Correlation Analysis of Soil Microbial Communities and Physicochemical Properties with Growth Characteristics of Sageretia thea Across Different Habitats
Abstract
:1. Introduction
2. Results
2.1. Soil Physicochemical Properties
2.2. Growth Characteristics
2.3. Soil Microbial Community
2.4. Correlation Between Soil Microbial Community and Soil Properties
2.5. Correlation Between Soil Microbial Community and Growth Characteristics
3. Discussion
3.1. Soil Physicochemical Properties of S. thea Habitats
3.2. Growth Characteristics of S. thea Across Different Habitats
3.3. Abundance of Soil Microbial Communities in S. thea Habitats
3.4. Effect of Soil Physicochemical Properties on Microbial Communities
3.5. Effect of Microbial Communities on Growth Characteristics of S. thea
4. Materials and Methods
4.1. Study Habitat Site Selection and Collecting Soil Samples
4.2. Soil Physicochemical Property Analysis
4.3. Growth Characteristics of S. thea
4.4. Soil DNA Extraction and PCR Amplification
4.5. Pyrosequencing and Data Processing
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sylvia, D.M.; Hartel, P.G.; Fuhrmann, J.J.; Zuberer, D.A. Principles and Applications of Soil Microbiology; Pearson Education Inc.: London, UK, 2005; pp. 3–20. [Google Scholar]
- Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.Z.; El-enshasy, H.A.; Dailin, D.J.; Suriani, N.L. Recent understanding of soil Acidobacteria and their ecological significance: A critical review. Front. Microbiol. 2020, 11, 5800214. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Serala, H.; Putten, W.H.; Wall, D.H. Ecological Linkages Between Aboveground and Belowground Biota. Seience 2004, 304, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Jena, S.K.; Tayung, K.; Rath, C.C.; Parida, D. Occurrence of culturable soil fungi in a tropical moist deciduous forest Similipal Biosphere Reserve, Odisha, India. Braz. J. Microbiol. 2015, 46, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Wang, M.; Zhang, W.; Ni, Z.; Hashidoko, Y.; Shen, W. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci Total Environ. 2018, 624, 407–415. [Google Scholar] [CrossRef]
- Gazulla, C.R.; Auladell, A.; Ruiz-Gonzalez, C.; Junger, P.C.; Royo-Llonch, M.; Duarte, C.M.; Gasol, J.M.; Sanchez, O.; Ferrera, I. Global diversity and distribution of aerobic anoxygenic phototrophs in the tropical and subtropical oceans. Environ. Microbiol. 2022, 24, 2222–2238. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, X.; Huang, L.; Shan, Q.; Hu, A.; Yan, D.; Zhang, J.; Long, X.E. Soil profile rather than reclamation time drives the mudflat soil microbial community in the wheat-maize rotation system of Nantong, China. J. Soil. Sediment. 2021, 21, 1672–1687. [Google Scholar] [CrossRef]
- Kim, K.Y.; Um, Y.; Jeong, D.H.; Kim, H.J.; Kim, M.J.; Jeon, K.S. Study on the correlation between the soil bacterial community and growth characteristics of wild-simulated ginseng (Panax ginseng C.A. Meyer). Korean J. Environ. Biol. 2019, 37, 380–388. [Google Scholar] [CrossRef]
