Soil and Foliar Zinc Biofortification of Triticale (x Triticosecale) under Mediterranean Conditions: Effects on Forage Yield and Quality
Abstract
:1. Introduction
2. Results
2.1. Zn Concentrations in Soil
2.2. Effect on Forage Yield and Quality
2.3. Effect on Forage Nutritional Quality
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Experimental Design
4.3. Crop Management
4.4. Soil and Forage Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhaliwal, S.S.; Ram, H.; Shukla, A.K.; Mavi, G.S. Zinc Biofortification of Bread Wheat, Triticale, and Durum Wheat Cultivars by Foliar Zinc Fertilization. J. Plant Nutr. 2019, 42, 813–822. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sinha, N.K.; Tiwari, P.K.; Prakash, C.; Behera, S.K.; Lenka, N.K.; Singh, V.K.; Dwivedi, B.S.; Majumdar, K.; Kumar, A.; et al. Spatial Distribution and Management Zones for Sulphur and Micronutrients in Shiwalik Himalayan Region of India. Land Degrad. Dev. 2017, 28, 959–969. [Google Scholar] [CrossRef]
- Barrett, C.B.; Bevis, L.E.M. The Self-Reinforcing Feedback between Low Soil Fertility and Chronic Poverty. Nat. Geosci. 2015, 8, 907–912. [Google Scholar] [CrossRef]
- Morton, C.M.; Pullabhotla, H.; Bevis, L.; Lobell, D.B. Soil Micronutrients Linked to Human Health in India. Sci. Rep. 2023, 13, 13591. [Google Scholar] [CrossRef] [PubMed]
- Natasha, N.; Shahid, M.; Bibi, I.; Iqbal, J.; Khalid, S.; Murtaza, B.; Bakhat, H.F.; Farooq, A.B.U.; Amjad, M.; Hammad, H.M.; et al. Zinc in Soil-Plant-Human System: A Data-Analysis Review. Sci. Total Environ. 2022, 808, 152024. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.R.; Mehraj, H.; Jamal Uddin, A.F.M. Effects of Foliar Application of Zinc and Boron on Growth and Yield of Summer Tomato. J. Biosci. Agric. Res. 2015, 6, 512–517. [Google Scholar] [CrossRef]
- Sentimenla. Status of Zinc Availability in Jhum Fields under Rainfed Condition in Zunheboto District of Nagaland. Int. J. Plant Soil Sci. 2020, 32, 25–30. [Google Scholar] [CrossRef]
- Younas, N.; Fatima, I.; Ahmad, I.A.; Ayyaz, M.K. Alleviation of Zinc Deficiency in Plants and Humans through an Effective Technique; Biofortification: A Detailed Review. Acta Ecol. Sin. 2023, 43, 419–425. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The Biological Inorganic Chemistry of Zinc Ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef]
- Akhtar, M.; Yousaf, S.; Sarwar, N.; Hussain, S. Zinc Biofortification of Cereals—Role of Phosphorus and Other Impediments in Alkaline Calcareous Soils. Environ. Geochem. Health 2019, 41, 2365–2379. [Google Scholar] [CrossRef]
- Hussain, I.; Ijaz, M.; Ul-Allah, S.; Sattar, A.; Sher, A.; Nawaz, A.; Ghaffar, A.; ur Rahman, M.H.; Ahmad, S.; Rasheed, I.; et al. Optimum Zinc Fertilization and Sowing Date Improved Growth, Yield Components, and Grain Zn Contents of Bread Wheat Under Different Tillage Systems. J. Soil Sci. Plant Nutr. 2023, 23, 2344–2353. [Google Scholar] [CrossRef]
