Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars
Abstract
:1. Introduction
2. Results
2.1. Lipid Content and Lipid Profiles
2.2. Fatty Acids Profiles
2.3. Nutritional Characteristics
3. Discussion
4. Conclusions and Future Perspectives
5. Materials and Methods
5.1. Plant Material and Field Management
5.2. Reagents and Solvents
5.3. Seed Staining
5.4. Fat Extraction
5.5. Determination of Total Fatty Substances
5.6. Determination of Main Lipid Classes
5.7. Determination of Total Fatty Acids
5.8. Determination of Free Acidity
5.9. Lipid Quality Indices
5.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef]
- Roucou, A.; Violle, C.; Fort, F.; Roumet, P.; Ecarnot, M.; Vile, D. Shifts in Plant Functional Strategies over the Course of Wheat Domestication. J. Appl. Ecol. 2018, 55, 25–37. [Google Scholar] [CrossRef]
- Gioia, T.; Nagel, K.A.; Beleggia, R.; Fragasso, M.; Ficco, D.B.M.; Pieruschka, R.; De Vita, P.; Fiorani, F.; Papa, R. Impact of Domestication on the Phenotypic Architecture of Durum Wheat under Contrasting Nitrogen Fertilization. J. Exp. Bot. 2015, 66, 5519–5530. [Google Scholar] [CrossRef] [PubMed]
- Jatayev, S.; Sukhikh, I.; Vavilova, V.; Smolenskaya, S.E.; Goncharov, N.P.; Kurishbayev, A.; Zotova, L.; Absattarova, A.; Serikbay, D.; Hu, Y.G.; et al. Green Revolution ‘Stumbles’ in a Dry Environment: Dwarf Wheat with Rht Genes Fails to Produce Higher Grain Yield than Taller Plants under Drought. Plant Cell Environ. 2020, 43, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Poggi, G.M.; Corneti, S.; Aloisi, I.; Ventura, F. Environment-Oriented Selection Criteria to Overcome Controversies in Breeding for Drought Resistance in Wheat. J. Plant Physiol. 2023, 280, 153895. [Google Scholar] [CrossRef] [PubMed]
- Peleg, Z.; Fahima, T.; Korol, A.B.; Abbo, S.; Saranga, Y. Genetic Analysis of Wheat Domestication and Evolution under Domestication. J. Exp. Bot. 2011, 62, 5051–5061. [Google Scholar] [CrossRef]
- Matsuoka, Y. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in Their Diversification. Plant Cell Physiol. 2011, 52, 750–764. [Google Scholar] [CrossRef] [PubMed]
- Peleg, Z.; Abbo, S.; Gopher, A. When Half Is More than the Whole: Wheat Domestication Syndrome Reconsidered. Evol. Appl. 2022, 15, 2002–2009. [Google Scholar] [CrossRef] [PubMed]
- Beleggia, R.; Rau, D.; Laido, G.; Platani, C.; Nigro, F.; Fragasso, M.; De Vita, P.; Scossa, F.; Fernie, A.R.; Nikoloski, Z.; et al. Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels. Mol. Biol. Evol. 2016, 33, 1740–1753. [Google Scholar] [CrossRef] [PubMed]
- Righetti, L.; Rubert, J.; Galaverna, G.; Folloni, S.; Ranieri, R.; Stranska-Zachariasova, M.; Hajslov, J.; Dall’Asta, C. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach. Int. J. Mol. Sci. 2016, 17, 1217. [Google Scholar] [CrossRef] [PubMed]
- Mosleth, E.F.; Lillehammer, M.; Pellny, T.K.; Wood, A.J.; Riche, A.B.; Hussain, A.; Griffiths, S.; Hawkesford, M.J.; Shewry, P.R. Genetic Variation and Heritability of Grain Protein Deviation in European Wheat Genotypes. Field Crops Res. 2020, 255, 107896. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in Gluten Protein Composition between Old and Modern Durum Wheat Genotypes in Relation to 20th Century Breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in Bread Making: Sources, Interactions, and Impact on Bread Quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Panozzo, J.F.; Hannah, M.C.; O’brien, L.; Bekes, F. The Relationship of Free Lipids and Flour Protein to Breadmaking Quality. J. Cereal Sci. 1993, 17, 47–62. [Google Scholar] [CrossRef]
- Doblado-Maldonado, A.F.; Pike, O.A.; Sweley, J.C.; Rose, D.J. Key Issues and Challenges in Whole Wheat Flour Milling and Storage. J. Cereal Sci. 2012, 56, 119–126. [Google Scholar] [CrossRef]
