Morphological and Pigment Responses to Far-Red and Photosynthetically Active Radiation in an Olive Cultivar Suitable for Super-High-Density Orchards
Abstract
:1. Introduction
2. Results
2.1. Plant Morphology and Biomass
2.2. Leaf Stomata and Photosynthetic Pigments
2.3. Cluster and Principal Component Analyses
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Light Treatments and Experimental Layout
4.3. Light and Air Temperature Measurements
4.4. Plant Morphology and Biomass
4.5. Stomatal Conductance and Density
4.6. Photosynthetic Leaf Pigments
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Ollas, C.; Morillón, R.; Fotopoulos, V.; Puértolas, J.; Ollitrault, P.; Gómez-Cadenas, A.; Arbona, V. Facing climate change: Biotechnology of iconic mediterranean woody crops. Front. Plant Sci. 2019, 10, 427. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Searles, P.; Rousseaux, M.C.; García-Inza, G.; Miserere, A.; Bodoira, R.; Contreras, C.; Maestri, D. Olive cultivation in the southern hemisphere: Flowering, water requirements and oil quality responses to new crop environments. Front. Plant Sci. 2017, 8, 1830. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAOSTAT Database. Available online: http://faostat.fao.org/ (accessed on 22 March 2024).
- Lo Bianco, R.; Proietti, P.; Regni, L.; Caruso, T. Planting systems for modern olive growing: Strengths and weaknesses. Agriculture 2021, 11, 494. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A.; Hermoso, J.F.; Msallem, M.; Larbi, A. Olive orchard design and mechanization: Present and future. Acta Hortic. 2014, 1057, 231–246. [Google Scholar] [CrossRef]
- Connor, D.J.; Gómez-del-Campo, M.; Rousseaux, M.C.; Searles, P. Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic. 2014, 169, 71–93. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Connor, D.J.; Gómez-del-Campo, M. Effect of row spacing on vegetative structure, fruit characteristics and oil productivity of N–S and E–W oriented olive hedgerows. Sci. Hortic. 2015, 193, 240–248. [Google Scholar] [CrossRef]
- Ballaré, C.L.; Sánchez, R.A.; Scopel, A.L.; Casal, J.J.; Ghersa, C.M. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ. 1987, 10, 551–557. [Google Scholar] [CrossRef]
- Ballaré, C.L.; Pierik, R. The shade-avoidance syndrome: Multiple signals and ecological consequences. Plant Cell Environ. 2017, 40, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Gommers, C.M.M.; Visser, E.J.W.; Onge, K.R.S.; Voesenek, L.A.C.J.; Pierik, R. Shade tolerance: When growing tall is not an option. Trends Plant Sci. 2013, 18, 65–71. [Google Scholar] [CrossRef]
- Casal, J.J.; Balasubramanian, S. Thermomorphogenesis. Annu. Rev. Plant Biol. 2019, 70, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Runkle, E.S. Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environ. Exp. Bot. 2018, 155, 206–216. [Google Scholar] [CrossRef]
- Casal, J.J. Shade Avoidance. Arab. Book 2012, 10, e0157. [Google Scholar] [CrossRef] [PubMed]
- Ladux, F.J.; Rousseaux, M.C.; Trentacoste, E.R. Characterization of light intensity and quality, vegetative, flowering and fruiting traits in high and super-high density olive hedgerows. J. Saudi Soc. Agric. Sci. 2024, 23, 267–276. [Google Scholar] [CrossRef]
- Bastías, R.M.; Corelli-Grappadelli, L. Light quality management in fruit orchards: Physiological and technological aspects. Chil. J. Agric. Res. 2012, 72, 574–581. [Google Scholar] [CrossRef]
- Schettini, E.; de Salvador, F.R.; Scarascia-Mugnozza, G.; Vox, G. Radiometric properties of photoselective and photoluminescent greenhouse plastic films and their effects on peach and cherry tree growth. J. Hortic. Sci. Biotechnol. 2011, 86, 79–83. [Google Scholar] [CrossRef]
- González, C.V.; Jofré, M.F.; Vila, H.F.; Stoffel, M.; Bottini, R.; Giordano, C.V. Morphology and hydraulic architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano plants are unaffected by variations in red to far-red ratio. PLoS ONE 2016, 11, e0167767. [Google Scholar] [CrossRef] [PubMed]
