Insecticidal Activity of Some Major Essential Oil Components against Metopolophium dirhodum and Its Predators
Abstract
1. Introduction
2. Results
2.1. Acute Toxicity against M. dirhodum
2.2. Acute Effects of the Binary Mixtures against M. dirhodum
2.3. Acute Toxicity against Aphidoletes aphidimyza and Chrysoperla carnea
3. Discussion
4. Materials and Methods
4.1. Compounds
4.2. Insects
4.3. Bioassays
4.3.1. Acute Toxicity
4.3.2. Acute Effects of the Binary Mixtures
4.3.3. Inhibition of Fertility and Potential Natality of Metopolophium dirhodum
4.3.4. Acute Toxicity against Aphidoletes aphidimyza and Chrysoperla carnea
4.4. Data Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turek, C.; Stintzing, F.C. Impact of different storage conditions on the quality of selected essential oils. Food Res. Int. 2012, 46, 341–353. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilsale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Kesraoui, S.; Andrés, M.F.; Berrocal-Lobo, M.; Soudani, S.; Gonzalez-Coloma, A. Direct and indirect Effects of Essential Oils for Sustainable Crop Protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef] [PubMed]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Buckle, J. Essential oils in practice. In Clinical Aromatherapy—E-Book; Churchill Livingstone: Edinburgh, Scotland, 2014; ISBN 9780702064869. [Google Scholar]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2019, 19, 235–241. [Google Scholar] [CrossRef]
- Hedden, P.; Harrewijn, P.; van Oosten, A.M.; Piron, P.G.M. Natural terpenoids as messengers. A multidisciplinary study of their production, biological functions and practical applications. Ann. Bot. 2002, 90, 299–300. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Pavela, R. Acute Toxicity and Synergistic and Antagonistic Effects of the Aromatic Compounds of Some Essential Oils Against Culex quinquefasciatus Say Larvae. Parasitol. Res. Founded Z. Parasitenkd. 2015, 114, 3835–3853. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential Oils as Active ingredients of Botanical insecticides Against Aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Machial, C.M.; Shikano, I.; Smirle, M.; Bradbury, R.; Isman, M.B. Evaluation of The Toxicity of 17 Essential Oils Against Choristoneura Rosaceana (Lepidoptera: Tortricidae) and Trichoplusia Ni (Lepidoptera: Noctuidae). Pest Manag. Sci. 2010, 66, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical Activity and Role of Botanical Pesticides in Pest Management for Sustainable Agricultural Crop Production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Encapsulation—A Convenient Way to Extend the Persistence of the Effect of Eco-Friendly Mosquito Larvicides. Curr. Org. Chem. 2016, 20, 2674–2680. [Google Scholar] [CrossRef]
- Ibrahim, S.S. Essential Oil Nanoformulations as a Novel Method for insect Pest Control in Horticulture. In Horticultural Crops; New India Publishing Agency: New Delhi, India, 2020. [Google Scholar]
- Abdelgaleil, S.A.M.; Al-nagar, N.M.A.; Abou-Taleb, H.K.; Shawir, M.S. Effect of Monoterpenes, Phenylpropenes and Sesquiterpenes on Development, Fecundity and Fertility of Spodoptera littoralis (Boisduval). Int. J. Trop. insect Sci. 2022, 42, 245–253. [Google Scholar] [CrossRef]
- Castilhos, R.V.; Grützmacher, A.D.; Coats, J.R. Acute Toxicity and Sublethal Effects of Terpenoids and Essential Oils on The Predator Chrysoperla Externa (Neuroptera: Chrysopidae). Neotrop. Entomol. 2018, 47, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, E.; Emsen, B.; Kordali, S. Insecticidal Effects of Monoterpenes on Sitophilus Zeamais Motschulsky (Coleoptera: Curculionidae). J. Appl. Bot. Food Qual. 2013, 86, 198–204. [Google Scholar] [CrossRef]
