Flavonoids Derived from the Roots of Lespedeza bicolor Inhibit the Activity of SARS-CoV Papain-like Protease
Abstract
:1. Introduction
2. Results
2.1. Isolation of Flavonoids and Their Inhibitory Effect on SARS-CoV PLpro Activity
2.2. Expression of SARS-CoV PLpro in E. coli
2.3. SARS-CoV PLpro Activity Assay
2.4. Enzyme Kinetic Analysis
3. Discussion
4. Materials and Methods
4.1. General Apparatus and Chemicals
4.2. Plant Material
4.3. Extraction and Isolation of Bioactive Compounds
4.4. Expression and Purification of SARS-CoV PLpro in E. coli
4.5. SARS-CoV PLpro Activity Inhibition Assay
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal. 2020, 10, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Ziebuhr, J. The coronavirus replicase. Curr. Top. Microbiol. Immunol. 2005, 287, 57–94. [Google Scholar] [PubMed]
- Osipiuk, J.; Azizi, S.-A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 2021, 12, 743. [Google Scholar] [CrossRef]
- Ratia, K.; Pegan, S.; Takayama, J.; Sleeman, K.; Coughlin, M.; Baliji, S.; Chaudhuri, R.; Fu, W.; Prabhakar, B.S.; Johnson, M.E.; et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA 2008, 105, 16119–16124. [Google Scholar] [CrossRef]
- Devaraj, S.G.; Wang, N.; Chen, Z.; Chen, Z.; Tseng, M.; Barretto, N.; Lin, R.; Peters, C.J.; Tseng, C.-T.K.; Baker, S.C.; et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 2007, 282, 32208–32221. [Google Scholar] [CrossRef]
- Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA 2006, 103, 5717–5722. [Google Scholar] [CrossRef]
- Barretto, N.; Jukneliene, D.; Ratia, K.; Chen, Z.; Mesecar, A.D.; Baker, S.C. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol. 2005, 79, 15189–15198. [Google Scholar] [CrossRef]
- Tarbeeva, D.V.; Krylova, N.V.; Iunikhina, O.V.; Likhatskaya, G.N.; Kalinovskiy, A.I.; Grigorchuk, V.P.; Shchelkanov, M.Y.; Fedoreyev, S.A. Biologically active polyphenolic compounds from Lespedeza bicolor. Fitoterapia 2022, 157, 105121. [Google Scholar] [CrossRef]
- Maximov, O.B.; Kulesh, N.I.; Stepanenko, L.S.; Dmitrenok, P.S. New prenylated isoflavanones and other constituents of Lespedeza bicolor. Fitoterapia 2004, 75, 96. [Google Scholar] [CrossRef]
- Miyase, T.; Ueno, A.; Noro, T.; Fukishima, S. Studies on the constituents of Lespedeza cyrtobotrya MIQ. I. The structures of a new chalcone and two new isoflav-3-ens. Chem. Pharm. Bull. 1980, 28, 1172. [Google Scholar] [CrossRef]
- Woo, H.S.; Kim, D.W.; Curtis-Long, M.J.; Lee, B.W.; Lee, J.H.; Kim, J.Y.; Kang, J.E.; Park, K.H. Potent inhibition of bacterial neuraminidase activity by pterocarpans isolated from the roots of Lespedeza bicolor. Bioor. Med. Chem. Lett. 2011, 21, 6100–6103. [Google Scholar] [CrossRef] [PubMed]
- Samiullah Bano, A.; Naz, R.; Yasmin, H. In vitro inhibition potential of Lespedeza bicolor Turcz against selected bacterial and fungal strains. J. Med. Plants Res. 2011, 5, 3708–3714. [Google Scholar]
- Ullah, S. Methanolic extract from Lespedeza bicolor: Potential candidates for natural antioxidant and anticancer agent. J. Tradit. Chin. Med. 2017, 37, 444–451. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.Y.; Lim, Y. Lespedeza bicolor extract supplementation reduced hyperglycemia-induced skeletal muscle damage by regulation of AMPK/SIRT/PGC1α–related energy metabolism in type 2 diabetic mice. Nutr. Res. 2023, 110, 1–13. [Google Scholar] [CrossRef]
- Tanaka, H.; Tanaka, T.; Etoh, H. Two pterocarpans from Erythrina orientalis. Phytochemistry 1997, 47, 475–477. [Google Scholar] [CrossRef]