- Astrup, A.; Bertram, H.C.S.; Bonjour, J.P.; De Groot, L.C.P.; De Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO Draft Guidelines on Dietary Saturated and Trans Fatty Acids: Time for a New Approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed]
- Tavoletti, S.; Pasquini, M.; Mozzon, M.; Servadio, D.; Merletti, A.; Mannozzi, C.; Foligni, R. Discrimination among Varieties of Triticum turgidum Subspecies (dicoccon, turanicum and durum) Based on the Fatty Acid Profile. J. Cereal Sci. 2021, 99, 103213. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.; Ratti, S. Influence of Genetic and Environmental Factors on Selected Nutritional Traits of Triticum monococcum. J. Agric. Food Chem. 2009, 57, 6342–6348. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Brandolini, A. Nutritional Properties of Einkorn Wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Tavoletti, S.; Foligni, R.; Mozzon, M.; Pasquini, M. Comparison between Fatty Acid Profiles of Old and Modern Varieties of T. turgidum and T. aestivum: A Case Study in Central Italy. J. Cereal Sci. 2018, 82, 198–205. [Google Scholar] [CrossRef]
- Tavoletti, S.; Pasquini, M.; Mozzon, M.; Foligni, R. Effect of Sowing Season on Fatty Acid Profile Ability to Discriminate Modern and Old Varieties of Common Wheat (Triticum aestivum L. subsp. aestivum). J. Cereal Sci. 2024, 116, 103864. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient Wheat Species and Human Health: Biochemical and Clinical Implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.Y.; Zhu, D.; Nyström, L. Improving Wholegrain Product Quality by Selecting Lipid-Stable Wheat Varieties. Food Chem. 2021, 345, 128683. [Google Scholar] [CrossRef]
- Narducci, V.; Finotti, E.; Galli, V.; Carcea, M. Lipids and Fatty Acids in Italian Durum Wheat (Triticum Durum Desf.) Cultivars. Foods 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.S. Comparison of Lipid Content and Fatty Acid Composition and Their Distribution within Seeds of 5 Small Grain Species. J. Food Sci. 2011, 76, C334–C342. [Google Scholar] [CrossRef] [PubMed]
- Vendramin, V.; Ormanbekova, D.; Scalabrin, S.; Scaglione, D.; Maccaferri, M.; Martelli, P.; Salvi, S.; Jurman, I.; Casadio, R.; Cattonaro, F.; et al. Genomic Tools for Durum Wheat Breeding: De Novo Assembly of Svevo Transcriptome and SNP Discovery in Elite Germplasm. BMC Genom. 2019, 20, 278. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current Trends in Ancient Grains-Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Arslan, D.; Demir, M.K.; Acar, A.; Arslan, F.N. Investigation of Wheat Germ and Oil Characteristics with Regard to Different Stabilization Techniques. Food Technol. Biotechnol. 2020, 58, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Akhalkatsi, M.; Otte, A.; Togonidze, N.; Bragvadze, T.; Asanidze, Z.; Arabuli, G.; Chikhelidze, N.; Mazanishvili, L. Agrobiodiversity and Genetic Erosion of Crop Varieties and Plant Resources in the Central Great Caucasus. Ann. Agrar. Sci. 2017, 15, 11–16. [Google Scholar] [CrossRef]
- Bartosova, Z.; Gonzalez, S.V.; Voigt, A.; Bruheim, P. High Throughput Semiquantitative UHPSFC–MS/MS Lipid Profiling and Lipid Class Determination. J. Chromatogr. Sci. 2021, 59, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Masaf—Decreto del Presidente della Repubblica 5 Marzo 2013, n. 41—Regolamento Recante Modifiche Al DPR 9 Febbraio 2001, n. 187, Concernente La Revisione Della Normativa Sulla Produzione e Commercializzazione Di Sfarinati e Paste Alimentari. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6230 (accessed on 18 June 2024).
