Molecular Basis of Lipid Metabolism in Oryza sativa L.
Abstract
:1. Introduction
1.1. Rice Lipid Content, Distribution, and Composition
1.2. Functional Characteristics of Rice Lipids
1.2.1. Roles of Lipids in Rice Growth and Development
1.2.2. Stress Response of Lipids in Rice
1.2.3. Roles of Lipids in Rice Quality
2. Biosynthesis and Metabolism in Rice Lipids
2.1. Lipid Biosynthesis
2.2. Lipid Metabolism
3. Genetic Basis for Controlling Rice Lipid and Fatty Acid Content
3.1. Identification of Genes/QTLs Controlling Rice Lipid and Fatty Acid Content
3.2. Molecular Regulation of Rice Lipid Metabolism
4. Summary
Funding
Conflicts of Interest
References
- Wing, R.A.; Purugganan, M.D.; Zhang, Q.F. The Rice Genome Revolution: From an Ancient Grain to Green Super Rice. Nat. Rev. Genet. 2018, 19, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Q.; Fang, C.Y.; Lu, L.; Hu, Z.Q.; Zhang, W.X.; Chen, M.X. Dynamic Changes in Volatiles, Soluble Sugars, and Fatty Acids in Glutinous Rice During Cooking. Foods 2023, 12, 1700. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Catapano, A.L.; Cicero, A.F.G.; Escobar, C.; Foger, B.; Katsiki, N.; Latkovskis, G.; Rakowski, M.; Reiner, Z.; Sahebkar, A.; et al. On Behalf of The International Lipid Expert Panel, I. Red Yeast Rice for Dyslipidaemias and Cardiovascular Risk Reduction: A Position Paper of the International Lipid Expert Panel. Pharmacol. Res. 2022, 183, 106370. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Zubair, M.; Baig, A.; Farid, M.; Ahmed, W.; Rehman, R.; Ayub, M.A.; Hassoun, A.; Cropotova, J. Effect of Storage on the Nutritional and Antioxidant Properties of Brown Basmati Rice. Food Sci. Nutr. 2023, 11, 2086–2098. [Google Scholar] [CrossRef]
- Yoshida, H.; Tomiyama, Y.; Mizushina, Y. Lipid Components, Fatty Acids and Triacylglycerol Molecular Species of Black and Red Rices. Food Chem. 2010, 123, 210–215. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Wu, D.X.; Yuan, M.A.; Shu, X.L. Functional Characteristics of Lipids in Rice and Its’ Biological Regulation. J. Nucl. Agric. Sci. 2019, 33, 1105–1115. [Google Scholar]
- Yoon, M.R.; Lee, S.C.; Kang, M.Y. The Lipid Composition of Rice Cultivars with Different Eating Qualities. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 291–295. [Google Scholar] [CrossRef]
- Yoshida, H.; Kuriyama, I.; Tomiyama-Sakamoto, Y.; Mizushina, Y. Profiles of Lipid Components, Fatty Acids and Triacylglycerol Molecular Species in Lipids of Rice Bran Cultivars. Food Sci. Technol. Int. Tokyo 2012, 18, 219–226. [Google Scholar] [CrossRef]
- Wang, F.X.; Xu, H.B.; Zhang, L.; Shi, Y.R.; Song, Y.; Wang, X.Y.; Cai, Q.H.; He, W.; Xie, H.A.; Zhang, J.F. The Lipoxygenase Oslox10 Affects Seed Longevity and Resistance to Saline-Alkaline Stress During Rice Seedlings. Plant Mol. Biol. 2023, 111, 415–428. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Lu, Z.H.; Ouyang, Y.D.; O, C.S.; Yao, J.L. A Lipid Transfer Protein, Osltpl36, Is Essential for Seed Development and Seed Quality in Rice. Plant Sci. 2015, 239, 200–208. [Google Scholar] [CrossRef]
