Genome-Wide Association Study for Agronomic Traits in Gamma-Ray-Derived Mutant Kenaf (Hibiscus cannabinus L.)
Abstract
1. Introduction
2. Results
2.1. Phenotypic Variation and Correlation Analysis
2.2. Genotyping by Sequencing of 96 Kenaf Lines
2.3. Construction of Phylogenetic Tree and Genome-Wide Association Study for Agronomic Traits
2.4. Gene Annotation
3. Discussion
4. Materials and Methods
4.1. Plant Materials and DNA Isolation
4.2. Sequence Pre-Processing and Alignment to Reference Genome
4.3. Raw SNP Detection and Generation of SNP Matrix
4.4. Linkage Disequilibrium Estimation
4.5. Genome-Wide Association Study and Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afzal, M.Z.; Ibrahim, A.K.; Xu, Y.; Niyitanga, S.; Li, Y.; Li, D.; Yang, X.; Zhang, L. Kenaf (Hibiscus cannabinus L.) breeding. J. Nat. Fibers 2022, 19, 4063–4081. [Google Scholar] [CrossRef]
- Webber, C.L., III; Bhardwaj, H.L.; Bledsoe, V.K. Kenaf production: Fiber, feed, and seed. Trends New Crops New Uses 2002, 13, 327–339. [Google Scholar]
- Dempsey, J.M. Fiber Crops; Univ. Presses of Florida: Gainesville, FL, USA, 1975. [Google Scholar]
- Scott, A. Kenaf Seed Production: 1981–82; Biennial Report for 1980; Rio Farms, Inc.: Monte Alto, TX, USA, 1981; pp. 60–63. [Google Scholar]
- Alexopoulou, E.; Papatheohari, Y.; Christou, M.; Monti, A. Origin, description, importance, and cultivation area of kenaf. In Kenaf: A Multi-Purpose Crop for Several Industrial Applications: New Insights from the Biokenaf Project; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–15. [Google Scholar]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Taufiq, M.; Mansor, M.R.; Mustafa, Z. Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend. Compos. Struct. 2018, 189, 510–515. [Google Scholar] [CrossRef]
- Ramesh, P.; Durga Prasad, B.; Narayana, K. Characterization of kenaf fiber and its composites: A review. J. Reinf. Plast. Compos. 2018, 37, 731–737. [Google Scholar] [CrossRef]
- Dryer, J. In Kenaf seed cultivars. In Proceedings of the First Conference on Kenaf for Pulp, Gainesville, FL, USA, 31 October–1 November 1967; pp. 44–46. [Google Scholar]
- Ha, B.-K.; Lee, K.J.; Velusamy, V.; Kim, J.-B.; Kim, S.H.; Ahn, J.-W.; Kang, S.-Y.; Kim, D.S. Improvement of soybean through radiation-induced mutation breeding techniques in Korea. Plant Genet. Resour. 2014, 12 (Suppl. S1), S54–S57. [Google Scholar] [CrossRef]
- Li, D.; Huang, S. The Breeding of Kenaf. In Kenaf: A Multi-Purpose Crop for Several Industrial Applications: New Insights from the Biokenaf Project; Springer: Berlin/Heidelberg, Germany, 2013; pp. 45–58. [Google Scholar]
- Lyu, J.I.; Choi, H.-I.; Ryu, J.; Kwon, S.-J.; Jo, Y.D.; Hong, M.J.; Kim, J.-B.; Ahn, J.-W.; Kang, S.-Y. Transcriptome analysis and identification of genes related to biosynthesis of anthocyanins and kaempferitrin in kenaf (Hibiscus cannabinus L.). J. Plant Biol. 2020, 63, 51–62. [Google Scholar] [CrossRef]