- Melis, S.; Foubert, I.; Delcour, J.A. Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods 2021, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, J.; Ruan, S.; Lv, R.; Zhou, J.; Tian, J.; Cheng, H.; Xu, E.; Liu, D. A Comprehensive Review of Cereal Germ and Its Lipids: Chemical Composition, Multi-Objective Process and Functional Application. Food Chem. 2021, 362, 130066. [Google Scholar] [CrossRef]
- Wijendran, V.; Hayes, K.C. Dietary N-6 and n-3 Fatty Acid Balance and Cardiovascular Health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Capurso, C.; Capurso, A.; Massaro, M. Vascular Effects of the Mediterranean Diet—Part II: Role of Omega-3 Fatty Acids and Olive Oil Polyphenols. Vascul. Pharmacol. 2014, 63, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Mantzioris, E.; Muhlhausler, B.S.; Villani, A. Impact of the Mediterranean Dietary Pattern on N-3 Fatty Acid Tissue Levels—A Systematic Review. Prostaglandins Leukot. Essent. Fat. Acids 2022, 176, 102387. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients 2010, 2, 355. [Google Scholar] [CrossRef] [PubMed]
- Konopka, I.; Kozirok, W.; Rotkiewicz, D. Lipids and Carotenoids of Wheat Grain and Flour and Attempt of Correlating Them with Digital Image Analysis of Kernel Surface and Cross-Sections. Food Res. Int. 2004, 37, 429–438. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, K.; Kotíková, Z. Tocols and Carotenoids of Einkorn, Emmer and Spring Wheat Varieties: Selection for Breeding and Production. J. Cereal Sci. 2013, 57, 207–214. [Google Scholar] [CrossRef]
- Okumus, B.N.; Tacer-Caba, Z.; Kahraman, K.; Nilufer-Erdil, D. Resistant Starch Type V Formation in Brown Lentil (Lens culinaris Medikus) Starch with Different Lipids/Fatty Acids. Food Chem. 2018, 240, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Zhuang, H.; Chen, F.; Campanella, O.; Bhopatkar, D.; Carignano, M.A.; Park, S.H. Starch-Lipid and Starch-Protein Complexes and Their Application. In Functional Starch and Applications in Food; Springer: Singapore, 2018; pp. 177–226. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–Lipid and Starch–Lipid–Protein Complexes: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Chakraborty, I.; Mazumder, N. An Insight into the Physicochemical Characterisation of Starch-Lipid Complex and Its Importance in Food Industry. Food Rev. Int. 2023, 39, 4198–4212. [Google Scholar] [CrossRef]
- Zielinski, H.; Kozlowska, H.; Lewczuk, B. Bioactive Compounds in the Cereal Grains before and after Hydrothermal Processing. Innov. Food Sci. Emerg. Technol. 2001, 2, 159–169. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, A.; Vats, S.; Tiwari, V.; Kumari, A.; Mishra, V.; Krishania, M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front. Nutr. 2021, 8, 586815. [Google Scholar] [CrossRef] [PubMed]
- Lamine, M.; Mlikia, A. Open Journal of Nutrition and Food Sciences Nutritional Quality Perceptions through Fatty Acid Profiling, Health Lipid Indices and Antioxidant Potentialities. Open J. Nutr. Food Sci. 2021, 3, 1016. [Google Scholar]
- Mir, N.A.; Riar, C.S.; Singh, S. Nutritional Constituents of Pseudo Cereals and Their Potential Use in Food Systems: A Review. Trends Food Sci. Technol. 2018, 75, 170–180. [Google Scholar] [CrossRef]
- Vivar-Quintana, A.M.; Absi, Y.; Hernández-Jiménez, M.; Revilla, I. Nutritional Value, Mineral Composition, Fatty Acid Profile and Bioactive Compounds of Commercial Plant-Based Gluten-Free Flours. Appl. Sci. 2023, 13, 2309. [Google Scholar] [CrossRef]
- Mazzucotelli, E.; Sciara, G.; Mastrangelo, A.M.; Desiderio, F.; Xu, S.S.; Faris, J.; Hayden, M.J.; Tricker, P.J.; Ozkan, H.; Echenique, V.; et al. The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. Front. Plant Sci. 2020, 11, 569905. [Google Scholar] [CrossRef] [PubMed]
- Percival, J.; Percival, J. The Wheat Plant; Duckworth and Co.: London, UK, 1921. [Google Scholar]
- Khin, O.M.; Sato, M.; Li-Tao, T.; Matsue, Y.; Yoshimura, A.; Mochizuki, T. Close Association between Aleurone Traits and Lipid Contents of Rice Grains Observed in Widely Different Genetic Resources of Oryza Sativa. Plant Prod. Sci. 2013, 16, 41–49. [Google Scholar] [CrossRef]
- ISO 659:2009—Oilseeds—Determination of Oil Content (Reference Method). Available online: https://www.iso.org/standard/43169.html (accessed on 18 June 2024).