- Zhou, L.; Li, C.; Zhang, Z.; Li, X.; Dong, Y.; Cao, H. Biological Activity and Safety Evaluation of Monoterpenes against the Peach Aphid (Myzus Persicae Sulzer) (Hemiptera: Aphididae). Int. J. Trop. insect Sci. 2021, 41, 2747–2754. [Google Scholar] [CrossRef]
- Lee, H.-W.; Lee, S.-G.; Lee, H.-S. Active Component Isolated from Eugenia Caryophyllata Leaves and Its Structural Analogues Show Insecticidal Properties Against Pochazia Shantungensis. Appl. Biol. Chem. 2016, 59, 609–614. [Google Scholar] [CrossRef]
- Ling Chang, C.; Kyu Cho, I.; Li, Q.X. insecticidal Activity of Basil Oil, Trans-Anethole, Estragole, and Linalool to Adult Fruit Flies of Ceratitis Capitata, Bactrocera Dorsalis, and Bactrocera Cucurbitae. J. Econ. Entomol. 2009, 102, 203–209. [Google Scholar] [CrossRef]
- Steve, D. Wratten Effects of Feeding Position of the Aphids Sitobion Avenae and Metopolophium Dirhodum on Wheat Yield and Quality. Ann. Appl. Biol. 1978, 90, 11–20. [Google Scholar]
- Jezewska, M. Transmission of barley yellow dwarf luteovirus isolates MAV and PAV by cereal aphid Metopolophium dirhodum. J. Plant Prot. Res. 1998, 38, 5–10. [Google Scholar]
- Gong, P.; Li, X.; Wang, C.; Zhu, S.; Li, Q.; Zhang, Y.; Li, X.; Li, G.; Liu, E.; Gao, H.; et al. The Sensitivity of Field Populations of Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) to Seven insecticides in Northern China. Agronomy 2021, 11, 1556. [Google Scholar] [CrossRef]
- Hummelbrunner, L.A.; Isman, M.B. Acute, Sublethal, Antifeedant, and Synergistic Effects of Monoterpenoid Essential Oil Compounds on the Tobacco Cutworm, Spodoptera litura (Lep., Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef]
- Levchenko, M.A.; Silivanova, E. A Synergistic and Antagonistic Effects of insecticide Binary Mixtures against House Flies (Musca Domestica). Regul. Mech. Biosyst. 2019, 10, 75–82. [Google Scholar] [CrossRef]
- Jandricic, S.E. Oviposition Behavior of The Biological Control Agent Aphidoletes Aphidimyza (Diptera: Cecidomyiidae) in Environments with Multiple Pest Aphid Species (Hemiptera: Aphididae). Biol. Control 2013, 65, 235–245. [Google Scholar] [CrossRef]
- Carrillo, M.; Elanov, P. The potential of Chrysoperla carnea as a biological control agent of Myzus persicae in glass houses. Annl. Appl. Biol. 2004, 32, 433–439. [Google Scholar]
- Costa, A.V.; Pinheiro, P.F.; de Queiroz, V.T.; Rondelli, V.M.; Marins, A.K.; Valbon, W.R.; Pratissoli, D. Chemical Composition of Essential Oil from Eucalyptus Citriodora Leaves and insecticidal Activity Against Myzus Persicae and Frankliniella Schultzei. J. Essent. Oil-Bear. Plants 2015, 18, 374–381. [Google Scholar] [CrossRef]
- Tabari, M.A.; Youssefi, M.R.; Esfandiari, A.; Benelli, G. Toxicity of Β-Citronellol, Geraniol and Linalool from Pelargonium Roseum Essential Oil against the West Nile and Filariasis Vector Culex Pipiens (Diptera: Culicidae). Res. Vet. Sci. 2017, 114, 36–40. [Google Scholar] [CrossRef]
- Demirel, S. Geraniol and Β-Citronellol Participate in The Vasorelaxant Effects of Rosa Damascena Miller Essential Oil on The Rat Thoracic Aorta. Fitoterapia 2022, 161, 105243. [Google Scholar] [CrossRef]
- Da Silva, M.J.; Julio, A.A.; Dos Santos, K.T. Sn(Scpii/Scp)-Catalyzed Β-Citronellol Esterification: A Brønsted Acid-Free Process for Synthesis of Fragrances At Room Temperature. Catal. Sci. 2015, 5, 1261–1266. [Google Scholar] [CrossRef]
- Szczepanik, M.; Zawitowska, B.; Szumny, A. Insecticidal Activities of Thymus Vulgaris Essential Oil and Its Components (Thymol and Carvacrol) against Larvae of Lesser Mealworm, Alphitobius Diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopath. J. 2012, 30, 129–142. [Google Scholar]
