Nematicidal Activity of Volatiles against the Rice Root-Knot Nematode and Environmental Safety in Comparison to Traditional Nematicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Rice Root-Knot Nematode Growth
2.3. Nematicidal Activity
2.4. Environmental Safety and Toxicity to Mammals
2.5. Data Treatment and Statistical Analysis
3. Results
3.1. Nematicidal Activity of the Volatiles
3.2. Toxicity to Mammals
3.3. Environmental Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Babu, V.R.; Janaiah, A.; Meera, S.N. The Synergic Role of the All India Coordinated Rice Improvement Project (AICRIP) in the Development of India’s Rice Sector: Emerging Challenges and Policy Issues. In The Future Rice Strategy for India; Mohanty, S., Chengappa, P.G., Hedge, M., Ladha, J.K., Baruah, S., Kannan, E., Manjunatha, A.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 461–474. ISBN 9780128139363. [Google Scholar]
- FAO Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 December 2023).
- Ramesh, K.; Jain, M.R.K.; Kumar, V. Rice Root-Knot Nematode (Meloidogyne graminicola) Infestation in Rice. Arch. Phytopathol. Plant Prot. 2012, 45, 635–645. [Google Scholar] [CrossRef]
- Golden, A.M.; Birchfield, W. Meloidogyne graminicola (Heteroderidae), a New Species of Root-Knot Nematode from Grass. Proc. Helminthol. Soc. Wash. 1965, 32, 228–231. [Google Scholar]
- Bridge, J.; Plowright, R.A.; Peng DeLiang, P.D. Nematode Parasites of Rice. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; Luc, M., Sikora, R.A., Bridge, J., Eds.; Cabi Publishing: Wallingford, UK, 2005; pp. 87–130. [Google Scholar]
- Fanelli, E.; Cotroneo, A.; Carisio, L.; Troccoli, A.; Grosso, S.; Boero, C.; Capriglia, F.; De Luca, F. Detection and Molecular Characterization of the Rice Root-Knot Nematode Meloidogyne graminicola in Italy. Eur. J. Plant Pathol. 2017, 149, 467–476. [Google Scholar] [CrossRef]
- Dimkpa, S.O.N.; Lahari, Z.; Shrestha, R.; Douglas, A.; Gheysen, G.; Price, A.H. A Genome-Wide Association Study of a Global Rice Panel Reveals Resistance in Oryza sativa to Root-Knot Nematodes. J. Exp. Bot. 2016, 67, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Gheysen, G.; Mitchum, M.G. How Nematodes Manipulate Plant Development Pathways for Infection. Curr. Opin. Plant Biol. 2011, 14, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Triantaphyllou, A.C. Gametogenesis and the Chromosomes of Two Root-Knot Nematodes, Meloidogyne graminicola and M. naasi. J. Nematol. 1969, 1, 62–71. [Google Scholar]
- Rusinque, L.; Maleita, C.; Abrantes, I.; Palomares-Rius, J.E.; Inácio, M.L. Meloidogyne graminicola—A Threat to Rice Production: Review Update on Distribution, Biology, Identification, and Management. Biology 2021, 10, 1163. [Google Scholar] [CrossRef] [PubMed]
- MacGowan, J.; Langdon, K. Host of the Rice Root-Knot Nematode Meloidogyne graminicola; Nematology Circular No. 172; The Florida Department of Agriculture and Consumer Services (DACS): Tallahassee, FL, USA, 1989. [Google Scholar]
- Dutta, T.K.; Ganguly, A.K.; Gaur, H.S. Global Status of Rice Root-Knot Nematode, Meloidogyne graminicola. Afr. J. Microbiol. Res. 2012, 6, 6016–6021. [Google Scholar] [CrossRef]
- European Union. The 2020 European Union Report on Pesticide Residues in Food. Available online: https://multimedia.efsa.europa.eu/pesticides-report-2020/commodity/rice (accessed on 1 December 2023).