- Regulation, I. Decreto Ministeriale 23 luglio 1994. Approvazione dei Metodi Ufficiali di Analisi dei Cereali e Derivati—Supplemento n.4-Supplemento Ordinario alla Gazzetta Ufficiale Serie Generale n.186 10-08-1994; 1994. [Google Scholar]
- Toschi, T.G.; Cardenia, V.; Bonaga, G.; Mandrioli, M.; Rodriguez-Estrada, M.T. Coffee Silverskin: Characterization, Possible Uses, and Safety Aspects. J. Agric. Food Chem. 2014, 62, 10836–10844. [Google Scholar] [CrossRef] [PubMed]
- ISO 12966-1:2014—Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. Available online: https://www.iso.org/standard/52294.html (accessed on 18 June 2024).
- Regulation—2568/91—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A31991R2568 (accessed on 18 June 2024).
- Acquistucci, R.; Fantauzzi, P.; D’Egidio, M.G.; Iori, A.; Onori, R.; Grossi, S. Cereal Chemistry. Ring Test to Revise the Italian Method 556 for the Determination of Free Acidity in Semolina and Pasta. Tec. Molit. 2000, 51, 113–121. [Google Scholar]
- Kouřimská, L.; Sabolová, M.; Horčička, P.; Rys, S.; Božik, M. Lipid Content, Fatty Acid Profile, and Nutritional Value of New Oat Cultivars. J. Cereal Sci. 2018, 84, 44–48. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 18 June 2024).
1000 Kernel Weight (g) | Total Fat (%) | Free Acidity (Acidity Degrees) | Humidity (%) | |
---|---|---|---|---|
Svevo | 45.14 b–d | 2.81 a | 4.44 e–i | 11.1 |
Iride | 43.18 b–d | 3.51 b–f | 3.57 a–c | 10.95 |
Odisseo | 43.39 b–d | 3.16 a–c | 4.17 c–h | 11.2 |
Monastir | 46.67 b–d | 2.78 a | 3.06 a,b | 11.45 |
Marco Aurelio | 48.31 b–d | 3.04 a,b | 4.03 c–g | 11.6 |
Aureo | 44.58 b–d | 3.23 a–d | 3.82 b–f | 11.15 |
Saragolla | 48.00 b–d | 3.05 a,b | 4.78 g–j | 12.1 |
Daurur | 49.18 b–d | 3.43 a–e | 4.22 c–i | 10.85 |
Strongfield | 48.68 b–d | 3.73 c–g | 4.96 i–k | 11.4 |
Simeto | 51.44 b–d | 3.35 a–e | 4.72 g–j | 11.6 |
Neodur | 47.98 b–d | 3.85 d–g | 3.63 a–d | 10.9 |
Creso | 45.73 b–d | 3.48 b–f | 3.01 a | 11.05 |
Kronos | 56.36 c,d | 3.20 a–d | 4.08 c–g | 11.05 |
DWC | 47.59 ± 3.57 | 3.28 ± 0.32 | 4.04 ± 0.61 | 11.26 ± 0.36 |
Senatore Cappelli | 56.95 d | 3.33 a–e | 4.79 g–j | 11.3 |
Trinakria | 42.56 a–d | 3.78 c–g | 4.66 g–j | 11.4 |
Russello | 35.70 a,b | 3.76 c–g | 5.59 k | 11.25 |
Haurani | 44.24 b–d | 4.65 h | 4.51 e–i | 11.25 |
Kyperounda | 35.23 a,b | 3.84 d–g | 4.35 d–i | 11.05 |
Kubanka | 38.62 a–c | 4.34 gh | 3.78 b–e | 11.25 |
Tetra-ipk814 | 49.92 b–d | 2.97 a,b | 5.41 j,k | 11.7 |