- He, Y.; Liu, C.; Zhu, L.; Fu, M.; Sun, Y.J.; Zeng, H.L. Jasmonic Acid Plays a Pivotal Role in Pollen Development and Fertility Regulation in Different Types of P(T)Gms Rice Lines. Int. J. Mol. Sci. 2021, 22, 7926. [Google Scholar] [CrossRef]
- Liu, H.L.; Xin, W.; Wang, Y.L.; Zhang, D.Z.; Wang, J.G.; Zheng, H.L.; Yang, L.M.; Nie, S.J.; Zou, D.T. An Integrated Analysis of the Rice Transcriptome and Lipidome Reveals Lipid Metabolism Plays a Central Role in Rice Cold Tolerance. BMC Plant Biol. 2022, 22, 91. [Google Scholar] [CrossRef]
- Hou, X.L.; Han, X.; Meng, Y.; Wang, L.; Zhang, W.; Yang, C.; Li, H.; Tang, S.; Guo, Z.; Liu, C.; et al. Acyl Carrier Protein Osmtacp2 Confers Rice Cold Tolerance at the Booting Stage. Plant Physiol. 2024, 195, 1277–1292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, S.; Bai, B.; Chen, Y.; Xiang, Z.; Chen, C.; Kuang, X.; Yang, Y.; Fu, J.; Chen, L.; et al. Oskasi-2 Is Required for the Regulation of Unsaturation Levels of Membrane Lipids and Chilling Tolerance in Rice. Plant Biotechnol. J. 2024, 22, 2157–2172. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Dong, G.; Wang, F.; Shi, Y.; Zhu, J.; Zhang, Y.; Ruan, B.; Wu, Y.; Feng, X.; Zhao, C.; et al. A Β-Ketoacyl Carrier Protein Reductase Confers Heat Tolerance Via the Regulation of Fatty Acid Biosynthesis and Stress Signaling in Rice. New Phytol. 2021, 232, 655–672. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.H.; Yu, J.J.; Liao, B.; Shan, J.X.; Ye, W.W.; Dong, N.Q.; Guo, T.; Kan, Y.; Zhang, H.; Yang, Y.B.; et al. An A/Β Hydrolase Family Member Negatively Regulates Salt Tolerance but Promotes Flowering through Three Distinct Functions in Rice. Mol. Plant 2022, 15, 1908–1930. [Google Scholar] [CrossRef]
- Sha, G.; Sun, P.; Kong, X.; Han, X.; Sun, Q.; Fouillen, L.; Zhao, J.; Li, Y.; Yang, L.; Wang, Y.; et al. Genome Editing of a Rice Cdp-Dag Synthase Confers Multipathogen Resistance. Nature 2023, 618, 1017–1023. [Google Scholar] [CrossRef]
- Photinam, R.; Moongngarm, A. Effect of Adding Vegetable Oils to Starches from Different Botanical Origins on Physicochemical and Digestive Properties and Amylose-Lipid Complex Formation. J. Food Sci. Technol. 2023, 60, 393–403. [Google Scholar] [CrossRef]
- Yang, Z.; Han, X.; Zhang, L.J.; Wu, H.Y.; Liu, W.T. Research Progress on Anti-Retrogradation Technique of Rice Products. Food Ind. 2017, 38, 258–262. [Google Scholar]
- Zhang, C.; Xue, W.; Li, T.; Wang, L. Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch. Foods 2023, 12, 3611. [Google Scholar] [CrossRef]
- Khan, M.S.S.; Basnet, R.; Ahmed, S.; Bao, J.S.; Shu, Q.Y. Mutations of Osplda1 Increase Lysophospholipid Content and Enhance Cooking and Eating Quality in Rice. Plants 2020, 9, 390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhao, L.; Wang, W.; Wang, Q.; Liu, J.; Wang, Y.; Liu, H.; Shang, B.; Duan, X.; Sun, H. Lipidomics Reveals the Changes in Non-Starch and Starch Lipids of Rice (Oryza sativa L.) During Storage. J. Food Compos. Anal. 2022, 105, 104205. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Li, Z.; Xu, L.; Lan, D.; Wang, Y. Lipidomics Analysis Unveils the Dynamic Alterations of Lipid Degradation in Rice Bran During Storage. Food Res. Int. 2024, 184, 114243. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Zhao, L.Y.; Liu, J.L.; Shang, B.; Yang, W.Q.; Duan, X.L.; Sun, H. Metabolomic Analysis Reveals Insights into Deterioration of Rice Quality During Storage. Foods 2022, 11, 1729. [Google Scholar] [CrossRef]