- Lyu, J.I.; Ryu, J.; Kim, D.-G.; Kim, J.M.; Ahn, J.-W.; Kwon, S.-J.; Kim, S.H.; Kang, S.-Y. Comparative Transcriptome Analysis Identified Potential Genes and Transcription Factors for Flower Coloration in Kenaf (Hibiscus cannabinus L.). Agronomy 2023, 13, 715. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.-J.; Ahn, J.; Kim, S.H.; Lee, S.Y.; Kim, J.-B.; Jo, Y.; Ha, B.-K.; Kang, S.-Y. Development of a stem-color mutant kenaf (Hibiscus cannabinus L.) cultivar, ‘Jeokbong’, and analysis of its functional compounds. Hortic. Sci. Technol. 2018, 36, 77–81. [Google Scholar] [CrossRef]
- Kim, D.-G.; Ryu, J.; Lee, M.-K.; Kim, J.M.; Ahn, J.-W.; Kim, J.-B.; Kang, S.-Y.; Bae, C.-H.; Kwon, S.-J. Nutritional properties of various tissues from new kenaf cultivars. J. Crop Sci. Biotechnol. 2018, 21, 229–239. [Google Scholar] [CrossRef]
- Kang, S.; Shin, I.; Kim, D.; Lee, G.; Kim, J.; Lee, D.; Lee, S.; Lee, D. A new green-kerneled glutinous rice mutant variety, “Nogwonchalbyeo” developed by gamma ray irradiation. Korean J. Breed. Sci. 2008, 40, 303–307. [Google Scholar]
- Lu, L.; Zhai, X.; Li, X.; Wang, S.; Zhang, L.; Wang, L.; Jin, X.; Liang, L.; Deng, Z.; Li, Z. Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains. Nat. Commun. 2022, 13, 4672. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, S.; Lu, X.; Guo, H.; Chen, S.; Yin, X.; Li, H.; Dai, G.; Liu, L. Integrating Genomics and Metabolomics for the Targeted Discovery of New Cyclopeptides with Antifungal Activity from a Marine-Derived Fungus Beauveria felina. J. Agric. Food Chem. 2023, 71, 9782–9795. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zaman, W.; Lu, J.; Niu, Q.; Zhang, X.; Ayaz, A.; Saqib, S.; Yang, B.; Zhang, J.; Zhao, H. Natural lupeol level variation among castor accessions and the upregulation of lupeol synthesis in response to light. Ind. Crops Prod. 2023, 192, 116090. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Yang, B.; Kim, W.J.; Kim, J.; Kwon, S.-J.; Kim, J.H.; Ahn, J.-W.; Kim, S.H.; Rha, E.-S.; Ha, B.-K. Genome-Wide Association Study (GWAS) of the Agronomic Traits and Phenolic Content in Sorghum (Sorghum bicolor L.) Genotypes. Agronomy 2023, 13, 1449. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. -Educ. Pract. 2013, 98, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Poland, J.A.; Rife, T.W. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 2012, 5, 92–101. [Google Scholar] [CrossRef]
- Deschamps, S.; Llaca, V.; May, G.D. Genotyping-by-sequencing in plants. Biology 2012, 1, 460–483. [Google Scholar] [CrossRef]
- Josephs, E.B.; Stinchcombe, J.R.; Wright, S.I. What can genome-wide association studies tell us about the evolutionary forces maintaining genetic variation for quantitative traits? New Phytol. 2017, 214, 21–33. [Google Scholar] [CrossRef]
- Ayaz, A.; Huang, H.; Zheng, M.; Zaman, W.; Li, D.; Saqib, S.; Zhao, H.; Lü, S. Molecular cloning and functional analysis of GmLACS2-3 reveals its involvement in cutin and suberin biosynthesis along with abiotic stress tolerance. Int. J. Mol. Sci. 2021, 22, 9175. [Google Scholar] [CrossRef]
- Ayaz, A.; Saqib, S.; Huang, H.; Zaman, W.; Lü, S.; Zhao, H. Genome-wide comparative analysis of long-chain acyl-CoA synthetases (LACSs) gene family: A focus on identification, evolution and expression profiling related to lipid synthesis. Plant Physiol. Biochem. 2021, 161, 1–11. [Google Scholar] [CrossRef]