Tetra-ipk815 | 49.06 b–d | 3.98 e–g | 4.90 h–k | 12.05 |
AG189 | 24.49 a | 4.10 f–h | 4.57 f–i | 9.7 |
DWL | 41.86 ± 9.65 | 3.84 ± 0.52 | 4.73 ± 0.54 | 11.22 ± 0.64 |
C12:0 | C14:0 | C15:0 | C16:0 | ƩC16:1t | C16:1 | C17:0 | C18:0 | ƩC18:1 | ƩC18:2t | C18:2 | C20:0 | ƩC20:1 | C18:3 | C20:2 | C22:0 | C22:1 | C24:0 | C24:1 | C22:6 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDmax | 0.01 | 0.03 | 0.01 | 0.5 | 0.01 | 0.03 | 0.01 | 0.06 | 0.72 | 0.02 | 3.5 | 0.02 | 0.05 | 0.29 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
Svevo | 0.02 b,c | 0.09 a–c | 0.10 e,f | 13.56 b–f | 0.10 a | 0.16 c,d | 0.07 b | 1.47 a | 14.98 c–e | 0.13 c–e | 44.93 a–d | 0.15 b–e | 0.66 e,f | 4.08 d–f | 0.08 g,h | 0.13 c–g | 0.08 f–j | 0.16 f–k | 0.06 h,i | 0.04 e–h |
Iride | 0.01 b,c | 0.06 c–e | 0.10 d,e | 12.53 g,h | 0.08 d–i | 0.17 a,b | 0.06 e,f | 0.89 c–e | 15.38 b–d | 0.10 g | 45.58 a–c | 0.12 h–k | 0.69 c–e | 4.17 c–e | 0.09 e–h | 0.14 c–e | 0.08 f–j | 0.17 e–i | 0.07 e–h | 0.04 g–i |
Odisseo | 0.01 b,c | 0.06 d,e | 0.09 f,g | 12.44 gh | 0.08 c–g | 0.14 e–h | 0.06 d–f | 1.00 b–e | 13.29 h–j | 0.12 c–g | 43.28 c–e | 0.12 i–k | 0.59 g | 4.67 a,b | 0.09 c–h | 0.14 c,d | 0.07 k | 0.17 e–i | 0.06 h,i | 0.04 g–i |
Monastir | 0.01 b,c | 0.07 c–e | 0.09 e–g | 14.41 ab | 0.07 e–k | 0.14 g,h | 0.06 e,f | 1.03 b–d | 13.75 g–j | 0.11 e–g | 42.28 d,e | 0.11 k | 0.67 d,e | 3.81 f–h | 0.09 d–h | 0.12 f,g | 0.08 g–j | 0.16 g–k | 0.07 c–f | 0.04 h,i |
Marco A. | 0.01 b,c | 0.06 d,e | 0.09 e–g | 13.14 e–h | 0.07 d–j | 0.16 c–e | 0.06 g | 0.82 de | 14.16 e–h | 0.11 f,g | 43.86 b–e | 0.12 j,k | 0.71 c,d | 3.28 j | 0.10 c–f | 0.12 e–g | 0.09 b,c | 0.14 j,k | 0.07 f–h | 0.05 e–h |
Aureo | 0.01 b,c | 0.06 e | 0.09 g,h | 13.02 f–h | 0.07 h–k | 0.16 c–f | 0.06 e,f | 1.02 b–d | 14.22 e–g | 0.11 e–g | 42.77 c–e | 0.14 c–g | 0.73 c | 4.00 d–g | 0.09 c–h | 0.15 c,d | 0.10 b,c | 0.17 e–i | 0.07 f–h | 0.04 e–h |
Saragolla | 0.01 b,c | 0.07 c–e | 0.10 e,f | 14.03 a–d | 0.07 f–k | 0.16 b,c | 0.07 b–d | 1.08 b–d | 13.96 f–h | 0.13 c–f | 43.75 c–e | 0.13 e–i | 0.62 f,g | 3.98 d–g | 0.10 b–e | 0.14 c–e | 0.08 h–k | 0.20 c,d | 0.07 d–f | 0.06 c,d |
Daurur | 0.01 b,c | 0.06 e | 0.08 h,i | 12.54 g,h | 0.07 f–k | 0.11 i | 0.06 f,g | 1.01 b–d | 14.35 e–g | 0.12 c–g | 43.11 c–e | 0.13 f–j | 0.65 e,f | 2.98 k | 0.09 e–h | 0.13 d–g | 0.08 i,k | 0.15 h–k | 0.06 i | 0.05 d–f |