- Kim, K.Y.; Han, K.M.; Kim, H.J.; Jeon, K.S.; Kim, C.W.; Jung, C.R. The study of soil chemical properties and soil bacterial communities on the cultivation systems of Cnidium officinale Makino. Korean J. Environ. Agric. 2020, 39, 1–9. [Google Scholar] [CrossRef]
- Lee, T.B. Coloured Flora of Korea; Hayangmunsa: Seoul, Republic of Korea, 2003; Volume 1, pp. 713–720. [Google Scholar]
- Kim, H.N.; Park, G.H.; Park, S.B.; Kim, J.E.; Eo, H.J.; Son, H.J.; Song, J.H.; Jeong, J.B. Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells. BMC Complement. Altern. Med. 2019, 19, 43. [Google Scholar] [CrossRef]
- Shah, S.; Din, S.; Khan, A.; Rehmanullah; Shah, S.A. Green Synthesis and Antioxidant Study of Silver Nanoparticles of Root Extract of Sageretia thea and Its Role in Oxidation Protection Technology. J. Polym. Environ. 2018, 26, 2323–2332. [Google Scholar] [CrossRef]
- Pyo, S.J.; Le, Y.J.; Park, S.I.; Lee, C.I.; Park, J.Y.; Sohn, H.Y. Evaluation of the Anti-thrombosis Activities of the Aerial Parts of Sageretia thea. J. Life Sci. 2020, 30, 443–451. [Google Scholar]
- Eo, H.J.; Kim, D.S.; Kang, Y.G.; Kim, K.Y.; Park, Y.K.; Park, G.H. Antioxidant and immunoregulatory effects of Korean Rhamnaceae. J. Plant Biotechnol. 2020, 47, 254–259. [Google Scholar] [CrossRef]
- Ko, G.A.; Hoh, S.Y.; Ryu, J.Y.; Kim, S.M. Comparison of proximate compositions, antioxidant, and antiproliferative activities between blueberry and Sageretia thea (Osbeck) M.C.Johnst fruit produced in Jeju Island. J. Appl. Biol. Chem. 2017, 60, 161–171. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.Y.; Jung, T.K. Skin Physiological Activities from Sageretia thea Callus Extract. J. Investig. Cosmetol. 2022, 18, 451–456. [Google Scholar]
- Yang, Y.; Peng, H.; Sun, H. Taxonomic revision of Sageretia (Rhamnaceae) from China I: Identities of S. lucida, S. thea var. cordiformis and S. yunlongensis, with the description of a new species S. ellipsoidea. PhytoKeys 2021, 179, 13–28. [Google Scholar] [CrossRef]
- Brundrett, M.C. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Lendenmann, M.; Thonar, C.; Barnard, R.L.; Salmon, Y.; Werner, R.A.; Frossard, E.; Jansa, J. Symbiont identity matters: Carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 2011, 21, 689–702. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, S.W.; Kim, Y.S.; Lamsal, K.; Lee, Y.S. Inhibition effects against plant pathogenic pungi and plant growth promotion by beneficial microorganisms. Korean J. Mycol. 2013, 41, 118–126. [Google Scholar] [CrossRef]
- Lee, B.H.; Han, H.K.; Kwon, H.J.; Eom, A.H. Diversity of Endophytic Fungi Isolated from Roots of Cypripedium japonicum and C. macranthum in Korea. Korean J. Mycol. 2015, 43, 20–25. [Google Scholar] [CrossRef]
- Leake, J.R. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 1994, 127, 171–216. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Raven, P.H.; Hong, D. (Eds.) Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2007; Volume 12, pp. 133–139. [Google Scholar]
- Son, Y.H.; Son, H.G.; Park, G.H.; Lee, D.H.; Cho, H.J.; Lee, S.Y.; Kim, H.J. Growing environment characteristics and vegetational structure of Sageretia thea, medicinal plant. Korean J. Plant Res. 2020, 35, 594–606. [Google Scholar]