- Wessels, I.; Rink, L. Micronutrients in Autoimmune Diseases: Possible Therapeutic Benefits of Zinc and Vitamin D. J. Nutr. Biochem. 2020, 77, 108240. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, J.; Ram, H.; Singh, J.; Kaur, S. Agronomic Bio-Fortification of Wheat (Triticum aestivum L.) to Alleviate Zinc Deficiency in Human Being. Rev. Environ. Sci. Biotechnol. 2023, 22, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, W.; Kang, Y.; Shi, M.; Yang, X.; Li, H.; Yu, H.; Wang, Y.; Qin, S. Application of Different Foliar Iron Fertilizers for Improving the Photosynthesis and Tuber Quality of Potato (Solanum tuberosum L.) and Enhancing Iron Biofortification. Chem. Boil. Technol. Agric. 2022, 9, 79. [Google Scholar] [CrossRef]
- Reynolds-Marzal, D.; Rivera-Martin, A.; Santamaria, O.; Poblaciones, M.J. Combined Selenium and Zinc Biofortification of Bread-Making Wheat under Mediterranean Conditions. Plants 2021, 10, 1209. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Rivera Martín, A.; Pinheiro, N.; García White, T.; José Poblaciones Suárez-Bárcena, M.; Suárez, A. Efecto de La Aplicación de Zinc Sobre El Cultivo de Triticale de Doble Aptitud. Revista Pastos 2019, 47, 29–35. [Google Scholar]
- Kumar, A.; Choudhary, A.K.; Pooniya, V.; Suri, V.K.; Singh, U. Soil Factors Associated with Micronutrient Acquisition in Crops- Biofortification Perspective. In Biofortification of Food Crops; Springer: New Delhi, India, 2016; pp. 159–176. [Google Scholar]
- Gomez-Coronado, F.; Poblaciones, M.J.; Almeida, A.S.; Cakmak, I. Zinc (Zn) Concentration of Bread Wheat Grown under Mediterranean Conditions as Affected by Genotype and Soil/Foliar Zn Application. Plant Soil 2016, 401, 331–346. [Google Scholar] [CrossRef]
- Bhadra, T.; Mahapatra, C.K.; Hosenuzzaman, M.; Gupta, D.R.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Hoque, M.A.; Paul, S.K. Zinc and Boron Soil Applications Affect Athelia rolfsii Stress Response in Sugar Beet (Beta vulgaris L.) Plants. Plants 2023, 12, 3509. [Google Scholar] [CrossRef]
- Guardiola-Márquez, C.E.; Santos-Ramírez, M.T.; Segura-Jiménez, M.E.; Figueroa-Montes, M.L.; Jacobo-Velázquez, D.A. Fighting Obesity-Related Micronutrient Deficiencies through Biofortification of Agri-Food Crops with Sustainable Fertilization Practices. Plants 2022, 11, 3477. [Google Scholar] [CrossRef]
- Shahane, A.A.; Shivay, Y.S.; Prasanna, R.; Kumar, D. Nutrient Removal by Rice–Wheat Cropping System as Influenced by Crop Establishment Techniques and Fertilization Options in Conjunction with Microbial Inoculation. Sci. Rep. 2020, 10, 21944. [Google Scholar] [CrossRef]
- Boaretto, R.M.; Hippler, F.W.R.; Teixeira, L.A.J.; Fornari, R.C.; Quaggio, J.A.; Mattos, D. Zinc Fertilizers for Citrus Production: Assessing Nutrient Supply via Fertigation or Foliar Application. Plant Soil 2024, 496, 179–192. [Google Scholar] [CrossRef]
- Ehsanullah, D.; Tariq, A.; Randhawa, M.A.; Anjum, S.A.; Nadeem, M.; Naeem, M. Exploring the Role of Zinc in Maize (Zea mays L.) through Soil and Foliar Application. Univers. J. Agric. Res. 2015, 3, 69–75. [Google Scholar] [CrossRef]
- Gomez-Coronado, F.; Poblaciones, M.J.; Almeida, A.S.; Cakmak, I. Combined Zinc and Nitrogen Fertilization in Different Bread Wheat Genotypes Grown under Mediterranean Conditions. Cereal Res. Commun. 2017, 45, 154–165. [Google Scholar] [CrossRef]
- Arif, M.; Dashora, L.; Choudhary, J.; Kadam, S.; Mohsin, M. Effect of Varieties and Nutrient Management on Quality and Zinc Biofortification of Wheat (Triticum aestivum). Indian J. Agric. Sci. 2019, 89, 1472–1476. [Google Scholar] [CrossRef]