- Storck, V.; Karpouzas, D.G.; Martin-Laurent, F. Towards a Better Pesticide Policy for the European Union. Sci. Total Environ. 2017, 575, 1027–1033. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Vieira, P.; Vicente, C.S.L.; Figueiredo, A.C.; Mota, M. Phytochemicals as Biopesticides against the Pinewood Nematode Bursaphelenchus Xylophilus: A Review on Essential Oils and Their Volatiles. Plants 2021, 10, 2614. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal Activity of Essential Oils: A Review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors Affecting Secondary Metabolite Production in Plants: Volatile Components and Essential Oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Synergistic and Antagonistic Interactions of Terpenes against Meloidogyne Incognita and the Nematicidal Activity of Essential Oils from Seven Plants Indigenous to Greece. Pest Manag. Sci. 2011, 67, 341–351. [Google Scholar] [CrossRef] [PubMed]
- US EPA. In What Are Biopesticides? US EPA: Washington, DC, USA, 2020.
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus Xylophilus: Nematotoxics from Essential Oils, Essential Oils Fractions and Decoction Waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.S.; Cavaco, T.; Gonçalves, D.; Barbosa, P.; Teixeira, D.M.; Moiteiro, C.; Inácio, M.L. First Report on the Synergistic Interaction between Essential Oils against the Pinewood Nematode Bursaphelenchus Xylophilus. Plants 2023, 12, 2438. [Google Scholar] [CrossRef] [PubMed]
- Sarri, K.; Mourouzidou, S.; Ntalli, N.; Monokrousos, N. Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes. Agronomy 2024, 14, 213. [Google Scholar] [CrossRef]
- Cavaco, T.; Faria, J.M.S. Phytochemical Volatiles as Potential Bionematicides with Safer Ecotoxicological Properties. Toxics 2024, 12, 406. [Google Scholar] [CrossRef]
- Kumari, S.; Pundhir, S.; Priya, P.; Jeena, G.; Punetha, A.; Chawla, K.; Firdos Jafaree, Z.; Mondal, S.; Yadav, G. EssOilDB: A Database of Essential Oils Reflecting Terpene Composition and Variability in the Plant Kingdom. Database 2014, 2014, bau120. [Google Scholar] [CrossRef]
- Marques, A.C.; Coelho, A.R.F.; Pessoa, C.C.; Daccak, D.; Luís, I.C.; Almeida, A.S.; Campos, P.S.; Simões, M.; Pessoa, M.F.; Reboredo, F.H.; et al. Comparison between Varieties of Rice (Oryza sativa L.) Produced in Portugal—Mineral and Quality Analysis. Chem. Proc. 2022, 10, 46. [Google Scholar] [CrossRef]
- Atamian, H.S.; Roberts, P.A.; Kaloshian, I. High and Low Throughput Screens with Root-Knot Nematodes Meloidogyne Spp. J. Vis. Exp. 2012. [Google Scholar] [CrossRef]
- Sasser, J.N.; Carter, C.C.; Hartman, K.M. Standardization of Host Suitability Studies and Reporting of Resistance to Root-Knot Nematodes; Department of Entomology and Plant Pathology NC State University: Raleigh, NC, USA, 1984. [Google Scholar]
- Faria, J.M.S.; Sena, I.; Ribeiro, B.; Rodrigues, A.M.; Maleita, C.M.N.; Abrantes, I.; Bennett, R.; Mota, M.; Figueiredo, A.C. da S. First Report on Meloidogyne Chitwoodi Hatching Inhibition Activity of Essential Oils and Essential Oils Fractions. J. Pest Sci. 2016, 89, 207–217. [Google Scholar] [CrossRef]
- Barbosa, P.; Faria, J.M.S.; Cavaco, T.; Figueiredo, A.C.; Mota, M.; Vicente, C.S.L. Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus Penetrans. Plants 2024, 13, 726. [Google Scholar] [CrossRef]
- Mackay, D.; Di Guardo, A.; Paterson, S.; Cowan, C.E. Evaluating the Environmental Fate of a Variety of Types of Chemicals Using the EQC Model. Environ. Toxicol. Chem. 1996, 15, 1627–1637. [Google Scholar] [CrossRef]
- Trent University Level I Model. Available online: https://www.trentu.ca/cemc/resources-and-models/level-i-model (accessed on 29 March 2024).
- National Library of Medicine PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 29 March 2024).
- University of Hertfordshire PPDB: Pesticide Properties DataBase. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/ (accessed on 29 March 2024).