- Aandersen, A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int. J. Toxicol. 2006, 25, 29–127. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.-H.; Lee, H.-C.; Yap, Y.-L. Insecticidal Properties of Eugenol, Isoeugenol and Methyleugenol and Their Effects on Nutrition of Sitophilus zeamais motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2002, 38, 403–412. [Google Scholar] [CrossRef]
- Kuo, S.-C.; Chuang, S.-K.; Lin, H.-Y.; Wang, L.-H. Study of The Aerosol Fragrances of Eugenol Derivatives in Cananga Odorata Using Diffuse Reflectance infrared Fourier Transform Spectroscopy and Gas Chromatography. Anal. Chim. Acta 2009, 653, 91–96. [Google Scholar] [CrossRef]
- Topal, F. Anticholinergic and Antidiabetic Effects of Isoeugenol from Clove (Eugenia Caryophylata) Oil. Int. J. Food Prop. 2019, 22, 583–592. [Google Scholar] [CrossRef]
- Zarlaha, A.; Kourkoumelis, N.; Stanojkovic, T.P.; Kovala-Demertzi, D. Cytotoxic Activity of Essential Oil and Extracts of Ocimum Basilicum Against Human Carcinoma Cells. Molecular Docking Study of Isoeugenol as A Potent Cox and Lox inhibitor. Dig. J. Nanomater. Biostruct. 2014, 9, 907–917. [Google Scholar]
- Rastogi, S.C.; Johansen, J.D. Significant Exposures to Isoeugenol Derivatives in Perfumes. Contact Dermat. 2008, 58, 278–281. [Google Scholar] [CrossRef]
- Herman, A.; Tambor, K.; Herman, A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Curr. Microbiol. 2016, 72, 165–172. [Google Scholar] [CrossRef]
- Ebadollahi, A. Evaluation of The Toxicity of Satureja intermedia C.A. Mey Essential Oil to Storage and Greenhouse insect Pests and A Predator Ladybird. Foods 2020, 9, 712. [Google Scholar] [CrossRef]
- Pavela, R.; Sedlák, P. Post-Application Temperature as A Factor influencing the insecticidal Activity of Essential Oil from Thymus Vulgaris. Ind. Crops Prod. 2018, 113, 46–49. [Google Scholar] [CrossRef]
- Corbett, J.R. The Biochemical Mode of Action of Pesticides; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar] [CrossRef]
- Pavela, R. Sublethal Effects of Some Essential Oils on The Cotton Leafworm Spodoptera Littoralis(Boisduval). J. Essent. Oil Bear. Plants 2012, 15, 144–156. [Google Scholar] [CrossRef]
- Hategekimana, A.; Erler, F. Fecundity and Fertility inhibition Effects of Some Plant Essential Oils and Their Major Components Against Acanthoscelides Obtectus Say (Coleoptera: Bruchidae). J. Plant Dis. Prot. 2020, 127, 615. [Google Scholar] [CrossRef]
- Richard, A. Weinzierl integrating Pesticides with Biotic and Biological Control for Arthropod Pest Management. In Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Novák, M.; Pavela, R.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Ricciardi, R.; Benelli, G. Lethal and Sublethal Effects of Carlina Oxide on the Aphid Metopolophium dirhodum and Its Non-Target Impact on Two Biological Control Agents. J. Pest Sci. 2024. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method of Computing the Effectiveness of an insecticide. 1925. J. Am. Mosq. Control. Assoc. 1987, 3, 302–303. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
LC30 * (CI95) | LC50 * (CI95) | LC90 * (CI95) | χ2 (df = 4) | p-Value | |
---|---|---|---|---|---|
β-Citronellol | 0.37 (0.29–0.44) | 0.59 (0.49–0.68) | 1.78 (1.50–2.21) | 2.990 | 0.393 ns |
Carvacrol | 0.32 (0.19–0.44) | 0.60 (0.43–0.75) | 2.82 (2.23–4.08) | 1.918 | 0.590 ns |
Isoeugenol | 0.45 (0.27–0.63) | 1.09 (0.82–1.35) | 9.50 (6.64–16.62) | 1.574 | 0.904 ns |
Linalool | 2.50 (1.97–2.92) | 3.68 (3.20–4.07) | 9.46 (8.10–11.99) | 3.716 | 0.446 ns |
Compound A | Compound B | Larval Mortality (%) | χ2 | Effect | |||
---|---|---|---|---|---|---|---|
Pure Compounds | Binary Mixtures | ||||||
Observed A * | Observed B * | Expected | Observed | ||||