- Camerlengo, F.; Kiszonas, A.M. Genetic Factors Influencing Triticale Quality for Food. J. Cereal Sci. 2023, 113, 103744. [Google Scholar] [CrossRef]
- Sacristán, D.; González-Guzmán, A.; Torrent, J.; del Campillo, M.C. Optimum Olsen Phosphorus/ZincDTPA Ratio for the Initial Growth of Maize in Agricultural Soils of the Mediterranean Region. J. Sci. Food Agric. 2021, 101, 3056–3064. [Google Scholar] [CrossRef] [PubMed]
- Manzeke, M.G.; Mtambanengwe, F.; Watts, M.J.; Hamilton, E.M.; Lark, R.M.; Broadley, M.R.; Mapfumo, P. Fertilizer Management and Soil Type Influence Grain Zinc and Iron Concentration under Contrasting Smallholder Cropping Systems in Zimbabwe. Sci. Rep. 2019, 9, 6445. [Google Scholar] [CrossRef]
- Yaseen, M.K.; Hussain, S. Zinc-Biofortified Wheat Required Only a Medium Rate of Soil Zinc Application to Attain the Targets of Zinc Biofortification. Arch. Agron. Soil Sci. 2021, 67, 551–562. [Google Scholar] [CrossRef]
- Stuckey, J.W.; Verdejo, J.; García, S.; Pinochet, D.; Yáñez, C.; Krutyakov, Y.A.; Neaman, A. Evaluating Zinc Nutrition in Perennial Ryegrass Grown in An Andisol. Geogr. Environ. Sustain. 2022, 15, 56–60. [Google Scholar] [CrossRef]
- Jalal, A.; Shah, S.; Carvalho Minhoto Teixeira Filho, M.; Khan, A.; Shah, T.; Ilyas, M.; Leonel Rosa, P.A. Agro-Biofortification of Zinc and Iron in Wheat Grains. Gesunde Pflanzen 2020, 72, 227–236. [Google Scholar] [CrossRef]
- Rivera-Martin, A.; Broadley, M.R.; Poblaciones, M.J. Soil and Foliar Zinc Biofortification of Broccolini: Effects on Plant Growth and Mineral Accumulation. Crop Pasture Sci. 2020, 71, 484–490. [Google Scholar] [CrossRef]
- Kristó, I.; Vályi Nagy, M.; Rácz, A.; Tar, M.; Irmes, K. Effect of Precipitation on the Nutrient Reaction of Triticale Varieties. Columella: J. Agric. Environ. Sci. 2022, 9, 167–176. [Google Scholar] [CrossRef]
- Kondić-Špika, A.; Mladenov, N.; Grahovac, N.; Zorić, M.; Mikić, S.; Trkulja, D.; Marjanović-Jeromela, A.; Miladinović, D.; Hristov, N. Biometric Analyses of Yield, Oil and Protein Contents of Wheat (Triticum aestivum L.) Genotypes in Different Environments. Agronomy 2019, 9, 270. [Google Scholar] [CrossRef]
- Ibrahim, S.; Saleem, B.; Naeem, M.K.; Arain, S.M.; Khan, M.R. Next-Generation Technologies for Iron and Zinc Biofortification and Bioavailability in Cereal Grains. Crop Pasture Sci. 2022, 73, 77–92. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef] [PubMed]
- Duffy, R.; Yin, M.; Redding, L.E. A Review of the Impact of Dietary Zinc on Livestock Health. J. Trace Elem. Miner. 2023, 5, 100085. [Google Scholar] [CrossRef]
- Poblaciones, M.J.; Rodrigo, S.M.; Santamaría, O. Evaluation of the Potential of Peas (Pisum sativum L.) to Be Used in Selenium Biofortification Programs under Mediterranean Conditions. Biol. Trace Elem. Res. 2013, 151, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Lora, A.; Delgado, A. Factors Determining Zn Availability and Uptake by Plants in Soils Developed under Mediterranean Climate. Geoderma 2020, 376, 114509. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in Soils, Water and Food Crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef]