- ECHA ECHA European Chemicals Agency. Available online: https://echa.europa.eu/pt/home (accessed on 29 March 2023).
- US EPA. Toxicity Estimation Software Tool (TEST); US EPA: Washington, DC, USA, 2023.
- US EPA. Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11; US EPA: Washington, DC, USA, 2023.
- Kong, J.O.; Lee, S.M.; Moon, Y.S.; Lee, S.G.; Ahn, Y.J. Nematicidal Activity of Plant Essential Oils against Bursaphelenchus Xylophilus (Nematoda: Aphelenchoididae). J. Asia. Pac. Entomol. 2006, 9, 173–178. [Google Scholar] [CrossRef]
- OriginLab. Origin 2019 Graphing and Analysis; OriginLab: Northampton, MA, USA, 2019. [Google Scholar]
- Silva, V.; Yang, X.; Fleskens, L.; Ritsema, C.J.; Geissen, V. Environmental and Human Health at Risk–Scenarios to Achieve the Farm to Fork 50% Pesticide Reduction Goals. Environ. Int. 2022, 165, 107296. [Google Scholar] [CrossRef] [PubMed]
- Chitwood, D.J. Phytochemical Based Strategies for Nematode Control. Annu. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef]
- Chitwood, D.J. Nematicides. In Encyclopedia of Agrochemicals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; Volume 17, pp. 473–474. ISBN 9780123864543. [Google Scholar]
- Ajith, M.; Pankaj; Shakil, N.A.; Kaushik, P.; Rana, V.S. Chemical Composition and Nematicidal Activity of Essential Oils and Their Major Compounds against Meloidogyne graminicola (Rice Root-Knot Nematode). J. Essent. Oil Res. 2020, 32, 526–535. [Google Scholar] [CrossRef]
- Mercer, D.G.; Rodriguez-Amaya, D.B. Reactions and Interactions of Some Food Additives. In Chemical Changes During Processing and Storage of Foods; Rodriguez-Amaya, D.B., Amaya-Farfam, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 579–635. ISBN 9780128173800. [Google Scholar]
- Park, I.-K.K.; Kim, J.; Lee, S.-G.G.; Shin, S.-C.C. Nematicidal Activity of Plant Essential Oils and Components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) Essential Oils against Pine Wood Nematode (Bursaphelenchus Xylophilus). J. Nematol. 2007, 39, 275–279. [Google Scholar]
- Faria, J.M.S.; Rusinque, L.; Cavaco, T.; Nunes, J.C.; Inácio, M.L. Essential Oil Volatiles as Sustainable Antagonists for the Root-Knot Nematode Meloidogyne Ethiopica. Sustainability 2023, 15, 1421. [Google Scholar] [CrossRef]
- Barbosa, P.; Faria, J.M.S.; Mendes, M.D.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Bioassays Against Pinewood Nematode: Assessment of a Suitable Dilution Agent and Screening for Bioactive Essential Oils. Molecules 2012, 17, 12312–12329. [Google Scholar] [CrossRef] [PubMed]
- Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Phytochemistry and Nematicidal Activity of the Essential Oils from 8 Greek Lamiaceae Aromatic Plants and 13 Terpene Components. J. Agric. Food Chem. 2010, 58, 7856–7863. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Q.; Liu, Z.; Du, S.; Deng, Z. Chemical Composition and Nematicidal Activity of Essential Oil of Agastache Rugosa against Meloidogyne Incognita. Molecules 2013, 18, 4170–4180. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, N.K.; Verma, B.S.; Verma, K.K.; Dhindsa, K.S. Nematicidal Activity of Some Essential Plant Oils. Pestic. Sci. 1990, 28, 331–335. [Google Scholar] [CrossRef]