- Delagrange, S.; Montpied, P.; Dreyer, E.; Messier, C.; Sinoquet, H. Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species. New Phytol. 2006, 172, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Larbi, A.; Vázquez, S.; El-jendoubi, H.; Msallem, M.; Abadía, J.; Abadía, A.; Morales, F. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation. Photosynth. Res. 2015, 123, 141–155. [Google Scholar] [CrossRef]
- Connor, D.J. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 2005, 56, 1181–1189. [Google Scholar] [CrossRef]
- Guerrero Maldonado, N.; López, M.J.; Caudullo, G.; de Rigo, D. Olea europaea in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; European Commission: Luxemburg, 2016; p. E01534b+. [Google Scholar]
- Besnard, G.; Terral, J.F.; Cornille, A. On the origins and domestication of the olive: A review and perspectives. Ann. Bot. 2018, 121, 385–403. [Google Scholar] [CrossRef] [PubMed]
- Díez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 2016, 7, 1226. [Google Scholar] [CrossRef] [PubMed]
- Rosati, A.; Paoletti, A.; Caporali, S.; Perri, E. The role of tree architecture in super high density olive orchards. Sci. Hortic. 2013, 161, 24–29. [Google Scholar] [CrossRef]
- Ajmi, A.; Vázquez, S.; Morales, F.; Chaari, A.; El-Jendoubi, H.; Abadía, A.; Larbi, A. Prolonged artificial shade affects morphological, anatomical, biochemical and ecophysiological behavior of young olive trees (cv. Arbosana). Sci. Hortic. 2018, 241, 275–284. [Google Scholar] [CrossRef]
- Gregoriou, K.; Pontikis, K.; Vemmos, S. Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica 2007, 45, 172–181. [Google Scholar] [CrossRef]
- Melgar, J.C.; Guidi, L.; Remorini, D.; Agati, G.; Degl’Innocenti, E.; Castelli, S.; Camilla Baratto, M.; Faraloni, C.; Tattini, M. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol. 2009, 29, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Ladux, F.J.; Trentacoste, E.R.; Searles, P.S.; Rousseaux, M.C. Light quality environment and photomorphological responses of young olive trees. Horticulturae 2021, 7, 369. [Google Scholar] [CrossRef]
- Kurepin, L.V.; Emery, R.J.N.; Pharis, R.P.; Reid, D.M. The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annus L. hypocotyls. Plant Cell Environ. 2007, 30, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, Q.; Cheng, Y.; Feng, L.; Wu, X.; Fan, Y.; Raza, M.A.; Wang, X.; Yong, T.; Liu, W.; et al. Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. BMC Plant Biol. 2020, 20, 148. [Google Scholar] [CrossRef]
- Zhang, N.; Van Westreenen, A.; Anten, N.P.R.; Evers, J.B.; Marcelis, L.F.M. Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: A simulation study using a functional–structural plant model. Ann. Bot. 2020, 126, 635–646. [Google Scholar] [CrossRef]
- Rosati, A.; Marchionni, D.; Mantovani, D.; Ponti, L.; Famiani, F. Intercepted photosynthetically active radiation (PAR) and spatial and temporal distribution of transmitted PAR under high-density and super high-density olive orchards. Agriculture 2021, 11, 351. [Google Scholar] [CrossRef]
- Rousseaux, M.C.; Cherbiy-Hoffmann, S.U.; Hall, A.J.; Searles, P.S. Fatty acid composition of olive oil in response to fruit canopy position and artificial shading. Sci. Hortic. 2020, 271, 109477. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Moreno-Alías, I.; Gómez-del-Campo, M.; Beyá-Marshall, V.; Rapoport, H.F. Olive floral development in different hedgerow positions and orientations as affected by irradiance. Sci. Hortic. 2017, 225, 226–234. [Google Scholar] [CrossRef]
- Tombesi, A.; Standardi, A. Effetti Della Illuminazione Sulla Fruttificazione Dell’olivo. Riv. Ortoflorofrutt. It. 1977, 61, 368–380. Available online: http://www.jstor.org/stable/42878210 (accessed on 3 May 2024).