- Suganya, A.; Saravanan, A.; Manivannan, N. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea mays L.) Grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar] [CrossRef]
- Yan, B.; Hou, Y. Effect of Soil Magnesium on Plants: A Review. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 022168. [Google Scholar] [CrossRef]
- Tang, R.-J.; Luan, S. Regulation of Calcium and Magnesium Homeostasis in Plants: From Transporters to Signaling Network. Curr. Opin. Plant Biol. 2017, 39, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Shivay, Y.S.; Prasanna, R.; Mandi, S.; Parveen, S.; Baral, K.; Reddy, K.S. Soil and Foliar Application of Zn Enhances Its Biofortification, Bioavailability and Productivity in Both Biofortified and Non-Biofortified Wheat Varieties. J. Food Compos. Anal. 2023, 124, 105691. [Google Scholar] [CrossRef]
- Ayalew, A. Review of Soil Fertility Improvement and Crop Responses to Application of Fertilizers in the Southern Ethiopia. J. Nat. Sci. Res. 2018, 8, 18–25. [Google Scholar]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A Role for Zinc in Plant Defense Against Pathogens and Herbivores. Front. Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Straumīte, E.; Galoburda, R.; Tomsone, L.; Krūma, Z.; Grāmatiņa, I.; Kronberga, A.; Stūrīte, I. Nutritional Quality of Triticale (× Triticosecale Wittm.) Grown under Different Cropping Systems. Proc. Latv. Acad. Sci. B Nat. Exact Appl. Sci. 2017, 71, 481–485. [Google Scholar] [CrossRef]
- Babić, V.; Rajičić, V.; Đurić, N. Economic Significance, Nutritional Value and Application of Triticale. Econ. Agric. 2021, 68, 1089–1107. [Google Scholar] [CrossRef]
- Germ, M.; Pongrac, P.; Regvar, M.; Vogel-Mikuš, K.; Stibilj, V.; Jaćimović, R.; Kreft, I. Impact of Double Zn and Se Biofortification of Wheat Plants on the Element Concentrations in the Grain. Plant Soil Environ. 2013, 59, 316–321. [Google Scholar] [CrossRef]
- Reynolds-Marzal, M.D.; Rivera-Martín, A.M.; Rodrigo, S.M.; Santamaria, O.; Poblaciones, M.J. Biofortification of Forage Peas with Combined Application of Selenium and Zinc Under Mediterranean Conditions. J. Soil Sci. Plant Nutr. 2021, 21, 286–300. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012; pp. 191–248. [Google Scholar]
- Na, G.; Salt, D.E. The Role of Sulfur Assimilation and Sulfur-Containing Compounds in Trace Element Homeostasis in Plants. Environ. Exp. Bot. 2011, 72, 18–25. [Google Scholar] [CrossRef]
- Paramesh, V.; Dhar, S.; Dass, A.; Kumar, B.; Kumar, A.; El-Ansary, D.O.; Elansary, H.O. Role of Integrated Nutrient Management and Agronomic Fortification of Zinc on Yield, Nutrient Uptake and Quality of Wheat. Sustainability 2020, 12, 3513. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Behera, S.K.; Singh, P.; Singh, H. Foliar Zinc Application for Zinc Biofortification in Diverse Wheat Genotypes under Low Zn Soil. Cereal Res. Commun. 2022, 50, 1269–1277. [Google Scholar] [CrossRef]
- Saad Elsayed, N.; Obaid, H.; Shi, D.; Lei, P.; Xie, D.; Ni, J.; Shalaby, O.K.; Ni, C. Response of Nutrients Uptake and Bio Fortification to the Optimum Zinc Fertilizer Doses for Maize Crop (Zea mays L.). J. Plant Nutr. 2024, 47, 2028–2037. [Google Scholar] [CrossRef]