- Eloh, K.; Kpegba, K.; Sasanelli, N.; Koumaglo, H.K.; Caboni, P. Nematicidal Activity of Some Essential Plant Oils from Tropical West Africa. Int. J. Pest Manag. 2020, 66, 131–141. [Google Scholar] [CrossRef]
- Laquale, S.; Avato, P.; Argentieri, M.P.; Bellardi, M.G.; D’Addabbo, T. Nematotoxic Activity of Essential Oils from Monarda Species. J. Pest Sci. 2018, 91, 1115–1125. [Google Scholar] [CrossRef]
- Navarro-Rocha, J.; Andrés, M.F.; Díaz, C.E.; Burillo, J.; González-Coloma, A. Composition and Biocidal Properties of Essential Oil from Pre-Domesticated Spanish Satureja Montana. Ind. Crops Prod. 2020, 145, 111958. [Google Scholar] [CrossRef]
- Kihika, R.; Murungi, L.K.; Coyne, D.; Ng’ang’a, M.; Hassanali, A.; Teal, P.E.A.; Torto, B. Parasitic Nematode Meloidogyne Incognita Interactions with Different Capsicum Annum Cultivars Reveal the Chemical Constituents Modulating Root Herbivory. Sci. Rep. 2017, 7, 2903. [Google Scholar] [CrossRef] [PubMed]
- Kihika, R.; Tchouassi, D.P.; Ng’ang’a, M.M.; Hall, D.R.; Beck, J.J.; Torto, B. Compounds Associated with Infection by the Root-Knot Nematode, Meloidogyne Javanica, Influence the Ability of Infective Juveniles to Recognize Host Plants. J. Agric. Food Chem. 2020, 68, 9100–9109. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-Y.; Brinzari, T.V.; Hao, Z.; Wang, X.; Pan, L. Understanding Methyl Salicylate Hydrolysis in the Presence of Amino Acids. J. Agric. Food Chem. 2021, 69, 6013–6021. [Google Scholar] [CrossRef]
- Moslemi, F.; Fatemy, S.; Bernard, F. Inhibitory Effects of Salicylic Acid on Meloidogyne Javanica Reproduction in Tomato Plants. Span. J. Agric. Res. 2016, 14, e1001. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Mantelin, S.; Ha, C.V.; Lorieux, M.; Jones, J.T.; Mai, C.D.; Bellafiore, S. Insights Into the Genetics of the Zhonghua 11 Resistance to Meloidogyne graminicola and Its Molecular Determinism in Rice. Front. Plant Sci. 2022, 13, 854961. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 4th ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2011; ISBN 978-92-1-117042-9. [Google Scholar]
- Taylor, G.E.; Schaller, K.B.; Geddes, J.D.; Gustin, M.S.; Lorson, G.B.; Miller, G.C. Microbial Ecology, Toxicology and Chemical Fate of Methyl Isothiocyanate in Riparian Soils from the Upper Sacramento River. Environ. Toxicol. Chem. 1996, 15, 1694–1701. [Google Scholar] [CrossRef]
Compound | Functional Group | Purity (%) | Plant EO with High Amounts (%) 1 |
---|---|---|---|
Monoterpene hydrocarbons | |||
p-Cymene | - | 99 | Origanum saccatum (74) [25] |
α-Pinene | - | 98 | Eucalyptus pauciflora (82) [21] |
γ-Terpinene | - | 97 | Crithmum maritimum (68) [25] |
Oxygen-containing monoterpenes | |||
Carvacrol | phenol | ≥98 | Thymbra capitata (69) [21] |
Citronellal | aldehyde | ≥95 | Corymbia citriodora (35) [21] |