- Mori-Hongo, M.; Takimoto, H.; Katagiri, T.; Kimura, M.; Ikeda, Y.; Miyase, T. Melanin synthesis inhibors form Lespedeza floribunda. J. Nat. Prod. 2009, 72, 194–203. [Google Scholar] [CrossRef]
- Rukachaisirikul, T.; Innok, P.; Suksamrarn, A. Erythrina alkaloids and a pterocarpan from the bark of Erythrina subumbranes. J. Nat. Prod. 2008, 71, 156–158. [Google Scholar] [CrossRef]
- Jayasinghe, L.; Rupasinghe, G.K.; Hara, N.; Fujimoto, Y. Geranylated phenolic constituents form the fruits of Artocarpus nobilis. Phytochemistry 2006, 67, 1353–1358. [Google Scholar] [CrossRef]
- Assumpção, R.M.V. Flanonoids from Poecilanthe parviflora. Phytochemistry 1973, 12, 1188–1191. [Google Scholar] [CrossRef]
- Kiss, L.; Kurtan, T.; Antus, S.; Benyei, A. Chiroptival properties and synthesis of enantiopure cis and trans pterocarpan skeleton. Chirality 2003, 15, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Palazzino, G.; Rasoanaivo, P.; Federici, E.; Nicoletti, M.; Galeffi, C. Prenylated isoflanonoids from Millettia pervilleana. Phytochemistry 2003, 63, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Baruah, P.; Barua, N.C.; Sharma, R.P.; Baruah, J.N.; Kulanthaivel, P.; Herz, W. Flavonoids from Millettia pulchra. Phytochemistry 1984, 23, 443–447. [Google Scholar] [CrossRef]
- Segel, I.H. Enzyme Kinetics, 44th ed.; A Wiley-Interscience Publication: New York, NY, USA, 1993. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lindner, H.A.; Fotouhi-Ardakani, N.; Lytvyn, V.; Lachance, P.; Sulea, T.; Ménard, R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 2005, 79, 15199–15208. [Google Scholar] [CrossRef]
- Sulea, T.; Lindner, H.A.; Purisima, E.O.; Menard, R. Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease? J. Virol. 2005, 79, 4550–4551. [Google Scholar] [CrossRef]
Inhibitor | IC50 a Value (μM) | Inhibition Mode (Ki, μM) b |
---|---|---|
Erythrabyssin II (1) | 18.2 ± 2.3 | Noncompetitive (17.0 ± 3.1) |
Lespebuergine G4 (2) | 32.9 ± 1.4 | Noncompetitive (33.2 ± 1.7) |
1-Methoxyerythrabyssin II (3) | 11.2 ± 0.9 | Noncompetitive (8.6 ± 1.1) |
Bicolosin A (4) | 43.2 ± 1.8 | Noncompetitive (45.2 ± 3.1) |
Bicolosin B (5) | 217.4 ± 7.6 | NT c |
Bicolosin C (6) | 9.3 ± 3.1 | Noncompetitive (9.0 ± 1.4) |
Xanthoangelol (7) | 6.3 ± 1.5 | Noncompetitive (5.5 ± 0.8) |
(±)-Lespeol (8) | 50.1 ± 4.2 | Noncompetitive (54.0 ± 4.5) |
Parvisoflavanone (9) | 103.8 ± 6.1 | Noncompetitive (75.3 ± 5.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, H.S.; Lee, K.H.; Park, K.H.; Kim, D.W. Flavonoids Derived from the Roots of Lespedeza bicolor Inhibit the Activity of SARS-CoV Papain-like Protease. Plants 2024, 13, 3319. https://doi.org/10.3390/plants13233319
Woo HS, Lee KH, Park KH, Kim DW. Flavonoids Derived from the Roots of Lespedeza bicolor Inhibit the Activity of SARS-CoV Papain-like Protease. Plants. 2024; 13(23):3319. https://doi.org/10.3390/plants13233319
Chicago/Turabian StyleWoo, Hyun Sim, Kon Ho Lee, Ki Hun Park, and Dae Wook Kim. 2024. "Flavonoids Derived from the Roots of Lespedeza bicolor Inhibit the Activity of SARS-CoV Papain-like Protease" Plants 13, no. 23: 3319. https://doi.org/10.3390/plants13233319
APA StyleWoo, H. S., Lee, K. H., Park, K. H., & Kim, D. W. (2024). Flavonoids Derived from the Roots of Lespedeza bicolor Inhibit the Activity of SARS-CoV Papain-like Protease. Plants, 13(23), 3319. https://doi.org/10.3390/plants13233319