere 2017, 168, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Srikhumsuk, P.; Peshkur, T.; Renshaw, J.C.; Knapp, C.W. Toxicologgical response and bioaccumulation of strontium in Festuca rubra L. (red fescue) and Trifolium pratense L. (red clover) in contaminated soil microcosms. Environ. Syst. Res. 2023, 12, 15. [Google Scholar] [CrossRef]
- Ogawa, K.; Fukuda, T.; Han, J.; Kitamura, Y.; Shiba, K.; Odani, A. Evaluation of chlorella as a decorporation agent to enhance the elimination of radioactive strontium from body. PLoS ONE 2016, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Burger, A.; Lichtscheidl, I. Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Sci. Total Environ. 2019, 653, 1458–1512. [Google Scholar] [CrossRef]
- Zheng, G.L.; Pemberton, R.; Li, P. Bioindicating potential of strontium contamination with spanish moss Tillandsia usneoides. J. Environ. Radioact. 2016, 152, 23–27. [Google Scholar] [CrossRef]
- Yost, E.E.; Burgon, L.D. Overview of chronic oral toxicity values for chemicals present in hydraulic fracturing fluid, flowback, and produced waters. Environ. Sci. Technol. 2016, 50, 4788–4797. [Google Scholar] [CrossRef]
- Sowa, I.; Wojciak-Kosior, M.; Strzemski, M.; Dresler, S.; Szwerc, W.; Bicharski, T.; Szymczak, G.; Kocjan, R. Biofortification of soy (Glycine max (l.) merr.) with strontium ions. J. Agric. Food Chem. 2014, 62, 5248–5252. [Google Scholar] [CrossRef]
- Cook, L.L.; Inouye, R.S.; McGonigle, T.P. Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 2009, 324, 169–184. [Google Scholar] [CrossRef]
- Shukla, S.; Khan, R.; Bhattacharya, P.; Devanesan, S.; AlSalhi, M.S. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils. Chemosphere 2022, 292, 10. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Li, P.; Wu, Y.; Zhao, C. Research progress on co-contamination and remediation of heavy metals and polycyclic aromatic hydrocarbons in soil and groundwater. CIESC J. 2017, 68, 2219–2232. [Google Scholar]
- Zhang, Y.X.; Tao, S.; Shen, H.Z.; Ma, J.M. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of chinese population. Proc. Natl. Acad. Sci. USA 2009, 106, 21063–21067. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Cai, Z.Y.; Song, H.F.; Zhang, S. Poplar males and willow females exhibit superior adaptation to nocturnal warming than the opposite sex. Sci. Total Environ. 2020, 717, 11. [Google Scholar] [CrossRef] [PubMed]
- Muyle, A.; Martin, H.; Zemp, N.; Mollion, M.; Gallina, S.; Tavares, R.; Silva, A.; Bataillon, T.; Widmer, A.; Glemin, S.; et al. Dioecy is associated with high genetic diversity and adaptation rates in the plant genus silene. Mol. Biol. Evol. 2021, 38, 805–818. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.M. Sexual dimorphism in floral traits of gynodioecious Lobelia siphilitica (Lobeliaceae) is consistent across populations. Botany 2012, 90, 1245–1251. [Google Scholar] [CrossRef]
- Liu, M.; Bi, J.W.; Liu, X.C.; Kang, J.Y.; Korpelainen, H.; Niinemets, U.; Li, C.Y. Microstructural and physiological responses to cadmium stress under different nitrogen levels in Populus cathayana females and males. Tree Physiol. 2020, 40, 30–45. [Google Scholar] [CrossRef]
- Xia, Z.C.; He, Y.; Yu, L.; Lv, R.B.; Korpelainen, H.; Li, C.Y. Sex-specific strategies of phosphorus (p) acquisition in Populus cathayana as affected by soil P availability and distribution. New Phytol. 2020, 225, 782–792. [Google Scholar] [CrossRef]
- Chen, L.H.; Han, Y.; Jiang, H.; Korpelainen, H.; Li, C.Y. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J. Exp. Bot. 2011, 62, 5037–5050. [Google Scholar] [CrossRef]
- Wang, R.J.; Zhang, J.F.; Sun, H.; Sun, S.Y.; Qin, G.H.; Song, Y.M. Effect of different vegetation on copper accumulation of copper-mine abandoned land in tongling, China. J. Environ. Manag. 2021, 286, 9. [Google Scholar] [CrossRef]