- Hwang, S.-G.; Lee, S.C.; Lee, J.; Lee, J.W.; Kim, J.-H.; Choi, S.Y.; Kim, J.-B.; Choi, H.-I.; Jang, C.S. Resequencing of a core rice mutant population induced by gamma-ray irradiation and its application in a genome-wide association study. J. Plant Biol. 2020, 63, 463–472. [Google Scholar] [CrossRef]
- Kim, W.J.; Kang, B.H.; Kang, S.; Shin, S.; Chowdhury, S.; Jeong, S.-C.; Choi, M.-S.; Park, S.-K.; Moon, J.-K.; Ryu, J. A Genome-Wide Association Study of Protein, Oil, and Amino Acid Content in Wild Soybean (Glycine soja). Plants 2023, 12, 1665. [Google Scholar] [CrossRef]
- Tian, F.; Bradbury, P.J.; Brown, P.J.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.B.; Buckler, E.S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 2011, 43, 159–162. [Google Scholar] [CrossRef]
- Clayton, D.G.; Walker, N.M.; Smyth, D.J.; Pask, R.; Cooper, J.D.; Maier, L.M.; Smink, L.J.; Lam, A.C.; Ovington, N.R.; Stevens, H.E. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 2005, 37, 1243–1246. [Google Scholar] [CrossRef]
- Korte, A.; Vilhjálmsson, B.J.; Segura, V.; Platt, A.; Long, Q.; Nordborg, M. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat. Genet. 2012, 44, 1066–1071. [Google Scholar] [CrossRef]
- Brachi, B.; Morris, G.P.; Borevitz, J.O. Genome-wide association studies in plants: The missing heritability is in the field. Genome Biol. 2011, 12, 232. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, L.; Wu, J.; Qi, J.; Zhou, R. Genetic effect analysis of some field and quality traits of kenaf hybrid and parents. Plant Fibers Prod. 2004, 26, 261–266. [Google Scholar]
- Cheng, Z.; Lu, B.-R.; Sameshima, K.; Fu, D.-X.; Chen, J.-K. Identification and genetic relationships of kenaf (Hibiscus cannabinus L.) germplasm revealed by AFLP analysis. Genet. Resour. Crop Evol. 2004, 51, 393–401. [Google Scholar] [CrossRef]
- Kang, S.; Kwon, S.; Jeong, S.; Kim, J.; Kim, S.; Ryu, J. An improved kenaf cultivar ‘Jangdae’ with seed harvesting in Korea. Korean J. Breed. Sci. 2016, 48, 349–354. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.-J.; Kim, D.-G.; Lee, M.-K.; Kim, J.M.; Jo, Y.D.; Kim, S.H.; Jeong, S.W.; Kang, K.-Y.; Kim, S.W. Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes. J. Plant Biotechnol. 2017, 44, 416–430. [Google Scholar] [CrossRef]
- Spencer-Lopes, M.; Forster, B.P.; Jankuloski, L. Manual on Mutation Breeding; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018. [Google Scholar]
- Lyu, J.I.; Ramekar, R.; Kim, D.-G.; Kim, J.M.; Lee, M.-K.; Hung, N.N.; Kim, J.-B.; Ahn, J.-W.; Kang, S.-Y.; Choi, I.-Y. Characterization of gene isoforms related to cellulose and lignin biosynthesis in Kenaf (Hibiscus cannabinus L.) mutant. Plants 2020, 9, 631. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.-J.; Sung, S.Y.; Kim, W.-J.; Kim, D.S.; Ahn, J.-W.; Kim, J.-B.; Kim, S.H.; Ha, B.-K.; Kang, S.-Y. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.). Genes Genom. 2016, 38, 59–67. [Google Scholar] [CrossRef]
- Lease, K.A.; Lau, N.Y.; Schuster, R.A.; Torii, K.U.; Walker, J.C. Receptor serine/threonine protein kinases in signalling: Analysis of the erecta receptor-like kinase of Arabidopsis thaliana. New Phytol. 2001, 151, 133–143. [Google Scholar] [CrossRef]