- National Geographic Information Institute. The National Atlas Korea II; National Geographic Information Institute: Suwon, Republic of Korea, 2020; pp. 52–73. [Google Scholar]
- Choi, G.Y. Spatio-temporal patterns and long-term trends of apparent temperature in Jeju island, Korea. JAKG 2018, 7, 29–41. [Google Scholar] [CrossRef]
- Tredennick, A.T.; Teller, B.J.; Adler, P.B.; Hooker, G.; Ellner, S.P. Size-by-environment interactions: A neglected dimension of species’ responses to environmental variation. Ecol. Lett. 2018, 21, 1757–1770. [Google Scholar] [CrossRef]
- Winn, A.A. Adaptation to fine-grained environmental variation: An analysis of within-individual leaf variation in an annual plant. Evolution 1996, 50, 1111–1118. [Google Scholar]
- Williams, A.; Sinanaj, B.; Hoysted, G.A. Plant-microbe interactions through a lens: Tales from the mycorrhizosphere. Ann. Bot. 2024, 133, 399–412. [Google Scholar] [CrossRef]
- Moon, J.G.; Shim, C.S.; Jung, O.J.; Hong, J.W.; Han, J.H.; Song, Y.I. Characteristics in regional climate change over South Korea for regional climate policy measures: Base on long-term observations. J. Clim. Change Res. 2020, 11, 755–770. [Google Scholar] [CrossRef]
- Eom, T.Y.; Khang, Y.H. Changes in the microbiome of Haeundae beach in summer. Korean J. Microbiol. 2021, 57, 243–248. [Google Scholar]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Inagaki, F.; Suzuki, M.; Takai, K.; Oida, H.; Sakamoto, T.; Aoki, K.; Nealson, K.H.; Horikoshi, K. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl. Environ. Microbiol. 2003, 69, 7224–7235. [Google Scholar] [CrossRef]
- Du, J.; Xiao, K.; Li, L.; Ding, X.; Liu, H.; Lu, Y.J.; Zhou, S. Temporal and spatial diversity of bacterial communities in coastal waters of the South China sea. PLoS ONE 2013, 8, e66968. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Csuros, M.; Hughes, A.L.; Moran, M.A. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio 2013, 4, e00373-13. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Su, W.; Chen, H.; Barberan, A.; Zhao, H.; Yu, M.; Yu, L.; Brookes, P.C.; Schadt, C.W.; Chang, S.X.; et al. Long-term nitrogen fertilization decreases vacterial diversity and favors the growth of Actiovacteria and Proteobacteria in agro-ecosystems across the globe. Glob. Change Biol. 2018, 24, 3452–3461. [Google Scholar] [CrossRef] [PubMed]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; Veen, J.A.; Kuramae, E.E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef]
- Soung, S.H.; Kim, K.H.; Hwang, S.J.; Oh, Y.T.; Park, S.H.; Lee, S.G.; Jeong, H.I.; Han, S.I. Molecular genetic analysis of Actinobacterial odorous substances (geosmin, 2-MIB) in North Han River watershed. Korean J. Microbiol. 2022, 58, 245–254. [Google Scholar]
- Zheng, Q.; Hua, Y.; Zhang, S.; Noll, L.; Böckle, T.; Dietrich, M.; Herbold, C.W.; Eichorst, S.A.; Woebken, D.; Richter, D.; et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 2019, 136, 107521. [Google Scholar] [CrossRef]
