Multifunctional Adjuvants Affect Sulfonylureas with Synthetic Auxin Mixture in Weed and Maize Grain Yield
Abstract
1. Introduction
2. Results
2.1. Greenhouse Experiment
2.2. Field Experiment
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naeem, M.; Cheema, Z.A.; Ahmad, A.H.; Wahid, A.; Kamaran, M.; Arif, M. Weed dynamics in wheat canola intercropping systems. Chil. J. Agric. Res. 2012, 72, 434–439. [Google Scholar] [CrossRef]
- Landau, C.A.; Hager, A.G.; Williams, M.M., II. Diminishing weed control exacerbates maize yield loss to adverse weather. Glob. Chang. Biol. 2021, 27, 6156–6165. [Google Scholar] [CrossRef]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management. Front. Plant Sci. 2017, 8, 95. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Arif, I.A.; Khan, H.A. Modes of action of different classes of herbicides. In Herbicides, Physiology of Action, and Safety; IntechOpen Limited: London, UK, 2015. [Google Scholar]
- Comont, D.; Lowe, C.; Hull, R.; Crook, L.; Hicks, H.L.; Onkokesung, N.; Beffa, R.; Childs, D.Z.; Edwards, R.; Freckleton, R.P.; et al. Evolution of generalist resistance to herbicide mixtures reveals trade-off in resistance management. Nat. Commun. 2020, 11, 3086. [Google Scholar] [CrossRef]
- Daramola, O.S.; Johnson, W.G.; Jordan, D.L.; Chahal, G.S.; Devkota, P. Spray water quality and herbicide performance: A review. Weed Technol. 2023, 36, 758–767. [Google Scholar] [CrossRef]
- Neto, R.C.A.; Ulguim, A.R.; Barbieri, G.F.; Thomasi, R.M.; Bortolin, E.; Leichtweis, E.M.; Melo, A.A. pH and water hardness on the efficiency of auxin mimics herbicides. Cienc. Rural 2024, 54, e20230005. [Google Scholar] [CrossRef]
- Grey, T.L.; McCullough, P.E. Sulfonylurea herbicides’ fate in soil: Dissipation, mobility, and other processes. Weed Technol. 2012, 26, 579–581. [Google Scholar] [CrossRef]
- Schilder, A. Effect of Water pH on the Stability of Pesticides; Michigan State University Extension, Department of Plant Pathology: East Lansing, MI, USA, 2008; Available online: https://www.canr.msu.edu/news/effect_of_water_ph_on_the_stability_of_pesticides (accessed on 19 April 2024).
- Zhong, J.; Wu, S.; Chen, W.J.; Huang, Y.; Lei, Q.; Mishra, S.; Bhatt, P.; Chen, S. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. Chemosphere 2023, 326, 138390. [Google Scholar] [CrossRef]
- Rahman, A.; James, T.K.; Trolove, M.; Dowsett, C. Factors affecting the persistence of some residual herbicides in maize silage fields. N. Z. Plant Prot. 2011, 64, 125–132. [Google Scholar] [CrossRef]
- Piwowar, A. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. Environ. Sci. Pollut. Res. 2021, 28, 26628–26642. [Google Scholar] [CrossRef]
- Akhter, M.J.; Abbas, R.N.; Waqas, M.A.; Noor, M.A.; Arshad, M.A.; Mahboob, W.; Nadeem, F.; Azam, M.; Gull, U. Adjuvants improves the efficacy of herbicide for weed management in maize sown under altered sowing methods. J. Exp. Biol. Agric. Sci. 2017, 5, 22–30. [Google Scholar] [CrossRef]
- Singh, S.; Rana, M. A review on adjuvants: A herbicide activator. Int. J. Res. Anal. Rev. 2019, 6, 60–63. [Google Scholar]
- Tu, M.; Randall, J.M. Adjuvants. In Weed Control Methods Handbook; The Nature Conservancy 21. Adjuvants; TNC: Davis, CA, USA; pp. 1–24.