Linalool | Isoeugenol | 11.8 | 22.0 | 31.2 | 38.2 | 1.569 | No effect |
Linalool | Carvacrol | 11.8 | 11.8 | 22.2 | 48.5 | 31.129 | Synergistic |
Linalool | β-Citronellol | 11.8 | 32.4 | 40.4 | 83.8 | 46.699 | Synergistic |
Isoeugenol | Carvacrol | 22.0 | 11.8 | 31.2 | 52.9 | 15.085 | Synergistic |
Isoeugenol | β-Citronellol | 22.0 | 32.4 | 47.2 | 44.2 | 0.200 | No effect |
β-Citronellol | Carvacrol | 32.4 | 11.8 | 40.4 | 38.2 | 0.117 | No effect |
Linalool/β-Citronellol Ratio | Concentrations of Binary Mixtures (mL L−1) | ||
---|---|---|---|
0.5 | 1.5 | 2.5 | |
Mortality (% ± SD) | |||
7:1 | 12.7 ± 2.3 bc | 17.1 ± 5.1 c | 62.1 ± 7.1 c |
1:1 | 23.4 ± 3.4 a | 83.5 ± 2.3 a | 97.8 ± 3.2 a |
1:2 | 16.1 ± 3.5 ab | 75.2 ± 6.9 ab | 80.2 ± 3.4 b |
1:5 | 4.1 ± 4.9 c | 58.8 ± 12.9 bc | 80.1 ± 3.9 b |
ANOVA F3,8; P | 9.375; 0.005 | 27.636; 0.000 | 11.732; 0.002 |
Concentration of Linalool and β-Citronellol (mL L−1) | Mortality * (% ± SD) | LC30 ** (CI95) | LC50 ** (CI95) | LC90 ** (CI95) | χ2 (df = 4) | p-Value |
---|---|---|---|---|---|---|
0.25 | 15.9 ± 11.0 | 0.36 (0.30–0.43) | 0.56 (0.48–0.63) | 1.58 (1.37–1.89) | 4.226 | 0.376 ns |
0.5 | 27.5 ± 14.5 | |||||
1.0 | 44.9 ± 17.5 | |||||
1.25 | 81.1 ± 17.5 | |||||
1.5 | 91.3 ± 9.4 | |||||
2.0 | 94.2 ± 6.1 | |||||
2.5 | 97.1 ± 4.0 | |||||
Negative control | 8.0 ± 8.7 | |||||
Positive control | 100.0 ± 0.0 |
Fertility | Potential Natality | |||
---|---|---|---|---|
Treatment | No. Nymphs/Female/Day | Inhibition (%) Compared to Control | No. Nymphs per 100 Females/Day | Inhibition (%) Compared to Control |
β-Citronellol: LC30 | 1.60 ± 0.45 b | 45.94 ± 15.25 a | 112.21 ± 31.61 c | 62.16 ± 10.68 a |
β-Citronellol: LC50 | 1.94 ± 0.29 b | 34.45 ± 12.16 a | 96.99 ± 13.69 c | 67.22 ± 11.97 a |
Linalool: LC30 | 2.74 ± 0.65 a | 7.43 ± 22.26 b | 191.81 ± 46,13 b | 35.20 ± 15.58 b |
Linalool: LC50 | 2.68 ± 0.44 a | 9.45 ± 15.01 b | 134.03 ± 22.22 c | 54.72 ± 7.51 a |
β-Citronellol/Linalool LC30 | 2.24 ± 0.13 ab | 24.32 ± 4.58 a | 156,82 ± 9.49 bc | 47.02 ± 3.20 ab |
β-Citronellol/Linalool LC50 | 2.01 ± 0.12 b | 32.43 ± 4.27 a | 99.98 ± 6.32 c | 66.21 ± 2.13 a |
Negative control | 2.96 ± 0.46 a | 296.05 ± 46.31 a | ||
ANOVA F2,12; P | 6,28; 5.924; 0.000 | 5, 24; 6.176; 0.000 | 6, 28; 22.841; 0.000 | 5, 24; 5.167; 0.002 |
A. aphidimyza Mortality (% ± SD) | |||||
---|---|---|---|---|---|
Treatment | β-Citronellol | Linalool | β-Citronellol/Linalool | Positive Control | Negative Control |
Aphid LC90 | 0.0 ± 0.0 | 3.3 ± 3.8 | 1.7 ± 3.3 | 3.3 ± 3.3 | 1.7 ± 3.3 |
ANOVA F4, 10; P | ns |
C. carnea Mortality (% ± SD) | |||||
---|---|---|---|---|---|
Treatment | β-Citronellol | Linalool | β-Citronellol/Linalool | Positive Control | Negative Control |
Aphid LC90 | 35.3 ± 9.9 b | 4.8 ± 8.2 c | 19.6 ± 4.7 cb | 100.0 ± 0.0 a | 9.0 ± 3.7 c |
ANOVA F4, 10; P | 112.915; 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavela, R.; Novák, M. Insecticidal Activity of Some Major Essential Oil Components against Metopolophium dirhodum and Its Predators. Plants 2024, 13, 1863. https://doi.org/10.3390/plants13131863
Pavela R, Novák M. Insecticidal Activity of Some Major Essential Oil Components against Metopolophium dirhodum and Its Predators. Plants. 2024; 13(13):1863. https://doi.org/10.3390/plants13131863
Chicago/Turabian StylePavela, Roman, and Matěj Novák. 2024. "Insecticidal Activity of Some Major Essential Oil Components against Metopolophium dirhodum and Its Predators" Plants 13, no. 13: 1863. https://doi.org/10.3390/plants13131863
APA StylePavela, R., & Novák, M. (2024). Insecticidal Activity of Some Major Essential Oil Components against Metopolophium dirhodum and Its Predators. Plants, 13(13), 1863. https://doi.org/10.3390/plants13131863