- Sait, M.; Davis, K.E.R.; Janssen, P.H. Effect of pH on isolation and distribution of members of subdivision 1 of the Phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 2006, 72, 1852–1857. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Seth, C.S.; Swapnil, P. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Venturini, A.M.; Meyer, K.M.; Klein, A.M.; Tiedje, J.M.; Bohannan, B.J.M.; Nüsslein, K.; Siu, M.; Tsai, S.M.; Rodrigues, J.L.M. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the Western Brazilian Amazon. Front. Microbiol. 2015, 6, 1443. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, X.; Guo, D.; Zhao, J.H.; Yan, L.; Feng, G.Z.; Gao, Q.; Yu, H.; Zhao, L.P. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann. Microbiol. 2019, 69, 1461–1473. [Google Scholar] [CrossRef]
- Lee, Y.; Kwak, Y.S. Synergistic inhibitory effect of Actinomycetes and Bactericides against fire blight pathogen. Korean J. Pestic. Sci. 2024, 28, 13–21. [Google Scholar] [CrossRef]
- Liu, X.; Cong, J.; Lu, H.; Xue, Y.; Wang, X.; Li, D.; Zhang, Y. Community structure and elevational distribution pattern of soil Actinobacteria in alpine grasslands. Acta Ecol. Sin. 2017, 37, 213–218. [Google Scholar] [CrossRef]
- Yoo, M.G.B.G.B.N.L.; Choi, H.J.; Lee, M.S.; Lee, S.Y. Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository. J. Nucl. Fuel Cycle Waste Technol. 2016, 14, 135–147. [Google Scholar]
- Kim, G.Y.; Lee, Y.J.; Cho, E.J.; Lee, J.I.; Im, E.C.; Hwang, H.; Kim, S.Y.; Hong, S.C.; Kim, J.H.; Park, S.J. Investigation of factors influencing on ammonia emission from soils in agricultural land. J. Korean Soc. Environ. Eng. 2022, 44, 444–452. [Google Scholar] [CrossRef]
- Lynn, T.M.; Liu, Q.; Hu, Y.; Yuan, H.; Wu, X.; Khai, A.A.; Wu, J.; Ge, T. Infuence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil. Arch. Microbiol. 2017, 199, 711–721. [Google Scholar] [CrossRef]
- Catania, V.; Bueno, R.S.; Alduina, R.; Grilli, E.; Mantia, T.L.; Castaldi, S.; Quatrini, P. Soil microbial biomass and bacterial diversity in southern European regions vulnerable to desertification. Ecol. Indic. 2022, 145, 109725. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.J.; Jeong, D.H.; Huh, J.H.; Jeon, K.S.; Um, Y. Correlation between soil bacterial community structure and soil properties in cultivation sites of 13-Year-old wild-simulated ginseng (Panax ginseng C.A. Meyer). Appl. Sci. 2021, 11, 937. [Google Scholar] [CrossRef]
- Spain, A.M.; Krumholz, L.R.; Elshahed, M.S. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009, 8, 992–1000. [Google Scholar] [CrossRef]
- Bruto, M.; Prigent-Combatet, C.; Muller, D.; Moenne-Loccoz, Y. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci. Rep. 2014, 4, 6261. [Google Scholar] [CrossRef]
- Poirier, Y.; Jaskolowski, A.; Clúa, J. Phosphate acquisition and metabolism in plants. Curr. Biol. 2022, 32, R623–R629. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Rosillo, A.C.; Peralta-Alvarez, C.A.; Ojeda-Rivera, J.O.; Arzate-Mejía, R.G.; Recillas-Targa, F.; Herrera-Estrella, L. GGenome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 33, 118. [Google Scholar]
- Orellana, D.; Machuca, D.; Ibeas, M.A.; Estevez, J.M.; Poupin, M.J. Plant-growth promotion by proteobacteria strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants. Front. Mocrobiol. 2022, 13, 1083270. [Google Scholar]