- Cai, C.X.; Zhao, Z.S.; Zhang, Y.Y.; Li, M.; Li, L.N.; Cheng, P.F.; Shen, W.B. Molecular Hydrogen Improves Rice Storage Quality Via Alleviating Lipid Deterioration and Maintaining Nutritional Values. Plants 2022, 11, 2588. [Google Scholar] [CrossRef] [PubMed]
- Siloto, R.M.P.; Findlay, K.; Lopez-Villalobos, A.; Yeung, E.C.; Nykiforuk, C.L.; Moloney, M. The Accumulation of Oleosins Determines the Size of Seed Oilbodies in Arabidopsis. Plant Cell 2006, 18, 1961–1974. [Google Scholar] [CrossRef]
- Baud, S.; Lepiniec, L. Physiological and Developmental Regulation of Seed Oil Production. Prog. Lipid Res. 2010, 49, 235–249. [Google Scholar] [CrossRef]
- Gibellini, F.; Smith, T.K. The Kennedy Pathway--De Novo Synthesis of Phosphatidylethanolamine and Phosphatidylcholine. IUBMB Life 2010, 62, 414–428. [Google Scholar] [CrossRef]
- Chapman, K.D.; Ohlrogge, J.B. Compartmentation of Triacylglycerol Accumulation in Plants. J. Biol. Chem. 2012, 287, 2288–2294. [Google Scholar] [CrossRef]
- Song, Y.H.; Wang, X.D.; Rose, R.J. Oil Body Biogenesis and Biotechnology in Legume Seeds. Plant Cell Rep. 2017, 36, 1519–1532. [Google Scholar] [CrossRef]
- Yu, L.H.; Fan, J.L.; Xu, C.C. Peroxisomal Fatty Acid Β-Oxidation Negatively Impacts Plant Survival under Salt Stress. Plant Signal. Behav. 2019, 14, 1561121. [Google Scholar] [CrossRef] [PubMed]
- Jallet, D.; Xing, D.; Hughes, A.; Moosburner, M.; Simmons, M.P.; Allen, A.E.; Peers, G. Mitochondrial Fatty Acid Β-Oxidation Is Required for Storage-Lipid Catabolism in a Marine Diatom. New Phytol. 2020, 228, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Senan, A.M.; Zhang, S.C.; Zeng, M.; Chen, Z.Q.; Yin, G.C. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(Ii)/Lewis Acid Catalyst. J. Agric. Food Chem. 2017, 65, 6912–6918. [Google Scholar] [CrossRef] [PubMed]
- Harakotr, B.; Prompoh, K.; Boonyuen, S.; Suriharn, B.; Lertrat, K. Variability in Nutraceutical Lipid Content of Selected Rice (Oryza sativa L. spp. Indica) Germplasms. Agronomy 2019, 9, 823. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, K.W.; Park, Y.J. Genetic Diversity of Fatty Acids, Tocols, Squalene, and Phytosterols in Grains of 157 Rice Cultivars Bred in Korea. Plant Breed. Biotechnol. 2020, 8, 341–353. [Google Scholar] [CrossRef]
- Nga, M.T.P.; Linh, N.T.T.; Nguyet, T.T.A.; Ngoc, N.T.H.; Anh, C.T.Q.; Huong, T.T.M. Natural Variation in Fatty Acid Composition of Diverse Vietnamese Rice Germplasm. Vietnam. J. Biotechnol. 2023, 21, 141–153. [Google Scholar]
- Wu, C.M.; Sun, C.Q.; Chen, L.; Li, Z.C.; Wang, X.K. Analysis of Qtls Underlying Content of Fat Using Recombinant Inbred Lines in Rice. J. Agric. Biotechnol. 2000, 8, 382–384. [Google Scholar]
- Hu, Z.L.; Li, P.; Zhou, M.Q.; Zhang, Z.H.; Wang, L.X.; Zhu, L.H.; Zhu, Y.G. Mapping of Quantitative Trait Loci (Qtls) for Rice Protein and Fat Content Using Doubled Haploid Lines. Euphytica 2004, 135, 47–54. [Google Scholar] [CrossRef]