- Cherbiy-Hoffmann, S.U.; Hall, A.J.; Rousseaux, M.C. Fruit, yield, and vegetative growth responses to photosynthetically active radiation during oil synthesis in olive trees. Sci. Hortic. 2013, 150, 110–116. [Google Scholar] [CrossRef]
- Saura-Sánchez, M.; Gomez-Ocampo, G.; Pereyra, M.E.; Barraza, C.E.; Rossi, A.H.; Córdoba, J.P.; Botto, J.F. B-Box transcription factor BBX28 requires CONSTITUTIVE PHOTOMORPHOGENESIS1 to induce shade-avoidance response in Arabidopsis thaliana. Plant Physiol. 2024, 13, kiae216. [Google Scholar] [CrossRef] [PubMed]
- Rosati, A.; Paoletti, A.; Lodolini, E.M.; Famiani, F. Cultivar ideotype for intensive olive orchards: Plant vigor, biomass partitioning, tree architecture and fruiting characteristics. Front. Plant Sci. 2024, 15, 1345182. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü.; Sparrow, A.; Cescatti, A. Light capture efficiency decreases with increasing tree age and size in the southern hemisphere gymnosperm Agathis australis. Trees 2005, 19, 177–190. [Google Scholar] [CrossRef]
- Raabe, K.; Pisek, J.; Sonnentag, O.; Annuk, K. Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agric. For. Meteorol. 2015, 214–215, 2–11. [Google Scholar] [CrossRef]
- Dornbusch, T.; Michaud, O.; Xenarios, I.; Fankhauser, C. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. Plant Cell 2014, 26, 3911–3921. [Google Scholar] [CrossRef]
- Rousseaux, M.C.; Hall, A.J.; Sanchez, R.A. Far-red enrichment and photo- synthetically active radiation level influence leaf senescence in field-grown sunflower. Physiol. Plant. 1996, 96, 217–224. [Google Scholar] [CrossRef]
- Walters, R.G. Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 2005, 56, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Casal, J.J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 2013, 64, 403–427. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, I.; Hussain, S.; Raza, M.A.; Iqbal, N.; Asghar, M.A.; Raza, A.; Fan, Y.; Mumtaz, M.; Shoaib, M.; Ansar, M.; et al. Crop photosynthetic response to light quality and light intensity. J. Integr. Agric. 2021, 20, 4–23. [Google Scholar] [CrossRef]
- Casal, J.J.; Aphalo, P.J.; Sánchez, R.A. Phytochrome effects on leaf growth and chlorophyll content in Petunia axilaris. Plant Cell Environ. 1987, 10, 509–514. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ. Exp. Bot. 2017, 136, 41–49. [Google Scholar] [CrossRef]
- Brelsford, C.C.; Trasser, M.; Paris, T.; Hartikainen, S.M.; Robson, T.M. Understorey light quality affects leaf pigments and leaf phenology in different plant functional types. Physiol. Plant. 2022, 174, e13723. [Google Scholar] [CrossRef] [PubMed]
- González, C.V.; Jeréz, D.N.; Jofré, M.F.; Guevara, A.; Prieto, J.; Mazza, C.; Williams, L.E.; Giordano, C.V. Blue light attenuation mediates morphological and architectural acclimation of Vitis vinifera cv. Malbec to shade and increases light capture. Environ. Exp. Bot. 2019, 157, 112–120. [Google Scholar] [CrossRef]
- Razzak, A.; Ranade, S.S.; Strand, Å.; García-Gil, M.R. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light. Plant Cell Environ. 2017, 40, 1332–1340. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, J.; Tablada, M.; Robledo, C.W. InfoStat Versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available online: http://www.infostat.com.ar (accessed on 1 September 2020).
Variable | Low PAR | High PAR | |||||
---|---|---|---|---|---|---|---|
-FR | +FR | -FR | +FR | PAR | FR | PAR×FR | |
Axillary internode length (cm) | 2.0 ± 0.2 | 2.5 ± 0.1 | 2.6 ± 0.1 | 2.8 ± 0.1 | * | * | 0.09 |