- Wei, M.; Liu, X.; He, Y.; Xu, X.; Wu, Z.; Yu, K.; Zheng, X. Biochar inoculated with Pseudomonas putida improves grape (Vitis vinifera L.) fruit quality and alters bacterial diversity. Rhizosphere 2020, 16, 100261. [Google Scholar]
- Zhang, D.; Yan, D.; Fang, W.; Huang, B.; Wang, X.; Wang, X.; Zhu, J.; Liu, J.; Ouyang, C.; Li, Y.; et al. Chloropicrin alternated with biofumigation increases crop yield and modifies soil bacterial and fungal communities in strawberry production. Sci. Total Environ. 2019, 675, 615–622. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Z.; Zhu, Y.; Wang, J.; Liu, B. Efects of a microbial restoration substrate on plant growth and rhizosphere bacterial community in a continuous tomato cropping greenhouse. Sci. Rep. 2020, 10, 13729. [Google Scholar] [CrossRef]
- Che, J.; Wu, Y.; Yang, H.; Wang, S.; Wu, W.; Lyu, L.; Li, W. Long-term cultivation drives dynamic changes in the rhizosphere microbial community of blueberry. Front. Plant Sci. 2022, 13, 962759. [Google Scholar] [CrossRef]
- Jeong, D.H.; Kwon, H.Y.; Kim, Y.K. Phenotypical characteristics investigation and selection of superior individuals from natural habitats of Sageretia thea in South Korea. Korean J. Plant Res. 2024, 37, 214–224. [Google Scholar]
- Sparks, D.L. Environmental Soil Chemistry; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Konen, M.E.; Jacobs, P.M.; Burras, C.L.; Talaga, B.J.; Mason, J.A. Equations for predicting soil organic carbon using loss-on-ignition for north central U.S. Soil Science. Soil Sci. Soc. Am. J. 2002, 66, 1878–1881. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis. Part 3: Chemical Methods, 3rd ed.; Sparks, D.L., Ed.; Soil Science Society of America Book Series No. 5; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Canfora, L.; Vendramin, E.; Felici, B.; Tarricone, L.; Florio, A.; Benedetti, A. Vineyard microbiome variations during different fertilization practices revealed by 16S rRNA gene sequencing. Appl. Soil Ecol. 2018, 123, 71–80. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.K.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE 2009, 4, e8230. [Google Scholar] [CrossRef] [PubMed]
BS | DH | HG | CD | MS | DC | JN | ND | JJ | HY | |
---|---|---|---|---|---|---|---|---|---|---|
Sand | 92.04 | 79.00 | 74.81 | 91.25 | 88.83 | 33.29 | 76.39 | 33.63 | 70.61 | 70.07 |
Silt | 4.47 | 13.90 | 15.98 | 4.01 | 3.92 | 37.42 | 14.05 | 38.30 | 20.04 | 19.12 |
Clay | 3.49 | 7.10 | 9.22 | 4.74 | 7.25 | 29.29 | 9.56 | 28.07 | 9.35 | 10.82 |
OM (%) | 0.37 | 23.51 | 18.13 | 4.39 | 7.98 | 18.34 | 32.28 | 12.23 | 35.91 | 36.43 |
Total N (%) | 0.03 | 0.90 | 0.60 | 0.23 | 0.27 | 0.57 | 1.21 | 0.48 | 1.30 | 1.39 |
Avai. P (mg/kg) | 57.96 | 232.81 | 122.45 | 118.29 | 102.53 | 112.81 | 235.39 | 315.90 | 116.72 | 272.41 |
K (cmol+kg−1) | 0.11 | 1.13 | 0.67 | 0.62 | 0.82 | 0.51 | 0.61 | 0.81 | 0.72 | 1.17 |
Ca (cmol+kg−1) | 1.23 | 23.33 | 25.97 | 11.64 | 16.12 | 5.28 | 7.13 | 16.60 | 20.43 | 21.64 |
Mg (cmol+kg−1) | 0.43 | 6.16 | 3.19 | 2.52 | 2.11 | 2.61 | 2.32 | 2.11 | 6.45 | 15.01 |
Na (cmol+kg−1) | 0.04 | 0.37 | 0.28 | 0.14 | 0.13 | 0.33 | 0.16 | 0.22 | 0.51 | 6.16 |