- Lin, F.; Li, S.; Wang, K.; Tian, H.; Gao, J.; Zhao, Q.; Du, C. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Sci. 2020, 296, 110465. [Google Scholar] [CrossRef]
- Liu, P.-L.; Du, L.; Huang, Y.; Gao, S.-M.; Yu, M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol. Biol. 2017, 17, 47. [Google Scholar] [CrossRef]
- Cao, Y.; Dai, Y.; Cui, S.; Ma, L. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 2008, 20, 2586–2602. [Google Scholar] [CrossRef]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef]
- Chen, Q.; Song, Y.; Liu, K.; Su, C.; Yu, R.; Li, Y.; Yang, Y.; Zhou, B.; Wang, J.; Hu, G. Genome-Wide Identification and Functional Characterization of FAR1-RELATED SEQUENCE (FRS) Family Members in Potato (Solanum tuberosum). Plants 2023, 12, 2575. [Google Scholar] [CrossRef]
- Ma, L.; Li, G. FAR1-related sequence (FRS) and FRS-related factor (FRF) family proteins in Arabidopsis growth and development. Front. Plant Sci. 2018, 9, 692. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Cox, M.P.; Peterson, D.A.; Biggs, P.J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Oh, S.-K.; Lee, J.-H.; Lee, B.-M.; Jo, S.-H. Genome-wide SNP calling using next generation sequencing data in tomato. Mol. Cells 2014, 37, 36. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.; Weir, B. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul. Biol. 1988, 33, 54–78. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
Trait | Mean | Min | Max | SD | CV (%) | Skew | Kur |
---|---|---|---|---|---|---|---|
Days to flowering (d) | 92 | 72 | 125 | 14.77 | 16.1 | 0.463 | −0.410 |
Fresh weight (g) | 1209 | 472 | 2400 | 525.45 | 43.4 | −0.046 | −1.211 |
Dry weight (g) | 311 | 110 | 672 | 149.12 | 47.9 | 0.117 | −1.043 |
Plant height (cm) | 315 | 223 | 444 | 46.14 | 14.6 | 0.229 | −0.309 |
Days to Flowering | Flower Color | Stem Color | Leaf Shape | Fresh Weight | Dry Weight | |
---|---|---|---|---|---|---|
Flower color | −0.159 | |||||
Stem color | −0.128 | −0.123 | ||||
Leaf shape | 0.05 | −0.067 | −0.039 | |||
Fresh weight | 0.744 ** | −0.054 | −0.243 * | 0.012 | ||
Dry weight | 0.725 ** | −0.084 | −0.229 * | −0.022 | 0.992 ** | |
Plant height | 0.876 ** | 0.054 | −0.192 | −0.002 | 0.909 ** | 0.905 ** |
Total | Mean/Genotype | |
---|---|---|
Raw data | ||
Reads | 702,623,164 | 7,318,991 |
Bases (bp) | 106,096,097,764 | 1,105,167,685 |
After trimming | ||
Reads | 635,581,208 | 6,620,638 |
Bases (bp) | 63,782,931,221 | 664,405,534 |
Mapped to reference genome | ||
Reads | 631,887,178 | 6,582,158 |
Bases (bp) | 3,263,929,064 | 33,999,261 |
Reference genome coverage (%) | 3.17 |
Trait | Chr | Position | −log10(P) | Reference | Allele | MAF | Genic/Intergenic |
---|---|---|---|---|---|---|---|
Days to flowering | 1 | 1,024,914 | 18.66 | A | G/A | 0.058 | Genic |
1 | 42,517,384 | 19.30 | G | A/G | 0.209 | Intergenic | |
4 | 6,472,359 | 6.86 | T | C/T | 0.435 | Genic | |
5 | 6,215,497 | 18.86 | G | A/G | 0.167 | Genic | |
7 | 47,923,332 | 6.31 | T | T/C | 0.065 | Genic | |
10 | 41,332,261 | 4.20 | T | A/T | 0.310 | Intergenic | |
14 | 9,697,002 | 5.15 | T | G/T | 0.137 | Genic | |
14 | 31,710,078 | 14.47 | C | A/C | 0.069 | Intergenic | |
16 | 13,124,040 | 4.12 | T | C/T | 0.441 | Intergenic | |