Axillary shoots (number) | 9 ± 2 | 5 ± 1 | 12 ± 2 | 12 ± 3 | * | 0.31 | 0.47 |
Total axillary shoot length (cm) | 53 ± 14 | 55 ± 9.1 | 213 ± 20 | 203 ± 24 | ** | 0.83 | 0.75 |
Axillary shoot angle (°) | 71 ± 1 | 60 ± 2 | 71 ± 3 | 67 ± 1 | 0.09 | * | 0.09 |
Leaf angle (°) | 95 ± 3 | 76 ± 2 | 86.± 5 | 69 ± 6 | * | ** | 0.81 |
Variable | Low PAR | High PAR | |||||
---|---|---|---|---|---|---|---|
-FR | +FR | -FR | +FR | PAR | FR | PAR×FR | |
Stomatal conductance (mmol m−2 s−1) | 223 ± 9 | 238 ± 16 | 283 ± 14 | 267 ± 18 | * | 0.97 | 0.31 |
Stomatal density (number mm−2) | 216 ± 5 | 217 ± 6 | 244 ± 7 | 240 ± 11 | * | 0.72 | 0.84 |
Stomata length (μm) | 22.0 ± 0.2 | 21.9 ± 0.4 | 22.7 ± 0.4 | 22.9 ± 0.3 | * | 0.91 | 0.79 |
Stomata width (μm) | 15.7 ± 0.2 | 15.4 ± 0.3 | 16.0 ± 0.2 | 15.9 ± 0.2 | 0.13 | 0.30 | 0.75 |
Variable | Low PAR | High PAR | |||||
---|---|---|---|---|---|---|---|
-FR | +FR | -FR | +FR | PAR | FR | PAR×FR | |
Chlorophyll a (μg mg−1) | 0.70 ± 0.01 a | 0.62 ± 0.01 b | 0.42 ± 0.04 c | 0.43 ± 0.03 c | ** | 0.17 | * |
Chlorophyll b (μg mg−1) | 0.29 ± 0.01 | 0.26 ± 0.03 | 0.18 ± 0.01 | 0.18 ± 0.01 | ** | 0.13 | 0.08 |
Total chlorophyll (μg mg−1) | 0.99 ± 0.02 a | 0.88 ± 0.01 b | 0.60 ± 0.05 c | 0.61 ± 0.04 c | ** | 0.15 | * |
Carotenoids (μg mg−1) | 0.11 ± 0.003 | 0.10 ± 0.004 | 0.08 ± 0.01 | 0.09 ± 0.01 | * | 0.34 | 0.21 |
Variable | Low PAR | High PAR | |||||
---|---|---|---|---|---|---|---|
-FR | +FR | -FR | +FR | PAR | FR | PAR×FR | |
Leaves (g) | 6.3 ± 0.7 | 6.0 ± 0.6 | 13.5 ± 0.5 | 12.4 ± 1.3 | ** | 0.39 | 0.60 |
Stems (g) | 3.6 ± 0.6 | 3.9 ± 0.4 | 10.4 ± 0.7 | 10.2 ± 1.1 | ** | 0.91 | 0.76 |
Roots (g) | 3.9 ± 0.3 | 4.3 ± 0.5 | 13.7 ± 0.9 | 13.8 ± 1.7 | ** | 0.79 | 0.92 |
Above-/below-ground ratio | 2.6 ± 0.2 | 2.4 ± 0.2 | 1.8 ± 0.1 | 1.7 ± 0.1 | ** | 0.44 | 0.79 |
Total plant (g) | 13.8 ± 1.6 | 14.2 ± 1.4 | 37.6 ± 1.6 | 36.5 ± 3.9 | ** | 0.88 | 0.74 |
Specific stem length (cm g−1) | 29.0 ± 2.5 | 29.7 ± 2.1 | 15.2 ± 0.7 | 17.3 ± 0.9 | ** | 0.99 | 0.63 |
Stem mass ratio (stem/(leaf + stem)) | 0.36 ± 0.01 | 0.40 ± 0.01 | 0.43 ± 0.01 | 0.45 ± 0.01 | ** | * | 0.29 |
Leaf area ratio (cm2 g−1) | 55.5 ± 2.6 | 45.4 ± 1.3 | 30.8 ± 2.1 | 27.4 ± 2.0 | ** | * | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladux, F.J.; González, C.V.; Trentacoste, E.R.; Searles, P.S.; Rousseaux, M.C. Morphological and Pigment Responses to Far-Red and Photosynthetically Active Radiation in an Olive Cultivar Suitable for Super-High-Density Orchards. Plants 2024, 13, 1822. https://doi.org/10.3390/plants13131822
Ladux FJ, González CV, Trentacoste ER, Searles PS, Rousseaux MC. Morphological and Pigment Responses to Far-Red and Photosynthetically Active Radiation in an Olive Cultivar Suitable for Super-High-Density Orchards. Plants. 2024; 13(13):1822. https://doi.org/10.3390/plants13131822
Chicago/Turabian StyleLadux, Federico J., Carina V. González, Eduardo R. Trentacoste, Peter S. Searles, and M. Cecilia Rousseaux. 2024. "Morphological and Pigment Responses to Far-Red and Photosynthetically Active Radiation in an Olive Cultivar Suitable for Super-High-Density Orchards" Plants 13, no. 13: 1822. https://doi.org/10.3390/plants13131822
APA StyleLadux, F. J., González, C. V., Trentacoste, E. R., Searles, P. S., & Rousseaux, M. C. (2024). Morphological and Pigment Responses to Far-Red and Photosynthetically Active Radiation in an Olive Cultivar Suitable for Super-High-Density Orchards. Plants, 13(13), 1822. https://doi.org/10.3390/plants13131822