Strongfield | 0.01 b,c | 0.07 c–e | 0.09 g,h | 14.16 a–d | 0.08 b–e | 0.15 d–g | 0.07 b | 1.13 b,c | 13.05 i,j | 0.12 d–g | 45.52 a–c | 0.15 b–d | 0.69 c–e | 3.59 h–j | 0.10 b–e | 0.15 c | 0.08 d–g | 0.18 d–g | 0.06 h,i | 0.05 c–e |
Simeto | 0.01 b,c | 0.07 c–e | 0.11 b,c | 12.35 h | 0.08 d–h | 0.17 b,c | 0.07 d–f | 0.95 c–e | 13.00 j | 0.13 c–f | 45.24 a–c | 0.14 d–i | 0.68 d,e | 4.44 b,c | 0.12 a,b | 0.15 c,d | 0.09 b–d | 0.19 c–e | 0.08 c–e | 0.04 f–i |
Neodur | 0.01 b,c | 0.07 c–e | 0.08 h,i | 14.26 a–c | 0.06 k,l | 0.15 d–g | 0.06 d–f | 0.99 b–e | 16.07 b | 0.11 f,g | 45.15 a–c | 0.13 g–k | 0.70 c–e | 2.96 k | 0.09 d–h | 0.13 c–g | 0.08 f–i | 0.16 f–j | 0.07 f–h | 0.03 i |
Creso | 0.01 c | 0.07 c–e | 0.10 d,e | 13.08 e–h | 0.07 g–k | 0.16 c,d | 0.07 b–e | 1.13 b,c | 14.80 d–f | 0.12 e–g | 44.40 a–e | 0.14 c–h | 0.58 g | 3.80 f–h | 0.08 f–h | 0.14 c,d | 0.06 l | 0.18 d–g | 0.06 i | 0.05 e–g |
Kronos | 0.01 b,c | 0.05 e | 0.08 i | 12.34 h | 0.07 i–k | 0.13 h | 0.06 e–g | 1.08 b–d | 15.46 b–d | 0.11 f,g | 46.60 a,b | 0.14 c–f | 0.78 b | 3.53 h–j | 0.09 d–h | 0.13 c–f | 0.09 b,c | 0.17 d–h | 0.08 c–f | 0.04 h,i |
Cappelli | 0.03 a | 0.09 a–c | 0.11 c,d | 13.86 a–f | 0.08 c–g | 0.18 a | 0.07 b,c | 1.12 b,c | 13.91 f–i | 0.14 b,c | 43.51 c–e | 0.13 f–j | 0.65 e,f | 3.83 f–h | 0.08 g,h | 0.14 c–f | 0.08 e–i | 0.19 c–f | 0.07 d–g | 0.07 b |
Trinakria | 0.01 b,c | 0.07 c–e | 0.13 a | 14.33 a–c | 0.08 c–f | 0.16 c–f | 0.07 c–f | 1.22 b | 14.34 e–g | 0.13 c–g | 42.09 e | 0.14 c–f | 0.60 g | 3.92 e–g | 0.08 g,h | 0.15 c | 0.07 j,k | 0.21 c | 0.07 e–h | 0.06 c |
Russello | 0.01 b,c | 0.07 c–e | 0.07 i | 13.47 c–f | 0.06 k,l | 0.18 a | 0.06 d–f | 0.82 d,e | 15.81 b,c | 0.12 c–g | 46.63 a,b | 0.12 i–k | 0.73 c | 3.69 g–i | 0.09 c–g | 0.12 f,g | 0.09 c–e | 0.14 k | 0.07 e–h | 0.03 i |
Haurani | 0.01 b,c | 0.07 c–e | 0.10 e,f | 13.06 e–h | 0.07 j,k | 0.19 a | 0.06 f,g | 0.91 c–e | 15.99 b | 0.12 c–g | 46.55 a,b | 0.13 g–k | 0.67 d,e | 3.45 i,j | 0.11 b–d | 0.13 c–g | 0.09 d–f | 0.15 h–k | 0.06 g–i | 0.03 i |
Kyperounda | 0.01 c | 0.07 c–e | 0.08 h,i | 12.51 g,h | 0.07 h–k | 0.11 i | 0.07 b–e | 0.92 c–e | 14.57 d–g | 0.13 c–f | 46.92 a | 0.13 f–j | 0.68 d,e | 2.86 k | 0.09 e–h | 0.13 c–g | 0.09 b,c | 0.15 h–k | 0.08 b–d | 0.04 f–i |
Kubanka | 0.01 bc | 0.05 e | 0.08 h,i | 13.92 a–e | 0.06 l | 0.18 a,b | 0.07 b–d | 1.04 b–d | 17.29 a | 0.12 d–g | 44.64 a–e | 0.13 f–j | 0.65 e,f | 3.38 i,j | 0.07 h | 0.11 g | 0.08 e–h | 0.15 i–k | 0.08 b,c | 0.04 g–i |