16 | 23,595,487 | 4.51 | C | T/C | 0.383 | Intergenic | |
16 | 38,590,756 | 9.43 | A | G/A | 0.368 | Intergenic | |
18 | 1,013,873 | 7.86 | A | G/A | 0.291 | Intergenic | |
Plant height | 1 | 21,588,612 | 4.02 | G | C/G | 0.149 | Intergenic |
1 | 48,009,505 | 4.40 | C | T/C | 0.375 | Genic | |
5 | 23,514,194 | 4.59 | T | T/G | 0.060 | Intergenic | |
15 | 48,486,135 | 4.25 | T | A/T | 0.284 | Genic | |
15 | 50,639,175 | 4.14 | G | A/G | 0.295 | Genic | |
15 | 51,634,174 | 4.13 | G | A/G | 0.327 | Intergenic | |
16 | 7,227,452 | 4.17 | C | T/C | 0.113 | Genic | |
16 | 7,227,677 | 4.31 | A | T/A | 0.122 | Genic | |
16 | 7,227,739 | 4.37 | C | C/T | 0.117 | Genic | |
18 | 42,282,127 | 4.70 | A | G/A | 0.298 | Genic | |
18 | 42,294,729 | 4.15 | C | T/C | 0.266 | Intergenic | |
Fresh weight | 1 | 30,956,363 | 4.96 | A | G/A | 0.218 | Intergenic |
2 | 34,266,740 | 4.70 | C | T/C | 0.071 | Intergenic | |
13 | 36,194,770 | 4.57 | T | G/T | 0.880 | Intergenic | |
Dry weight | 1 | 30,956,363 | 4.96 | A | G/A | 0.218 | Intergenic |
2 | 34,266,740 | 4.70 | C | T/C | 0.071 | Intergenic | |
13 | 36,194,770 | 4.57 | T | G/T | 0.880 | Intergenic | |
Flower color | 1 | 32,661,009 | 4.34 | G | A/G | 0.169 | Intergenic |
2 | 4,123,503 | 4.01 | T | G/T | 0.426 | Intergenic | |
4 | 26,157,173 | 4.15 | C | C/T | 0.163 | Intergenic | |
7 | 54,080,566 | 4.02 | T | C/T | 0.500 | Genic | |
7 | 54,146,827 | 4.49 | C | A/C | 0.489 | Genic | |
7 | 56,094,620 | 5.66 | A | G/A | 0.240 | Genic | |
18 | 1,155,161 | 4.07 | G | A/G | 0.486 | Intergenic | |
Stem color | 1 | 59,001,068 | 10.81 | G | T/G | 0.069 | Genic |
11 | 13,785,162 | 4.13 | G | A/G | 0.085 | Genic | |
11 | 13,785,316 | 4.47 | A | A/G | 0.065 | Genic | |
11 | 14,130,866 | 4.34 | G | T/G | 0.089 | Intergenic | |
17 | 44,726,748 | 4.23 | T | A/T | 0.121 | Intergenic | |
Leaf shape | 1 | 76,940,299 | 11.01 | A | T/A | 0.059 | Genic |
2 | 70,676,156 | 6.67 | A | G/A | 0.161 | Genic | |
9 | 22,789,371 | 6.17 | G | T/G | 0.109 | Intergenic | |
11 | 4,977,859 | 4.89 | C | T/C | 0.307 | Genic | |
11 | 10,223,305 | 4.42 | T | T/A | 0.095 | Intergenic | |
13 | 28,565,139 | 5.38 | C | A/C | 0.104 | Intergenic | |
13 | 33,269,519 | 8.96 | T | C/T | 0.175 | Intergenic | |
16 | 6,361,215 | 4.59 | A | G/A | 0.317 | Genic |
Trait | Chr | Position | Gene ID | Feature | Identity (%) | Location (bp) | Gene Description | Species |
---|---|---|---|---|---|---|---|---|
Days to flowering | 1 | 1,024,914 | GWHTACDB000043.1 | Intron | 81.36 | 1,021,982–1,029,723 | serine/threonine-protein kinase STY46 | Herrania umbratica |
4 | 6,472,359 | GWHTACDB042287.1 | Exon, CDS | 45.53 | 6,472,165–6,473,223 | hypothetical protein E1A91_D11G253500v1 | Gossypium mustelinum | |
5 | 6,215,497 | GWHTACDB046286.1 | Exon, CDS | 90.50 | 6,207,495–6,233,844 | uncharacterized protein LOC120130459 | Hibiscus syriacus | |
7 | 47,923,332 | GWHTACDB055842.1 | Intron | 90.04 | 47,918,661–47,925,788 | serine/threonine-protein kinase CTR1-like | Hibiscus syriacus | |
14 | 9,697,002 | GWHTACDB019052.1 | Exon, CDS | 90.14 | 9,690,988–9,697,964 | putative LRR receptor-like serine/threonine-protein kinase | Hibiscus syriacus | |