Citral 2 | aldehyde | ≥96 | Cymbopogon citratus (71) [21] |
Geraniol | alcohol | ≥97 | Cymbopogon martinii (93) [25] |
Geranyl acetone | ketone | ≥96 | Ziziphus spina-christi (14) [25] |
Linalool | alcohol | ≥97 | Coriandrum sativum (92) [25] |
Menthol | alcohol | 99 | Mentha arvensis (82) [25] |
Pulegone | ketone | 98 | Mentha cervina (86) [21] |
α-Terpineol | alcohol | ≥96 | Thymus zygis (60) [21] |
Terpinen-4-ol | alcohol | ≥95 | Cryptomeria japonica (24) [21] |
Sesquiterpene hydrocarbon | |||
trans-β-Caryophyllene | - | ≥80 | Bidens gardneri (77) [25] |
Phenylpropanoids | |||
trans-Anethole | phenol | 99 | Foeniculum vulgare (73) [21] |
Eugenol | phenol | 98 | Syzygium aromaticum (92) [21] |
Salicylate | |||
Methyl salicylate | ester | ≥98 | Polygala cyparissias (97) [25] |
Methyl ketone | |||
2-Undecanone | ketone | 99 | Ruta graveolens (94) [21] |
RKN Mortality (%) 1 | Bioassay Time (h) | |||||
---|---|---|---|---|---|---|
1 | 12 | 24 | 48 | 72 | 96 | |
Oxygen-containing monoterpenes | ||||||
Carvacrol | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a |
Citronellal | 94.9 ± 0.2 a | 47.5 ± 0.1 b | 0.0 ± 0.0 d | 1.1 ± 0.3 cd | 2.1 ± 0.4 c | 2.0 ± 0.5 c |
Geraniol | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a |
Menthol | 87.0 ± 0.8 a | 88.7 ± 0.8 a | 90.3 ± 0.8 a | 57.7 ± 1.4 b | 39.1 ± 1.0 c | 6.9 ± 0.4 d |
α-Terpineol | 48.9 ± 0.9 c | 62.3 ± 0.6 b | 75.8 ± 1.1 a | 31.3 ± 0.6 d | 2.1 ± 0.4 e | 1.8 ± 0.5 e |
Phenylpropanoid | ||||||
Eugenol | 29.9 ± 0.9 c | 65.0 ± 0.5 b | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a |
Salicylate | ||||||
Methyl salicylate | 92.2 ± 0.3 c | 96.1 ± 0.2 b | 100.0 ± 0.0 a | 99.3 ± 0.2 a | 97.0 ± 0.5 b | 81.5 ± 0.7 d |
Pesticide | ||||||
Oxamyl 2 | 73.9 ± 1.3 c | 81.2 ± 1.2 b | 83.3 ± 1.4 b | 92.7 ± 1.8 a | 95.3 ± 1.2 a | 95.7 ± 1.1 a |
Carvacrol | Eugenol | Geraniol | Methyl Salicylate | |
---|---|---|---|---|
12 h | ||||
EC50 (mg/mL) | 0.152 ± 0.001 | 0.416 ± 0.013 | 0.655 ± 0.012 | 0.103 ± 0.003 |
EC100 (mg/mL) | 0.56 (0.52–0.58) | >1 | 0.93 (0.85–0.98) | 0.55 (0.25–0.60) |
p 1 | 14.57 ± 0.41 | 2.09 ± 0.121 | 5.05 ± 0.38 | 13.42 ± 1.61 |
Goodness-of-fit (R2) | 0.998 | 0.932 | 0.992 | 0.957 |
24 h | ||||
EC50 (mg/mL) | 0.161 ± 0.001 | 0.182 ± 0.001 | 0.386 ± 0.005 | 0.115 ± 0.001 |
EC100 (mg/mL) | 0.50 (0.48–0.51) | 0.76 (0.74–0.78) | 0.78 (0.72–0.81) | 0.40 (0.18–0.44) |
p | 17.82 ± 0.38 | 10.30 ± 0.16 | 15.03 ± 0.67 | 20.93 ± 3.99 |
Goodness-of-fit (R2) | 0.999 | 0.997 | 0.999 | 0.998 |
48 h | ||||
EC50 (mg/mL) | 0.150 ± 0.001 | 0.230 ± 0.002 | 0.398 ± 0.003 | 0.189 ± 0.005 |
EC100 (mg/mL) | 0.22 (0.09–0.29) | 0.83 (0.78–0.87) | 0.83 (0.80–0.84) | 0.49 (0.33–0.52) |
p | 80.75 ± 2.40 | 6.63 ± 0.22 | 13.99 ± 0.43 | 19.65 ± 1.60 |
Goodness-of-fit (R2) | 0.999 | 0.992 | 0.999 | 0.978 |
72 h | ||||
EC50 (mg/mL) | 0.147 ± 0.005 | 0.277 ± 0.001 | 0.462 ± 0.062 | 0.229 ± 0.044 |
EC100 (mg/mL) | 0.23 (0.09–0.30) | 0.80 (0.77–0.82) | 0.78 (0.40–0.87) | 0.39 (0.16–0.47) |