- Palma-Bautista, C.; Vazquez-Garcia, J.G.; Travlos, I.; Tatarida, A.; Kanatas, P.; Dominguez-Valenzeula, J.A.; De Prado, R. Effect of adjuvants on glyphosate effectiveness, retention, absorption, adsorption and translocation in Lolium rigidum and Conyza canadensis. Plants 2020, 9, 297. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Derksen, R.C.; Krause, C.R. Adjuvant effects on evaporation time and wetted areaof droplets on waxy leaves. ASABE 2010, 53, 13–20. [Google Scholar] [CrossRef]
- Kucharski, M.; Sadowski, J.; Domaradzki, K. Degradation rate of chloridazon in soil as influenced by adjuvants. J. Plant Prot. Res. 2012, 52, 114–117. [Google Scholar] [CrossRef]
- Pacanoski, Z. Herbicides and adjuvants. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; BoD—Books on Demand: Norderstedt, Germany, 2015; pp. 125–147. [Google Scholar]
- Mullin, C.A.; Fine, J.D.; Reynolds, R.D.; Frazier, M.T. Toxicological risks of agrochemical spray adjuvants: Organosilicone surfactants may not be safe. Front. Public Health 2016, 4, 92. [Google Scholar] [CrossRef]
- Surgan, M.; Condon, M.; Cox, C. Pesticide risk indicators: Unidentified inert ingredients compromise their integrity and utility. Environ. Manag. 2010, 45, 834–841. [Google Scholar] [CrossRef]
- Mesnage, R.; Antoniou, M.N. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front. Public Health 2018, 5, 361. [Google Scholar] [CrossRef]
- Wernecke, A.; Eckert, J.H.; Forster, R.; Kurlemann, N.; Odemer, R. Inert agricultural spray adjuvants may increase the adverse effects of selected insecticides on honey bees (Apis mellifera L.) under laboratory conditions. J. Plant Dis. Protect. 2022, 129, 93–105. [Google Scholar] [CrossRef]
- Bao, Z.; Wu, Y.; Liu, R.; Zhang, S.; Chen, Y.; Wu, T.; Gao, Y.; Zhang, C.; Du, F. Molecular selection and environmental evaluation of eco-friendly surfactants to efficiently reduce pesticide pollution. J. Clean. Prod. 2023, 416, 137954. [Google Scholar] [CrossRef]
- Lin, F.; Mao, Y.; Zhao, F.; Idris, A.L.; Liu, Q.; Zou, S.; Guan, X. Toward sustainable green adjuvants for microbial pesticides: Recent progress, upcoming challenges, and future perspectives. Microorganisms 2023, 11, 364. [Google Scholar] [CrossRef]
- Congreve, M.; Somervaille, A.; Betts, G.; Gordon, B.; Green, V.; Bugis, M. Adjuvants—Oils, Surfactants and Other Additives for Farm Chemicals Used in Grain Production, Revised 2019 ed.; Australian Government Grains Research & Development Corporation: Dulwich, Australia, 2019. [Google Scholar]
- Zabkiewicz, J. Adjuvants and herbicidal efficacy—Present status and future prospects. Weed Res. 2002, 40, 139–149. [Google Scholar] [CrossRef]