Plant height | 1 | 48,009,505 | GWHTACDB002361.1 | Intron | 92.05 | 47,985,685–48,016,384 | DNA polymerase I-like isoform X2 | Hibiscus syriacus |
15 | 48,486,135 | GWHTACDB023623.1 | Exon, CDS | 87.60 | 48,483,244–48,490,781 | E3 ubiquitin-protein ligase BRE1-like 1 | Hibiscus syriacus | |
15 | 50,639,175 | GWHTACDB023849.1 | Exon, CDS | 87.81 | 50,636,950–50,639,279 | IQ domain-containing protein IQM2-like | Hibiscus syriacus | |
16 | 7,227,452 | GWHTACDB024773.1 | Exon, UTR | 92.59 | 7,227,353–7,229,462 | uncharacterized protein LOC120203503 | Hibiscus syriacus | |
18 | 42,282,127 | GWHTACDB032363.1 | Exon, CDS | 64.05 | 42,280,976–42,289,390 | abrin-b-like | Durio zibethinus | |
Flower color | 7 | 54,080,566 | GWHTACDB056744.1 | Exon, CDS | 94.14 | 54,076,502–54,080,857 | coatomer subunit epsilon-1 | Durio zibethinus |
7 | 54,146,827 | GWHTACDB056753.1 | Exon, CDS | 66.89 | 54,135,157–54,148,228 | hypothetical protein FH972_000750 | Carpinus fangiana | |
7 | 56,094,620 | GWHTACDB057049.1 | Intron | 94.14 | 56,091,648–56,099,189 | PREDICTED: stomatal closure-related actin-binding protein 1-like | Gossypium hirsutum | |
Stem color | 1 | 59,001,068 | GWHTACDB003133.1 | Intron | 96.34 | 59,000,335–59,006,569 | serine/threonine-protein kinase tricornered-like | Hibiscus syriacus |
11 | 13,785,162 | GWHTACDB010323.1 | Exon, UTR | 88.18 | 13,784,863–13,787,951 | Pentatricopeptide repeat-containing protein | Hibiscus syriacus | |
Leaf shape | 1 | 76,940,299 | GWHTACDB005392.1 | Exon, CDS | 82.24 | 76,939,400–76,941,687 | protein DETOXIFICATION 3-like | Hibiscus syriacus |
2 | 70,676,156 | GWHTACDB036463.1 | Exon, CDS | 52.79 | 70,673,908–70,679,842 | uncharacterized protein LOC111277501 | Durio zibethinus | |
11 | 4,977,859 | GWHTACDB009089.1 | Exon, CDS | 91.19 | 4,975,419–4,978,563 | glutathione S-transferase DHAR3, chloroplastic-like isoform X1 | Hibiscus syriacus | |
16 | 6,361,215 | GWHTACDB024720.1 | Exon, UTR | 94.85 | 6,358,025–6,361,424 | protein FAR1-RELATED SEQUENCE 11 | Gossypium australe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.J.; Yang, B.; Lee, Y.-j.; Kim, J.H.; Kim, S.H.; Ahn, J.-W.; Kang, S.-Y.; Kim, S.-H.; Ryu, J. Genome-Wide Association Study for Agronomic Traits in Gamma-Ray-Derived Mutant Kenaf (Hibiscus cannabinus L.). Plants 2024, 13, 249. https://doi.org/10.3390/plants13020249
Kim WJ, Yang B, Lee Y-j, Kim JH, Kim SH, Ahn J-W, Kang S-Y, Kim S-H, Ryu J. Genome-Wide Association Study for Agronomic Traits in Gamma-Ray-Derived Mutant Kenaf (Hibiscus cannabinus L.). Plants. 2024; 13(2):249. https://doi.org/10.3390/plants13020249
Chicago/Turabian StyleKim, Woon Ji, Baul Yang, Ye-jin Lee, Jae Hoon Kim, Sang Hoon Kim, Joon-Woo Ahn, Si-Yong Kang, Seong-Hoon Kim, and Jaihyunk Ryu. 2024. "Genome-Wide Association Study for Agronomic Traits in Gamma-Ray-Derived Mutant Kenaf (Hibiscus cannabinus L.)" Plants 13, no. 2: 249. https://doi.org/10.3390/plants13020249
APA StyleKim, W. J., Yang, B., Lee, Y.-j., Kim, J. H., Kim, S. H., Ahn, J.-W., Kang, S.-Y., Kim, S.-H., & Ryu, J. (2024). Genome-Wide Association Study for Agronomic Traits in Gamma-Ray-Derived Mutant Kenaf (Hibiscus cannabinus L.). Plants, 13(2), 249. https://doi.org/10.3390/plants13020249