- Guo, C.; Chen, Y.; Wang, M.; Du, Y.; Wu, D.; Chu, J.; Yao, X. Exogenous barssinolide improves the antioxidant capacity of Pinellia ternata by enhancing the enzymatic and nonenzymatic defence systems under non-stress condition. Front. Plant Sci. 2022, 13, 917301. [Google Scholar]
- Mishra, B.; Chand, S.; Singh Sangwan, N. ROS management is mediated by ascorbate-glutathione-α-tocopherol triad in co-ordination with secondary metabolic pathway under cadmium stress in Withania somnifera. Plant Physio. 2019, 139, 620–629. [Google Scholar] [CrossRef]
- Yang, C.; Gao, X. Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Sci. Total Environ. 2022, 828, 154579. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, H.; Santos, E.; Soares, A. Soil microbial communities, soil nutrition, and seedling growth of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation in response to three weed control methods. Plant Soil 2022, 480, 245–264. [Google Scholar] [CrossRef]
- Liu, C.F.; Xiao, R.B.; Dai, W.J.; Huang, F.; Yang, X.J. Cadmium accumulation and physiological response of Amaranthus tricolor L. under soil and atmospheric stresses. Environ. Sci. Pollut. Res. 2021, 28, 14041–14053. [Google Scholar] [CrossRef] [PubMed]
- Afzal, J.; Hu, C.; Imtiaz, M.; Elyamine, A.M.; Rana, M.S.; Imran, M.; Farag, M.A. Cadmium tolerance in rice cultivars associated with antioxidant enzymes activities and fe/zn concentrations. Int. J. Environ. Sci. Technol. 2019, 16, 4241–4252. [Google Scholar] [CrossRef]
- Li, Y.J.; Ma, J.W.; Li, Y.Q.; Xiao, C.; Shen, X.Y.; Xiu, Y.; Chen, J.-J. Effect of nitrogen on the phytoremediation of Cd-PAHs co-contaminated dumpsite soil by alfalfa (Medicago sativa L.) and on the soil bacterial community structure. Environ. Sci. 2022, 43, 4779–4788. [Google Scholar]
- Xia, H.X.; Cheng, X.Y.; Zheng, L.L.; Ren, H.; Li, W.T.; Lei, Y.B.; Plenkovic-Moraj, A.; Chen, K. Sex-specific physiological responses of Populus cathayana to uranium stress. Forests 2022, 13, 13. [Google Scholar] [CrossRef]
- Parmar, P.; Kumari, N.; Sharma, V. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot. Stud. 2013, 54, 6. [Google Scholar] [CrossRef]
- Li, Q.S.; Lu, Y.L.; Shi, Y.J.; Wang, T.Y.; Ni, K.; Xu, L.; Liu, S.J.; Wang, L.; Xiong, Q.L.; Giesy, J.P. Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. J. Environ. Sci. 2013, 25, 1936–1946. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.Y.; Wang, D. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J. Clean Prod. 2020, 263, 9. [Google Scholar] [CrossRef]
- Li, C.; Yao, Y.; Li, X.; Cheng, J.; Sun, H. Changes of oxidative stress indexes of ryegrass (Lolium perenne L.) under compound exposure to polycyclic aromatic hydrocarbons and cadmium in soil. J. Agro-Environ. Sci. 2022, 41, 1739–1749. [Google Scholar]
- Feria, A.B.; Alvarez, R.; Cochereau, L.; Vidal, J.; Garcia-Maurino, S.; Echevarria, C. Regulation of phosphoenolpyruvate carboxylase phosphorylation by metabolites and abscisic acid during the development and germination of barley seeds. Plant Physiol. 2008, 148, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.M.; Xue, Z.Z.; Guo, H.Y.; LI, J.H.; Wang, X.R.; Yin, D.Q.; Zhang, J.F. Removal efficiency and physiological responses of Potamogeton maackianu to phenanthrene. J. Nanjing Univ. (Nat. Sci.) 2007, 43, 171–177. [Google Scholar]
- Li, Y.; Wang, C.M.; Gao, S.J.; Wang, P.; Qiu, J.C.; Shang, S.S. Impacts of simulated nitrogen deposition on soil enzyme activity in a northern temperate forest ecosystem depend on the form and level of added nitrogen. Eur. J. Soil Biol. 2021, 103, 9. [Google Scholar] [CrossRef]
- Lv, Z.; Li, X.G.; Wang, Y.J.; Hu, X.M.; An, J. Responses of soil microbial community to combination pollution of galaxolide and cadmium. Environ. Sci. Pollut. Res. 2021, 28, 56247–56256. [Google Scholar] [CrossRef]