- USDA Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022; pp. 175–176.
- Bremner, J.M. Nitrogen total. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 1085–1121. [Google Scholar]
- Sosulski, F.W.; Imafidon, G.I. Amino Acid Composition and Nitrogen-to-Protein Conversion Factors for Animal and Plant Foods. J. Agric. Food Chem. 1990, 38, 1351–1356. [Google Scholar] [CrossRef]
- AOCS. Official Methods of Analysis, 7th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2017. [Google Scholar]
- Linn, J.G.; Martin, N.P. Forage Quality Analyses and Interpretation. Vet. Clin. N. Am.—Food Anim. Pract. 1991, 7, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Chibani, C.; Chabaca, R.; Boulberhane, D. Fourrages Algériens. 1. Composition Chimique et Modèles de Prédiction de La Valeur Énergétique et Azotée. Livest. Res. Rural Dev. 2010, 22, 153. [Google Scholar]
- Adams, M.L.; Lombi, E.; Zhao, F.; McGrath, S.P. Evidence of Low Selenium Concentrations in UK Bread-making Wheat Grain. J. Sci. Food Agric. 2002, 82, 1160–1165. [Google Scholar] [CrossRef]
Parameter | Year | Zinc | Year*Zinc |
---|---|---|---|
Yield | 3.75 * | 11.44 *** | 0.04 |
CP | 3.01 | 25.79 *** | 0.63 |
NDF | 156.81 *** | 1.09 | 2.29 |
ADF | 64.33 *** | 3.59 * | 0.57 |
ADL | 46.66 *** | 0.71 | 2.12 * |
Ash | 69.19 *** | 2.15 | 4.36 * |
OMD | 67.46 *** | 4.04 * | 1.14 |
RFV | 28.96 *** | 7.79 *** | 7.00 ** |
Total Ca | 16.06 ** | 7.39 ** | 8.04 ** |
Total Fe | 3.68 | 2.58 | 0.77 |
Total Mg | 25.10 *** | 7.67 ** | 4.23 * |
Total Zn | 62.81 *** | 46.04 *** | 2.42 |
Total Se | 0.30 | 12.89 *** | 1.22 |
Ca removal | 2.94 | 7.38 ** | 4.98 * |
Fe removal | 6.26 * | 3.32 * | 0.30 |
Mg removal | 29.14 *** | 6.88 ** | 2.27 |
Zn removal | 73.75 *** | 48.70 *** | 3.09 |
Se removal | 0.01 | 15.48 *** | 1.43 |
Parameter | 2017/18 | 2018/19 |
---|---|---|
Yield (kg ha−1) | 16,743 ± 610 A | 15,360 ± 564 B |
CP (%) | 7.43 ± 0.4 | 7.94 ± 0.4 |
NDF (%) | 52.5 ± 0.7 B | 63.0 ± 0.7 A |
ADF (%) | 29.2 ± 0.4 B | 33.7 ± 0.5 A |
ADL (%) | 3.94 ± 0.10 A | 2.96 ± 0.13 B |
Ash (%) | 0.54 ± 0.03 A | 0.25 ± 0.03 B |
OMD (%) | 66.1 ± 0.3 A | 62.5 ± 0.4 B |
RFV | 40.4 ± 0.2 A | 38.7 ± 0.5 B |
Ca (mg kg−1) | 2429 ± 189 B | 2881 ± 64 A |
Fe (mg kg−1) | 89.1 ± 6.0 | 77.0 ± 3.8 |
Mg (mg kg−1) | 990 ± 69 A | 756 ± 30 B |
Zn (mg kg−1) | 18.2 ± 2.0 A | 10.8 ± 1.8 B |
Se (µg kg−1) | 91.5 ± 12.0 | 97.4 ± 13.5 |
Ca removal (g ha−1) | 40,947 ± 3160 | 45,130 ± 2411 |
Fe removal (g ha−1) | 1521 ± 135 A | 1195 ± 67 B |
Mg removal (g ha−1) | 16,716 ± 1236 A | 11,766 ± 599 B |
Zn removal (g ha−1) | 312 ± 37 A | 172 ± 30 B |
Se removal (mg ha−1) | 1597 ± 233 | 1592 ± 264 |
Parameter | No-Zn | Zn Soil | Zn Foliar | Zn Soil + Foliar |
---|---|---|---|---|
Yield (kg ha−1) | 13,855 ± 446 C | 16,407 ± 552 B | 15,430 ± 843 BC | 18,515 ± 632 A |
CP (%) | 7.0 ± 0.2 BC | 6.5 ± 0.3 C | 9.9 ± 0.4 A | 7.4 ± 0.3 B |
NDF (%) | 57.2 ± 1.9 | 56.9 ± 2.6 | 58.9 ± 1.8 | 57.9 ± 2.8 |
ADF (%) | 31.9 ± 1.2 A | 30.3 ± 1.0 B | 32.7 ± 0.9 A | 30.9 ±1.2 B |
ADL (%) | 3.37 ± 0.16 | 3.58 ± 0.15 | 3.53 ± 0.32 | 3.33 ± 0.34 |
Ash (%) | 0.33 ± 0.06 B | 0.44 ± 0.06 A | 0.44 ± 0.10 A | 0.38 ± 0.04 AB |
OMD (%) | 63.7 ± 1.0 BC | 65.3 ± 0.8 A | 63.5 ± 0.7 C | 64.9 ± 0.9 AB |
RFV | 40.3 ± 0.1 A | 38.8 ± 0.7 B | 40.3 ± 0.5 A | 38.8 ± 0.6 B |