- Stock, D. Physicochemical properties of adjuvants: Values and applications. Weed Technol. 2009, 14, 798–806. [Google Scholar] [CrossRef]
- Song, Y.; Huang, Q.; Huang, G.; Liu, M.; Cao, L.; Li, F.; Zhao, P.; Cao, C. The effects of adjuvants on the wetting and deposition of insecticide solutions on hydrophobic wheat leaves. Agronomy 2022, 12, 2148. [Google Scholar] [CrossRef]
- Bagula, E.M.; Majaliwa, J.G.M.; Basamba, T.A.; Mondo, J.G.M.; Vanlauwe, B.; Gabiri, G.; Tumuhairwe, J.; Mushagalusa, G.N.; Musinguzi, P.; Akello, S.; et al. Water use efficiency of maize (Zea mays L.) crop under selected soil and water conservation practices along the slope gradient in Ruzizi Watershed, Eastern D.R. Congo. Land 2022, 11, 1833. [Google Scholar] [CrossRef]
- Huang, C.; Duiker, S.W.; Deng, L.; Fang, C.; Zeng, W. Influence of precipitation on maize yield in the Eastern United States. Sustainability 2015, 7, 5996–6010. [Google Scholar] [CrossRef]
- Sobiech, Ł.; Idziak, R.; Skrzypczak, G.; Szulc, P.; Grzanka, M. Biodiversity of weed flora in maize on lessive soil. Prog. Plant Prot. 2018, 58, 282–287. [Google Scholar]
- Nguyen, H.T.X.; Liebman, M. Weed community composition in simple and more diverse cropping systems. Front. Agron. 2022, 4, 848548. [Google Scholar] [CrossRef]
- Chwastek, G.; Idziak, R.; Waligóra, H. Biodiversity of weed community in maize in the Cieszyńskie Foothills. Prog. Plant Prot. 2020, 60, 290–298. [Google Scholar]
- Green, J.M.; Beestman, G.B. Recently patented and commercialized formulation and adjuvant technology. Crop. Prot. 2007, 26, 320–327. [Google Scholar] [CrossRef]
- Chuah, T.S.; Kaben, A.M.; Thye-San, C. Proper adjuvant selection to enhance the activity of triclopyr combined with metsulfuron on the control of Hedyotis verticillate. Weed Biol. Manag. 2009, 9, 179–184. [Google Scholar]
- Imoloame, E.O.; Omolaiye, J.O. Weed infestation, growth and yield of maize (Zea mays L.) as influenced by periods of weed interference. Adv. Crop. Sci. Technol. 2017, 5, 267. [Google Scholar]
- Kumar, A.; Dhaka, A.K.; Kumar, S.; Singh, S.; Punia, S.S. Weed management indices as affected by different weed control treatments in pigeon pea [Cajanus cajan (L.) Millsp.]. J. Pharmacog. Phytochem. 2019, 8, 3490–3494. [Google Scholar]
- Hammond, M.E.; Pokorný, R. Diversity of Tree Species in Gap Regeneration under Tropical Moist Semi-Deciduous Forest: An Example from Bia Tano Forest Reserve. Diversity 2020, 12, 301. [Google Scholar] [CrossRef]