Tetra-ipk814 | 0.02 b | 0.10 a,b | 0.12 b,c | 14.64 a | 0.09 b | 0.18 a,b | 0.09 a | 1.06 b–d | 11.83 k | 0.16 a,b | 43.56 c–e | 0.16 a,b | 0.73 c | 4.28 c,d | 0.11 b,c | 0.26 a | 0.09 b,c | 0.29 a | 0.08 b–d | 0.05 d,e |
Tetra-ipk815 | 0.02 b,c | 0.10 a | 0.12 a,b | 14.50 a | 0.08 b–d | 0.17 b,c | 0.09 a | 1.03 b–d | 11.87 k | 0.17 a | 43.35 c–e | 0.17 a | 0.71 cd | 4.03 d–f | 0.11 b–d | 0.17 b | 0.10 b | 0.24 b | 0.09 b | 0.09 a |
AG189 | 0.01 b,c | 0.08 b–d | 0.09 e–g | 13.30 d–g | 0.09 b,c | 0.14 f–h | 0.07 b–d | 0.75 e | 11.53 k | 0.14 c,d | 44.84 a–e | 0.15 b,c | 1.08 a | 4.74 a | 0.13 a | 0.18 b | 0.26 a | 0.19 c–e | 0.14 a | 0.04 e–h |
SFA | MUFA | PUFA | ω6/ω3 | PUFA/SFA | UFA/SFA | AI | TI | |
---|---|---|---|---|---|---|---|---|
Svevo | 15.75 a | 16.03 d–g | 49.27 a | 10.90 c,d | 3.13 a,b | 4.17 c–g | 0.21 b–f | 0.35 b–g |
Iride | 14.09 a | 16.47 e–g | 49.97 a | 10.85 c,d | 3.55 b | 4.74 jk | 0.19 ab | 0.31 a |
Odisseo | 14.09 a | 14.24 a–c | 48.19 a | 9.21 a | 3.42 b | 4.45 f–k | 0.20 a–d | 0.31 a |
Monastir | 16.07 a | 14.78 b–d | 46.32 a | 11.02 c,d | 2.88 a,b | 3.82 a–c | 0.24 h–j | 0.39 g |
Marco Aurelio | 14.57 a | 15.27 c–e | 47.39 a | 13.23 f,g | 3.25 b | 4.32 d–i | 0.21 b–f | 0.35 b–g |
Aureo | 14.70 a | 15.34 c–f | 47.01 a | 10.60 b–d | 3.20 a,b | 4.26 d–h | 0.21 b–f | 0.34 a–e |
Saragolla | 15.83 a | 14.97 c–e | 48.03 a | 10.85 c,d | 3.03 a,b | 4.00 a–d | 0.23 g–i | 0.36 d–g |
Daurur | 14.16 a | 15.31 c–f | 46.34 a | 14.25 g,h | 3.27 b | 4.37 e–j | 0.21 b–f | 0.35 b–g |
Strongfield | 16.01 a | 14.11 a–c | 49.38 a | 12.54 e,f | 3.08 a,b | 3.98 a–d | 0.23 g–i | 0.38 e–g |
Simeto | 14.02 a | 14.09 a–c | 49.97 a | 10.13 a–c | 3.56 b | 4.59 h–k | 0.20 a–d | 0.31 a |
Neodur | 15.89 a | 17.13 g,h | 48.33 a | 15.13 h,i | 3.04 a | 4.14 b–f | 0.22 e–g | 0.38 f,g |
Creso | 14.91 a | 15.72 c–g | 48.44 a | 11.57 d,e | 3.25 b | 4.32 d–i | 0.21 b–f | 0.34 a–f |
Kronos | 14.06 a | 16.60 e–g | 50.36 a | 13.11 f,g | 3.58 b | 4.78 k | 0.19 a | 0.32 a,b |
Cappelli | 15.73 a | 14.98 c–e | 47.62 a | 11.19 c,d | 3.03 a,b | 4.00 a–e | 0.23 g–i | 0.37 d–g |
Trinakria | 16.32 a | 15.32 c–f | 46.28 a | 10.59 b–d | 2.84 a,b | 3.79 a,b | 0.24 h–j | 0.38 g |
Russello | 14.89 a | 16.95 f–h | 50.56 a | 12.56 e,f | 3.40 b | 4.55 g–k | 0.20 a–d | 0.33 a–d |
Haurani | 14.61 a | 17.07 g,h | 50.26 a | 13.40 f,g | 3.44 b | 4.63 h–k | 0.20 a–d | 0.33 a–d |
Kyperounda | 14.06 a | 15.61 c–g | 50.04 a | 16.20 i | 3.56 b | 4.69 i–k | 0.20 a–c | 0.34 a–d |