- Yu, Y.H.; Zhu, Z.W.; Fan, Y.Y.; Duan, B.W.; Zhuang, J.Y. Qtl Mapping of Brown Rice Protein Content and Lipid Content in a Recombinant Inbred Population of Rice. Acta Agron. Sin. 2006, 32, 1712–1716. [Google Scholar]
- Wang, H.L.; Zhang, W.W.; Liu, L.L.; Shen, Y.Y.; Wang, J.K.; Jiang, L.; Zhai, H.Q.; Wan, J.M. Dynamic Qtl Analysis on Rice Fat Content and Fat Index Using Recombinant Inbred Lines. Cereal Chem. 2008, 85, 769–775. [Google Scholar] [CrossRef]
- Liu, W.J.; Zeng, J.; Jiang, G.H.; He, Y.Q. Qtls Identification of Crude Fat Content in Brown Rice and Its Genetic Basis Analysis Using Dh and Two Backcross Populations. Euphytica 2009, 169, 197–205. [Google Scholar] [CrossRef]
- Shen, Y.Y.; Liu, L.L.; Jiang, L.; Zhang, Y.X.; Liu, X.L.; Zhai, H.Q.; Wan, J.M. Identification of Quantitative Trait Loci Affecting Grain Fat Content in Rice (Oryza sativa L.). Cereal Chem. 2010, 87, 118–124. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, B.; Tondi-yacouba, N.; Gao, G.J.; Zhang, Q.L.; He, Y.Q. Qtls Mapping of Protein Content and Crude Fat Content in Rice. Hubei Agric. Sci. 2012, 51, 4709–4713. [Google Scholar]
- Ying, J.Z.; Shan, J.X.; Gao, J.P.; Zhu, M.Z.; Shi, M.; Lin, H.X. Identification of Quantitative Trait Loci for Lipid Metabolism in Rice Seeds. Mol. Plant 2012, 5, 865–875. [Google Scholar] [CrossRef]
- Kim, N.H.; Sohn, J.K.; Kim, K.M. Physicochemical Characteristics and Qtl Mapping Associated with the Lipid Content of High-Lipid Rice. Am. J. Bot. 2013, 4, 1949–1953. [Google Scholar] [CrossRef]
- Yun, B.W.; Kim, M.G.; Handoyo, T.; Kim, K.M. Analysis of Rice Grain Quality-Associated Quantitative Trait Loci by Using Genetic Mapping. Am. J. Plant Sci. 2014, 5, 1125–1132. [Google Scholar] [CrossRef]
- Li, X.P.; Miao, B.G.; Ma, W.D.; Zhang, X.G.; LI, J.M.; Zhang, S.Q. Map Integration Ofqtls Related to Protein Content and Fat Content Ofrice. Mol. Plant Breed. 2017, 15, 2662–2670. [Google Scholar]
- Zhou, H.; Xia, D.; Li, P.; Ao, Y.; Xu, X.D.; Wan, S.S.; Li, Y.H.; Wu, B.; Shi, H.; Wang, K.Y.; et al. Genetic Architecture and Key Genes Controlling the Diversity of Oil Composition in Rice Grains. Mol. Plant 2021, 14, 456–469. [Google Scholar] [CrossRef]
- Xia, D.; Zhou, H.; Wang, Y.P.; Ao, Y.T.; Li, Y.H.; Huang, J.J.; Wu, B.; Li, X.H.; Wang, G.W.; Xiao, J.H.; et al. Qfc6, a Major Gene for Crude Fat Content and Quality in Rice. Theor. Appl. Genet. 2022, 135, 2675–2685. [Google Scholar] [CrossRef]
- Mai, N.T.P.; Nguyen, L.T.T.; Tran, S.G.; To, H.T.M. Genome-Wide Association Study Reveals Useful Qtl and Genes Controlling the Fatty Acid Composition in Rice Bran Oil Using Vietnamese Rice Landraces. Funct. Integr. Genom. 2023, 23, 150. [Google Scholar] [CrossRef]
- Liu, H.L.; Yin, Z.J.; Xiao, L.; Xu, Y.N.; Qu, L.Q. Identification and Evaluation of Ω-3 Fatty Acid Desaturase Genes for Hyperfortifying A-Linolenic Acid in Transgenic Rice Seed. J. Exp. Bot. 2012, 63, 3279–3287. [Google Scholar] [CrossRef]