- Łukasiewicz, S. A modification suggestion of the method of drawing the wet humid period in the Walter’s climate diagram. Badania Fizjol. Nad Pol. Zachodnią 2006, A 57, 95–99. [Google Scholar]
Herbicide | Rate | Adjuvant | ECHCG Control (%) | Average | ||
---|---|---|---|---|---|---|
pH | ||||||
4 | 7 | 9 | ||||
N+R+D | FR | none | 48 ± 5.2 ef | 48 ± 5.1 ef | 56 ± 5.0 de | 51 ± 3.4 D |
N+R+D | RR | none | 45 ± 8.3 ef | 37 ± 7.1 f | 42 ± 9.0 f | 42 ± 6.2 E |
N+R+D | RR | +TEST-1 | 68 ± 6.4 bc | 83 ± 4.1 a | 76 ± 8.1 abc | 76 ± 5.3 AB |
+TEST-2 | 81 ± 2.4 ab | 82 ± 2.4 a | 80 ± 4.1 ab | 81 ± 1.9 A | ||
+TEST-3 | 80 ± 1.2 ab | 77 ± 11.1 ab | 80 ± 2.3 ab | 79 ± 4.8 A | ||
+MSO | 73 ± 2.0 bc | 81 ± 1.1 ab | 79 ± 1.1 ab | 78 ± 2.1 AB | ||
+S | 66 ± 7.3 bc | 71 ± 3.6 abc | 63 ± 5.0 cd | 67 ± 3.9 C | ||
Average | 66 ± 14.4 A | 68 ± 18.2 A | 68 ± 14.7 A | - |
Year | Herbicide | Rate | Adjuvant | CHEAL | ECHCG | GERPU | POLCO | VIOAR |
---|---|---|---|---|---|---|---|---|
WCE (%) | ||||||||
2017 | Untreated check (g m–2) | 3638 | 143 | 2258 | 572 | 87 | ||
N+R+D 1 | FR | - | 84 ± 2.9 b | 100 ± 0.0 a | 84 ± 3.9 a | 89 ± 3.5 a | 74 ± 3.2 a | |
N+R+D | RR | - | 65 ± 6.9 c | 95 ± 2.9 a | 64 ± 1.7 b | 83 ± 1.3 a | 67 ± 7.1 a | |
N+R+D | RR | +TEST-1 | 92 ± 3.9 a | 100 ± 0.0 a | 74 ± 3.4 ab | 91 ± 1.8 a | 78 ± 2.4 a | |
+TEST-2 2 | - | - | - | - | - | |||
+TEST-3 | 95 ± 1.1 a | 100 ± 0.0 a | 73 ± 3.0 ab | 90 ± 0.8 a | 72 ± 4.6 a | |||
+MSO | 95 ± 1.9 a | 100 ± 0.0 a | 71 ± 3.8 ab | 86 ± 1.4 a | 64 ± 2.5 a | |||
+S | 82 ± 3.8 b | 100 ± 0.0 a | 68 ± 2.4 ab | 85 ± 3.3 a | 615.4 a | |||
2018 | Untreated check (g m–2) | 1066 | 253 | 11 | 31 | 28 | ||
N+R+D 1 | FR | - | 81 ± 6.7 b | 81 ± 7.1 b | 100 ± 0.0 a | 86 ± 7.6 a | 100 ± 0.0 a | |
N+R+D | RR | - | 66 ± 12.2 c | 61 ± 4.5 c | 100 ± 0.0 a | 80 ± 7.7 a | 97 ± 3.7 a | |
N+R+D | RR | +TEST-1 | 93 ± 3.4 a | 99 ± 0.7 a | 97 ± 6.5 a | 81 ± 5.4 a | 98 ± 2.4 a | |
+TEST-2 2 | 96 ± 2.2 a | 98 ± 1.0 a | 94 ± 6.9 a | 92 ± 5.6 a | 100 ± 0.0 a | |||
+TEST-3 | 90 ± 1.8 ab | 100 ± 0.0 a | 100 ± 0.0 a | 86 ± 5.1 a | 100 ± 0.0 a | |||
+MSO | 94 ± 3.4 a | 99 ± 1.1 a | 100 ± 0.0 a | 81 ± 2.1 a | 100 ± 0.0 a | |||
+S | 79 ± 8.8 b | 93 ± 3.4 a | 97 ± 6.4 a | 77 ± 5.3 a | 91 ± 6.7 b | |||
2019 | Untreated check (g m–2) | 1746 | 171 | 12 | 37 | 10 | ||
N+R+D 1 | FR | - | 86 ± 3.2 b | 85 ± 8.8 ab | 94 ± 6.6 ab | 100 ± 0.0 a | 100 ± 0.0 a | |
N+R+D | RR | - | 60 ± 11.2 c | 77 ± 7.5 b | 67 ± 5.8 c | 85 ± 3.8 b | 97 ± 6.8 a | |
N+R+D | RR | +TEST-1 | 99 ± 1.4 a | 96 ± 2.3 a | 87 ± 5.5 b | 96 ± 5.3 a | 98 ± 4.1 a | |
+TEST-2 2 | 99 ± 0.9 a | 90 ± 8.1 ab | 100 ± 0.0 a | 94 ± 6.6 a | 100 ± 0.0 a | |||