Kubanka | 15.56 a | 18.34 h | 48.26 a | 13.07 f,g | 3.10 a,b | 4.30 d–h | 0.21 b–f | 0.36 c–g |
Tetra-ipk814 | 16.72 a | 13.00 a | 48.15 a | 10.09 a–c | 2.88 a,b | 3.68 a | 0.25 j | 0.38 g |
Tetra-ipk815 | 16.43 a | 13.01 a | 47.75 a | 10.55 b–d | 2.91 a,b | 3.72 a | 0.25 j | 0.38 g |
AG189 | 14.82 a | 13.23 a,b | 49.90 a | 9.39 a,b | 3.37 b | 4.28 d–h | 0.22 e–g | 0.32 a,b |
Category | Accession Name | Country of Origin | Mega-Environment |
---|---|---|---|
DWC | Svevo | ITALY | Southern-Europe |
DWC | Iride | ITALY | Southern-Europe |
DWC | Odisseo | ITALY | Southern-Europe |
DWC | Monastir | FRANCE | Western-Europe |
DWC | Marco Aurelio | ITALY | Southern-Europe |
DWC | Aureo | ITALY | Southern-Europe |
DWC | Saragolla | ITALY | Southern-Europe |
DWC | Daurur | FRANCE | Western-Europe |
DWC | Strongfield | CANADA | Northern-America |
DWC | Simeto | ITALY | Southern-Europe |
DWC | Neodur | ITALY | Southern-Europe |
DWC | Creso | ITALY | Southern-Europe |
DWC | Kronos | US | Northern-America |
DWL | Cappelli | ITALY | Southern-Europe |
DWL | Trinakria | ITALY | Southern-Europe |
DWL | Russello_SG7 | ITALY | Southern-Europe |
DWL | Haurani | SYRIA | Western-Asia |
DWL | Kyperounda | Unknown | Unknown |
DWL | Kubanka-LD127 | KAZAKISTAN | Central-Asia |
DWL-TUR | Tetra-ipk814 | IRAQ | Western-Asia |
DWL-TUR | Tetra-ipk815 | RUSSIA | Eastern-Europe |
DWL-CAR | AG189 | GEORGIA | Western-Asia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandrioli, M.; Poggi, G.M.; Cai, G.; Faleri, C.; Maccaferri, M.; Tuberosa, R.; Aloisi, I.; Toschi, T.G.; Corneti, S. Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars. Plants 2024, 13, 1817. https://doi.org/10.3390/plants13131817
Mandrioli M, Poggi GM, Cai G, Faleri C, Maccaferri M, Tuberosa R, Aloisi I, Toschi TG, Corneti S. Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars. Plants. 2024; 13(13):1817. https://doi.org/10.3390/plants13131817
Chicago/Turabian StyleMandrioli, Mara, Giovanni Maria Poggi, Giampiero Cai, Claudia Faleri, Marco Maccaferri, Roberto Tuberosa, Iris Aloisi, Tullia Gallina Toschi, and Simona Corneti. 2024. "Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars" Plants 13, no. 13: 1817. https://doi.org/10.3390/plants13131817
APA StyleMandrioli, M., Poggi, G. M., Cai, G., Faleri, C., Maccaferri, M., Tuberosa, R., Aloisi, I., Toschi, T. G., & Corneti, S. (2024). Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars. Plants, 13(13), 1817. https://doi.org/10.3390/plants13131817