- Zaplin, E.S.; Liu, Q.; Li, Z.Y.; Butardo, V.M.; Blanchard, C.L.; Rahman, S. Production of High Oleic Rice Grains by Suppressing the Expression of the Osfad2-1 Gene. Funct. Plant Biol. 2013, 40, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.B.; Wei, Y.D.; Zhu, Y.S.; Lian, L.; Xie, H.G.; Cai, Q.H.; Chen, Q.S.; Lin, Z.P.; Wang, Z.H.; Xie, H.A.; et al. Antisense Suppression of Lox3 Gene Expression in Rice Endosperm Enhances Seed Longevity. Plant Biotechnol. J. 2015, 13, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.J.; Tang, N.; Chen, Q.Z.; Yang, P.; Wang, L.K. Grain Yield and Quality Analysis of Transgenic Rice Expressing C4 Enzymes. Acta Agric. Boreali-Occident. Sin. 2017, 26, 210–215. [Google Scholar]
- Long, W.H.; Wang, Y.L.; Zhu, S.S.; Jing, W.; Wang, Y.H.; Ren, Y.L.; Tian, Y.L.; Liu, S.J.; Liu, X.; Chen, L.M.; et al. Floury Shrunken Endosperm1 Connects Phospholipid Metabolism and Amyloplast Development in Rice. Plant Physiol. 2018, 177, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.S.; Gong, R.; Yuan, S.; Su, Y.; Lv, W.X.; Zhou, Y.M.; Zhang, Q.Q.; Deng, X.J.; Tong, P.; Liang, S.H.; et al. Phospholipase Dα6 and Phosphatidic Acid Regulate Gibberellin Signaling in Rice. EMBO Rep. 2021, 22, e51871. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Q.; Tang, Y.H.; Tang, Y.Y.; Li, M.R.; Wu, G.J.; Chen, Y.P.; Jiang, H.W. Ectopic Expression of Wrinkled1 in Rice Improves Lipid Biosynthesis but Retards Plant Growth and Development. PLoS ONE 2022, 17, e0267684. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, X.Q.; Chen, D.G.; Chen, K.; Ye, C.J.; Liu, J.; Liu, S.L.; Chen, Y.D.; Chen, G.; Liu, C.G. Effect of Fat Content on Rice Taste Quality through Transcriptome Analysis. Genes 2024, 15, 81. [Google Scholar] [CrossRef]
- Liu, X.X.; Li, Z.Y.; Ying, J.Z.; Shu, Y.Z.; Liu, W.N.; Li, G.; Chen, L.J.; Luo, J.J.; Wang, S.Y.; Wang, Y.F.; et al. Multi-Gene Engineering Boosts Oil Content in Rice Grains. Plant Commun. 2024, 5, 100736. [Google Scholar] [CrossRef]
- Shen, Y.; An, Z.X.; Huyan, Z.Y.; Shu, X.L.; Wu, D.X.; Zhang, N.; Pellegrini, N.; Rubert, J. Lipid Complexation Reduces Rice Starch Digestibility and Boosts Short-Chain Fatty Acid Production Via Gut Microbiota. NPJ Sci. Food 2023, 7, 56. [Google Scholar] [CrossRef]
- Yang, C.; Shen, S.; Zhan, C.; Li, Y.; Zhang, R.; Lv, Y.; Yang, Z.; Zhou, J.; Shi, Y.; Liu, X.; et al. Variation in a Poaceae-Conserved Fatty Acid Metabolic Gene Cluster Controls Rice Yield by Regulating Male Fertility. Nat. Commun. 2024, 15, 6663. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.; Liu, Z.; Ying, X.; Kalandarov, B.; Ergashev, M.; Tong, X.; Zhang, J.; Jin, J.; Ying, J. Molecular Basis of Lipid Metabolism in Oryza sativa L. Plants 2024, 13, 3263. https://doi.org/10.3390/plants13233263
Chang L, Liu Z, Ying X, Kalandarov B, Ergashev M, Tong X, Zhang J, Jin J, Ying J. Molecular Basis of Lipid Metabolism in Oryza sativa L. Plants. 2024; 13(23):3263. https://doi.org/10.3390/plants13233263
Chicago/Turabian StyleChang, Longxue, Zhichao Liu, Xiaoping Ying, Baxtiyor Kalandarov, Muhammad Ergashev, Xiaohong Tong, Jian Zhang, Jian Jin, and Jiezheng Ying. 2024. "Molecular Basis of Lipid Metabolism in Oryza sativa L." Plants 13, no. 23: 3263. https://doi.org/10.3390/plants13233263
APA StyleChang, L., Liu, Z., Ying, X., Kalandarov, B., Ergashev, M., Tong, X., Zhang, J., Jin, J., & Ying, J. (2024). Molecular Basis of Lipid Metabolism in Oryza sativa L. Plants, 13(23), 3263. https://doi.org/10.3390/plants13233263