p | 69.86 ± 9.17 | 7.65 ± 0.16 | 18.89 ± 0.62 | 36.57 ± 0.05 |
Goodness-of-fit (R2) | 0.999 | 0.998 | 0.999 | 0.948 |
96 h | ||||
EC50 (mg/mL) | 0.155 ± 0.002 | 0.495 ± 0.001 | 0.514 ± 0.060 | 0.246 ± 0.06 |
EC100 (mg/mL) | 0.21 (0.11–0.26) | 0.91 (0.90–0.93) | 0.78 (0.43–0.92) | 0.38 (0.17–0.47) |
p | 114.53 ± 4.15 | 4.75 ± 0.08 | 15.15 ± 0.22 | 30.19 ± 0.06 |
Goodness-of-fit (R2) | 0.999 | 0.999 | 0.998 | 0.929 |
Compounds | Oral Toxicity LD50 (mg/kg) | Dermal Toxicity LD50 (mg/kg) | Predicted 1 Developmental Toxicity | Predicted 1 Mutagenicity |
---|---|---|---|---|
Carvacrol | 810 | 2700 | Toxicant | Negative |
Eugenol | >1930 | 2000 | Toxicant | Negative |
Geraniol | >4000 | 2000 | Non-toxicant | Negative |
Methyl Salicylate | 887 | 700 | Non-toxicant | Negative |
Oxamyl | 3 | 5000 | Toxicant | Positive |
Methyl Isothiocyanate | 147 | 1290 2 | Toxicant | Positive |
Environmental Fate | Carvacrol | Eugenol | Geraniol | Methyl Salicylate | Oxamyl | Methyl Isothiocyanate |
---|---|---|---|---|---|---|
Air (%) | 2 | 2 | 0 | 1 | 0 | 74 |
Sediments (%) | 2 | 1 | 0 | 0 | 0 | 0 |
Soil (%) | 73 | 41 | 16 | 21 | 3 | 0 |
Water (%) | 23 | 56 | 83 | 77 | 97 | 26 |
Persistence (h) | 429 | 461 | 63 | 83 | 1150 | 305 |
Volatilization from water 1 | ||||||
Model river (half-life in h) | 444 | 378 | 1 | 1 | 4 × 106 | 9 |
Model lake (half-life in h) | 4949 | 4235 | 118 | 117 | 4 × 107 | 172 |
Removal in wastewater treatment 2 | ||||||
Total removal (%) | 6 | 2 | 100 | 100 | 2 | 5 |
Biodegradation (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Sludge adsorption (%) | 6 | 2 | 2 | 0 | 2 | 2 |
Release into the air (%) | 0 | 0 | 97 | 99 | 0 | 3 |
Reported EC50 (mg/L) | Carvacrol | Eugenol | Geraniol | Methyl Salicylate | Oxamyl | Methyl Isothiocyanate |
---|---|---|---|---|---|---|
Invertebrates (48 h) 1 | 6 | >10 | 12 | 1501 | 0.3 | 0.1 |
Fish (96 h) 2 | 6 | 1 | 16 | 28 | 3 | 0.1 |
Algae (96 h) 3 | 4 | 15 | 48 | 2 | 1 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, J.M.S.; Rusinque, L.; Inácio, M.L. Nematicidal Activity of Volatiles against the Rice Root-Knot Nematode and Environmental Safety in Comparison to Traditional Nematicides. Plants 2024, 13, 2046. https://doi.org/10.3390/plants13152046
Faria JMS, Rusinque L, Inácio ML. Nematicidal Activity of Volatiles against the Rice Root-Knot Nematode and Environmental Safety in Comparison to Traditional Nematicides. Plants. 2024; 13(15):2046. https://doi.org/10.3390/plants13152046
Chicago/Turabian StyleFaria, Jorge M. S., Leidy Rusinque, and Maria L. Inácio. 2024. "Nematicidal Activity of Volatiles against the Rice Root-Knot Nematode and Environmental Safety in Comparison to Traditional Nematicides" Plants 13, no. 15: 2046. https://doi.org/10.3390/plants13152046
APA StyleFaria, J. M. S., Rusinque, L., & Inácio, M. L. (2024). Nematicidal Activity of Volatiles against the Rice Root-Knot Nematode and Environmental Safety in Comparison to Traditional Nematicides. Plants, 13(15), 2046. https://doi.org/10.3390/plants13152046