+TEST-3 | 99 ± 1.1 a | 90 ± 2.0 ab | 86 ± 4.2 b | 96 ± 8.1 a | 100 ± 0.0 a | |||
+MSO | 99 ± 0.9 a | 94 ± 5.5 a | 90 ± 11.7 ab | 98 ± 2.1 a | 100 ± 0.0 a | |||
+S | 96 ± 2.9 a | 88 ± 11.5 ab | 90 ± 3.7 ab | 89 ± 15.8 ab | 100 ± 0.0 a |
Herbicide | Rate | Adjuvant | Grain Yield (t ha–1) | TKW (g) | ||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |||
Untreated check | - | - | 6.0 ± 1.58 c | 2.5 ± 0.86 b | 2.2 ± 1.05 c | 276 ± 20.5 ab | 238 ± 11.1 c | 248 ± 22.8 c |
N+R+D | FR | none | 11.7 ± 0.45 a | 4.2 ± 0.16 b | 7.1 ± 1.13 b | 296 ± 14.6 ab | 247 ± 12.2 bc | 287 ± 18.7 b |
N+R+D | RR | none | 9.3 ± 0.91 b | 3.9 ± 0.86 b | 7.1 ± 0.92 b | 261 ± 12.6 b | 245 ± 16.2 bc | 271 ± 17.5 b |
N+R+D | RR | +TEST-1 | 12.5 ± 0.22 a | 8.3 ± 1.64 a | 10.7 ± 1.05 a | 306 ± 10.2 a | 270 ± 14.7 ab | 321 ± 6.1 a |
+TEST-2 | - | 7.8 ± 2.00 a | 9.2 ± 0.71 ab | - | 289 ± 19.0 a | 324 ± 16.4 a | ||
+TEST-3 | 12.4 ± 0.21 a | 7.4 ± 2.34 a | 10.4 ± 1.52 a | 308 ± 10.3 a | 276 ± 8.0 ab | 314 ± 7.3 a | ||
+MSO | 11.7 ± 0.21 a | 7.6 ± 1.26 a | 10.9 ± 0.80 a | 290 ± 13.3 ab | 275 ± 14.3 ab | 325 ± 10.0 a | ||
+S | 12.0 ± 0.39 a | 6.6 ± 1.25 a | 11.1 ± 0.92 a | 298 ± 14.7 a | 283 ± 10.8 a | 320 ± 5.9 a |
Type of Test | TEST-2 | TEST-3 |
---|---|---|
IC50 (72 h)—OECD 201 1 | 3.157 mg L–1 | ˃100 mg L–1 |
LOEC 1 (72 h) | 2.92 mg L–1 | - |
NOEC 1 (72 h) | 1.47 mg L–1 | - |
EC50 (48 h)—OECD 202 2 | ˃100 mg L–1 | ˃100 mg L–1 |
LC50 (96 h)—OECD 203 3 | ˃100 mg L–1 | ˃100 mg L–1 |
NOED—OECD 213 4 | ˃100 µg L–1 | ˃100 µg L–1 |
NOED—OECD 214 4 | ˃100 µg L–1 | ˃100 µg L–1 |
SB—OECD 301 | 72.9 ± 2.2 | 88.1 ± 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idziak, R.; Waligóra, H.; Majchrzak, L.; Szulc, P. Multifunctional Adjuvants Affect Sulfonylureas with Synthetic Auxin Mixture in Weed and Maize Grain Yield. Plants 2024, 13, 1480. https://doi.org/10.3390/plants13111480
Idziak R, Waligóra H, Majchrzak L, Szulc P. Multifunctional Adjuvants Affect Sulfonylureas with Synthetic Auxin Mixture in Weed and Maize Grain Yield. Plants. 2024; 13(11):1480. https://doi.org/10.3390/plants13111480
Chicago/Turabian StyleIdziak, Robert, Hubert Waligóra, Leszek Majchrzak, and Piotr Szulc. 2024. "Multifunctional Adjuvants Affect Sulfonylureas with Synthetic Auxin Mixture in Weed and Maize Grain Yield" Plants 13, no. 11: 1480. https://doi.org/10.3390/plants13111480
APA StyleIdziak, R., Waligóra, H., Majchrzak, L., & Szulc, P. (2024). Multifunctional Adjuvants Affect Sulfonylureas with Synthetic Auxin Mixture in Weed and Maize Grain Yield. Plants, 13(11), 1480. https://doi.org/10.3390/plants13111480