CEC z (cmol+kg−1) | 4.15 | 34.42 | 33.56 | 16.15 | 26.01 | 32.23 | 39.26 | 25.44 | 50.88 | 41.86 |
EC y (dS m−1) | 0.11 | 1.78 | 0.84 | 0.57 | 0.59 | 0.54 | 0.64 | 0.68 | 1.16 | 1.59 |
pH [1:5, H2O] | 6.21 | 5.76 | 6.42 | 7.05 | 6.45 | 5.37 | 4.68 | 6.14 | 5.63 | 6.75 |
Habitats | Leaf | Fruit | |||||
---|---|---|---|---|---|---|---|
Length (mm) | Width (mm) | Length (mm) | Width (mm) | Weight (g) | Sweetness (°Brix) | Hardness (N) | |
BS | 37.2 az | 21.49 ab | 7.24 ab | 8.45 a | 0.41 a | 11.1 d | 0.72 b |
DH | 35.35 a | 21.08 ab | 6.89 bc | 8.4 b | 0.4 a | 14.63 bc | 0.67 b |
HG | 34.82 ab | 22.55 a | 7.8 a | 8.83 a | 0.35 abc | 15.65 bc | 0.67 b |
CD | 26.57 c | 16.98 bc | 7.15 ab | 7.94 abc | 0.34 abc | 12.19 cd | 0.94 b |
MS | 35.38 ab | 20.44 ab | 7.2 ab | 8.17 ab | 0.39 ab | 18.91 a | 0.75 b |
DC | 34.8 ab | 21.53 ab | 7.87 a | 8.95 a | 0.41 a | 15.76 abc | 0.82 b |
JN | 38.15 a | 22.33 ab | 6.11 c | 6.77 d | 0.27 c | 17.79 ab | 0.84 b |
ND | 27.54 bc | 15.02 c | 6.4 bc | 7.02 cd | 0.28 c | 15.35 abc | 1.56 a |
JJ | 34.83 ab | 19.87 abc | 6.99 ab | 8.07 ab | 0.29 c | 14.87 bc | 0.84 b |
HY | 36.72 a | 20.2 ab | 6.68 bc | 7.37 bd | 0.3 bc | 15.44 abc | 1.06 ab |
Habitats | Administrative Distract | Coordinate | |||
---|---|---|---|---|---|
State | City | Town | North Latitude | East Longitude | |
BS | Jeollanam-do | Sinan-gun | Backsan-ri | 34°52′44.8″ | 126°01′38.3″ |
DH | “ | Jindo-gun | Dohang-ri | 34°24′46.8″ | 126°18′17.2″ |
HG | “ | Haenam-gun | Haksa-ri | 34°24′21.7″ | 126°29′24.7″ |
CD | “ | Wando-gun | Chungdo-ri | 34°12′48.2″ | 127°36′16.9″ |
MS | “ | “ | Mangseok-ri | 34°18′16.7″ | 127°44′59.0″ |
DC | “ | “ | Dicheong-ri | 34°11′22.3″ | 127°34′32.9″ |
JN | “ | Goheung-gun | Jangnam-ri | 34°36′09.5″ | 127°24′56.4″ |
ND | “ | Yeosu-si | Nangdo-ri | 34°36′47.8″ | 128°32′16.8″ |
JJ | Jeju-do | Jeju-si | Jeoji-ri | 33°19′31.9″ | 126°17′06.3″ |
HY | “ | Seogwipo-si | Haye-dong | 33°14′04.5″ | 126°23′53.1″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.-H.; Yun, Y.-B.; Son, H.-J.; Um, Y.; Song, J.-H.; Kim, J. Correlation Analysis of Soil Microbial Communities and Physicochemical Properties with Growth Characteristics of Sageretia thea Across Different Habitats. Plants 2024, 13, 3310. https://doi.org/10.3390/plants13233310
Jeong D-H, Yun Y-B, Son H-J, Um Y, Song J-H, Kim J. Correlation Analysis of Soil Microbial Communities and Physicochemical Properties with Growth Characteristics of Sageretia thea Across Different Habitats. Plants. 2024; 13(23):3310. https://doi.org/10.3390/plants13233310
Chicago/Turabian StyleJeong, Dae-Hui, Yeong-Bae Yun, Ho-Jun Son, Yurry Um, Jeong-Ho Song, and Jiah Kim. 2024. "Correlation Analysis of Soil Microbial Communities and Physicochemical Properties with Growth Characteristics of Sageretia thea Across Different Habitats" Plants 13, no. 23: 3310. https://doi.org/10.3390/plants13233310
APA StyleJeong, D.-H., Yun, Y.-B., Son, H.-J., Um, Y., Song, J.-H., & Kim, J. (2024). Correlation Analysis of Soil Microbial Communities and Physicochemical Properties with Growth Characteristics of Sageretia thea Across Different Habitats. Plants, 13(23), 3310. https://doi.org/10.3390/plants13233310