Ca (mg kg−1) | 2658 ± 115 B | 3087 ± 129 A | 2468 ± 198 BC | 2408 ± 321 C |
Fe (mg kg−1) | 77.8 ± 3.1 | 97.9 ± 11.4 | 80.7 ± 3.1 | 75.7 ± 7.9 |
Mg (mg kg−1) | 849 ± 74 B | 1053 ± 127 A | 843 ± 74 B | 746 ± 33 B |
Zn (mg kg−1) | 8.0 ± 1.7 C | 10.7 ± 2.1 C | 22.0 ± 3.0 A | 17.3 ± 1.4 B |
Se (µg kg−1) | 39.7 ± 3.0 B | 117.4 ± 17.9 A | 98.0 ± 10.0 A | 122.7 ± 10.5 A |
Ca removal (g ha−1) | 37,049 ± 1884 C | 51,412 ± 1716 A | 38,469 ± 4049 BC | 45,225 ± 5070 AB |
Fe removal (g ha−1) | 1091 ± 73 B | 1635 ± 205 A | 1252 ± 88 AB | 1454 ± 198 AB |
Mg removal (g ha−1) | 11,957 ± 1384 B | 17,588 ± 2151 A | 13,274 ± 1920 B | 14,146 ± 555 B |
Zn removal (g ha−1) | 114 ± 27 C | 179 ± 34 B | 345 ± 58 A | 330 ± 33 A |
Se removal (mg ha−1) | 555 ± 49 C | 1957 ± 307 AB | 1559 ± 263 B | 2308 ± 127 A |
Study year (Main plot) | |||||
2017/18 | 2018/19 | ||||
Zn Soil Application (Subplot) | Zn Soil Application (Subplot) | ||||
Zn Soil | No Zn Soil | Zn Soil | No Zn Soil | ||
Foliar application (Sub-subplot) | Zn Foliar | Zn Soil + Zn Foliar 1 | No Zn Soil + Zn Foliar 1 | Zn Soil + Zn Foliar 1 | No Zn Soil + Zn Foliar 1 |
Zn Soil + Zn Foliar 2 | No Zn Soil + Zn Foliar 2 | Zn Soil + Zn Foliar 2 | No Zn Soil + Zn Foliar 2 | ||
Zn Soil + Zn Foliar 3 | No Zn Soil + Zn Foliar 3 | Zn Soil + Zn Foliar 3 | No Zn Soil + Zn Foliar 3 | ||
Zn Soil + Zn Foliar 4 | No Zn Soil + Zn Foliar 4 | Zn Soil + Zn Foliar 4 | No Zn Soil + Zn Foliar 4 | ||
No Zn Foliar | Zn Soil + No Zn Foliar 1 | No Zn Soil + No Zn Foliar 1 | Zn Soil + No Zn Foliar 1 | No Zn Soil + No Zn Foliar 1 | |
Zn Soil + No Zn Foliar 2 | No Zn Soil + No Zn Foliar 2 | Zn Soil + No Zn Foliar 2 | No Zn Soil + No Zn Foliar 2 | ||
Zn Soil + No Zn Foliar 3 | No Zn Soil + No Zn Foliar 3 | Zn Soil + No Zn Foliar 3 | No Zn Soil + No Zn Foliar 3 | ||
Zn Soil + No Zn Foliar 4 | No Zn Soil + No Zn Foliar 4 | Zn Soil + No Zn Foliar 4 | No Zn Soil + No Zn Foliar 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Latorre, C.; Reynolds-Marzal, M.D.; De la Peña-Lastra, S.; Pinheiro, N.; Poblaciones, M.J. Soil and Foliar Zinc Biofortification of Triticale (x Triticosecale) under Mediterranean Conditions: Effects on Forage Yield and Quality. Plants 2024, 13, 1917. https://doi.org/10.3390/plants13141917
García-Latorre C, Reynolds-Marzal MD, De la Peña-Lastra S, Pinheiro N, Poblaciones MJ. Soil and Foliar Zinc Biofortification of Triticale (x Triticosecale) under Mediterranean Conditions: Effects on Forage Yield and Quality. Plants. 2024; 13(14):1917. https://doi.org/10.3390/plants13141917
Chicago/Turabian StyleGarcía-Latorre, Carlos, María Dolores Reynolds-Marzal, Saúl De la Peña-Lastra, Nuno Pinheiro, and María José Poblaciones. 2024. "Soil and Foliar Zinc Biofortification of Triticale (x Triticosecale) under Mediterranean Conditions: Effects on Forage Yield and Quality" Plants 13, no. 14: 1917. https://doi.org/10.3390/plants13141917
APA StyleGarcía-Latorre, C., Reynolds-Marzal, M. D., De la Peña-Lastra, S., Pinheiro, N., & Poblaciones, M. J. (2024). Soil and Foliar Zinc Biofortification of Triticale (x Triticosecale) under Mediterranean Conditions: Effects on Forage Yield and Quality. Plants, 13(14), 1917. https://doi.org/10.3390/plants13141917