- Shen, G.Q.; Lu, Y.T.; Zhou, Q.X.; Hong, J.B. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme. Chemosphere 2005, 61, 1175–1182. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.X.; Kang, J.Y.; Korpelainen, H.; Li, C.Y. Are males and females of Populus cathayana differentially sensitive to cd stress? J. Hazard. Mater. 2020, 393, 13. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.T.; Liu, X.C.; Korpelainen, H.; Li, C.Y. Intra- and intersexual interactions shape microbial community dynamics in the rhizosphere of Populus cathayana females and males exposed to excess Zn. J. Hazard. Mater. 2021, 402, 12. [Google Scholar] [CrossRef]
Populus Cathayana | Salix Babylonica | |||||||
---|---|---|---|---|---|---|---|---|
10/F | 100/F | 10/M | 100/M | 10/F | 100/F | 10/M | 100/M | |
S/R | 0.298 ± 0.015 e | 0.4420.002 d | 4.930 ± 0.019 a | 0.232 ± 0.0107 f | 0.134 ± 0.006 g | 0.818 ± 0.014 b | 0.150 ± 0.005 g | 0.546 ± 0.001 c |
L/R | 0.740 ± 0.033 d | 0.662 ± 0.008 d | 1.981 ± 0.065 a | 0.562 ± 0.019 e | 0.382 ± 0.009 f | 1.061 ± 0.017 c | 0.213 ± 0.007 g | 1.595 ± 0.005 b |
RE (%) | 3.602 ± 0.027 b | 1.427 ± 0.056 d | 1.167 ± 0.072 e | 0.792 ± 0.031 f | 6.032 ± 0.061 a | 1.389 ± 0.013 d | 1.091 ± 0.008 e | 2.341 ± 0.011 c |
Sexuality | Treatment Group | Populus Cathayana | Salix Babylonica | ||||||
---|---|---|---|---|---|---|---|---|---|
Ci | Gs | E | A | Ci | Gs | E | A | ||
Female | CK | 296.510 ± 5.094 e | 184.134 ± 6.933 c | 2.326 ± 0.111 c | 8.127 ± 0.413 c | 292.801 ± 3.892 e | 194.021 ± 8.727 b | 2.085 ± 0.098 c | 8.943 ± 0.249 c |
15/0 | 328.102 ± 5.215 d | 175.936 ± 9.710 d | 2.262 ± 0.039 d | 7.751 ± 0.200 d | 333.680 ± 3.965 c | 157.240 ± 12.171 c | 2.584 ± 0.098 a | 7.472 ± 0.330 d | |
15/10 | 364.890 ± 4.836 b | 117.959 ± 9.149 g | 2.614 ± 0.095 a | 6.383 ± 0.370 f | 327.990 ± 2.895 c | 199.630 ± 5.311 b | 2.044 ± 0.122 c | 8.915 ± 0.270 c | |
15/100 | 360.880 ± 3.839 b | 161.945 ± 9.938 e | 2.094 ± 0.090 e | 7.131 ± 0.281 e | 348.520 ± 2.895 b | 129.050 ± 7.368 d | 1.758 ± 0.093 d | 6.389 ± 0.326 f | |
Male | CK | 300.920 ± 4.263 e | 200.170 ± 9.850 a | 2.591 ± 0.091 b | 9.316 ± 0.274 b | 280.400 ± 5.740 e | 233.480 ± 6.466 a | 1.904 ± 0.069 c | 10.588 ± 0.287 a |
15/0 | 333.370 ± 6.152 d | 196.741 ± 7.408 a | 2.111 ± 0.083 e | 9.998 ± 0.334 a | 330.00 ± 5.990 c | 150.630 ± 8.116 c | 2.290 ± 0.098 b | 8.871 ± 0.323 c | |
15/10 | 346.410 ± 3.983 c | 160.459 ± 9.050 e | 2.688 ± 0.049 a | 8.478 ± 0.381 c | 314.25 ± 2.022 d | 127.440 ± 8.291 d | 1.981 ± 0.094 c | 9.923 ± 0.382 b | |
15/100 | 371.970 ± 4.698 a | 140.609 ± 6.994 f | 2.254 ± 0.083 d | 7.147 ± 0.292 e | 367.110 ± 3.688 a | 104.860 ± 6.895 e | 1.416 ± 0.111 e | 7.014 ± 0.411 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Jiang, T.; Ren, P.; Suo, Z.; Chen, K. Physiological Responses of Populus cathayana and Salix babylonica to Combined Stress of Diesel Fuel and Sr2+ Stress in Soil. Plants 2024, 13, 3598. https://doi.org/10.3390/plants13243598
Luo C, Jiang T, Ren P, Suo Z, Chen K. Physiological Responses of Populus cathayana and Salix babylonica to Combined Stress of Diesel Fuel and Sr2+ Stress in Soil. Plants. 2024; 13(24):3598. https://doi.org/10.3390/plants13243598
Chicago/Turabian StyleLuo, Chunyan, Tingting Jiang, Peng Ren, Zhirong Suo, and Ke Chen. 2024. "Physiological Responses of Populus cathayana and Salix babylonica to Combined Stress of Diesel Fuel and Sr2+ Stress in Soil" Plants 13, no. 24: 3598. https://doi.org/10.3390/plants13243598
APA StyleLuo, C., Jiang, T., Ren, P., Suo, Z., & Chen, K. (2024). Physiological Responses of Populus cathayana and Salix babylonica to Combined Stress of Diesel Fuel and Sr2+ Stress in Soil. Plants, 13(24), 3598. https://doi.org/10.3390/plants13243598