The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity
Abstract
1. Introduction
2. Cd Uptake
3. Hyperaccumulators and Non-Hyperaccumulators
4. The Effect of Cd on Gene Expression in Plants
4.1. ATP-Binding Cassette Transporter Gene Family
4.2. PCR Gene Family
4.3. ZIP Gene Family
4.4. CDF/MTP Gene Family
4.5. NRAMP Gene Family
4.6. ACS and ACO Multigene Family
4.7. HIPP/HPP Gene Family
4.8. PCs Gene Family
4.9. MT Gene Family
4.10. Antioxidant Genes
4.11. HMA Gene Family
5. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| ACO | precursor 1-aminocyclopropane-1-carboxylic acid oxidase | 
| ACS | precursor 1-aminocyclopropane-1-carboxylic acid synthase | 
| APX | ascorbate peroxidase | 
| ASC | ascorbic acid | 
| bHLH | basic helix-loop-helix | 
| bZIP | basic leucine zipper | 
| CAT | catalase | 
| Cd | cadmium | 
| CDF/MTS | metal tolerance protein | 
| ERFs | ethylene response factors | 
| ERP | ethylene-responsive factor | 
| GSH | glutathione | 
| GSSG | oxidised glutathione | 
| GST | glutathione S-transferase | 
| HIPPs/HPP | heavy metal-associated isoprenylated plant proteins | 
| HMA | heavy metal ATPase | 
| IAA | indole-3-acetic acid | 
| JA | jasmonic acid | 
| MAPK | mitogen-activated protein kinase | 
| MTP | metal tolerance protein | 
| MTs | metalothionein | 
| MYB | myeloblastosis | 
| NRAMP | Natural resistance associated macrophage protein | 
| PCR | cadmium resistance family | 
| PCs | phytochelatin synthases | 
| POD | class III peroxidase | 
| ROS | reactive oxygen species | 
| SOD | superoxide dismutase | 
| ZIP | iron-regulated transporter-like protein | 
References
- Kim, Y.Y.; Yang, Y.Y.; Lee, Y. Pb and Cd uptake in rice roots. Physiol. Plant. 2002, 116, 368–372. [Google Scholar] [CrossRef]
 - Sanità di Toppi, L.; Gabbrielli, R. Response to Cadmium in Higher Plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
 - Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K. Toxicological Profile for Cadmium; Agency for Toxic Substance and Disease Registry: Atlanta, Georgia, 2012; pp. 2–6. [Google Scholar]
 - Hutton, M. Sources of cadmium in the environment. Ecotoxicol. Environ. Saf. 1983, 7, 9–24. [Google Scholar] [CrossRef]
 - Hayat, M.T.; Nauman, M.; Nazir, N.; Ali, S.; Bangash, N. Chapter 7-Environmental Hazards of Cadmium: Past, Present, and Future. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 163–183. ISBN 978-0-12-814864-8. [Google Scholar] [CrossRef]
 - Asghar, M.; Habib, S.; Zaman, W.; Hussain, S.; Ali, H.; Saqib, S. Synthesis and Characterization of Microbial Mediated Cadmium Oxide Nanoparticles. Microsc. Res. Tech. 2020, 83, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
 - Sakthivadivel, D.; Balaji, K.; Dsilva Winfred Rufuss, D.; Iniyan, S.; Suganthi, L. Chapter 1-Solar Energy Technologies: Principles and Applications. In Renewable-Energy-Driven Future; Ren, J., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–42. ISBN 978-0-12-820539-6. [Google Scholar]
 - Haider, F.U.; Liqun, C.; Coulter, A.J.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
 - Gong, Z.; Duan, Y.; Liu, D.; Zong, Y.; Zhang, D.; Shi, X.; Hao, X.; Li, P. Physiological and Transcriptome Analysis of Response of Soybean (Glycine max) to Cadmium Stress under elevated CO2 concentration. J. Hazard. Mater. 2023, 448, 130950. [Google Scholar] [CrossRef]
 - El-Sappah, A.H.; Abbas, M.; Rather, S.A.; Wani, S.H.; Soaud, N.; Noor, Z.; Qiulan, H.; Eldomiaty, A.S.; Mir, R.R.; Li, J. Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein (MTP) Gene Family in Soybean (Glycine max) under Heavy Metal Stress. Mol. Biol. Rep. 2023, 50, 2975–2990. [Google Scholar] [CrossRef]
 - El-Okkiah, S.A.F.; El-Tahan, A.M.; Ibrahim, O.M.; Taha, M.A.; Korany, S.M.; Alsherif, E.A.; AbdElgawad, H.; Abo Sen, E.Z.F.; Sharaf-Eldin, M.A. Under Cadmium Stress, Silicon Has a Defensive Effect on the Morphology, Physiology, and Anatomy of Pea (Pisum sativum L.) Plants. Front. Plant Sci. 2022, 13, 997475. [Google Scholar] [CrossRef]
 - Kintlová, M.; Vrána, J.; Hobza, R.; Blavet, N.; Hudzieczek, V. Transcriptome Response to Cadmium Exposure in Barley (Hordeum vulgare L.). Front. Plant Sci. 2021, 12, 629089. [Google Scholar] [CrossRef]
 - Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy Metal Stress and Responses in Plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
 - Memon, A.R. Metal Hyperaccumulators: Mechanisms of Hyperaccumulation and Metal Tolerance. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 3, pp. 239–268. ISBN 978-3-319-40148-5. [Google Scholar]
 - Pacenza, M.; Muto, A.; Chiappetta, A.; Mariotti, L.; Talarico, E.; Picciarelli, P.; Picardi, E.; Bruno, L.; Bitonti, M.B. In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Sci. Rep. 2021, 11, 10965. [Google Scholar] [CrossRef]
 - Xiang, C.; Oliver, D.J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 1998, 10, 1539–1550. [Google Scholar] [CrossRef]
 - Zheng, X.; Chen, L.; Li, X. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Bot. Stud. 2018, 59, 22. [Google Scholar] [CrossRef]
 - Sheng, Y.; Yan, X.; Huang, Y.; Han, Y.; Zhang, C.; Ren, Y.; Fan, T.; Xiao, F.; Liu, Y.; Cao, S. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ. 2019, 42, 891–903. [Google Scholar] [CrossRef] [PubMed]
 - Fu, X.-Z.; Tong, Y.-H.; Zhou, X.; Ling, L.-L.; Chun, C.-P.; Cao, L.; Zeng, M.; Peng, L.-Z. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Gene 2017, 629, 1–8. [Google Scholar] [CrossRef] [PubMed]
 - Thomine, S.; Wang, R.; Ward, J.M.; Crawford, N.M.; Schroeder, J.I. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA 2000, 97, 4991–4996. [Google Scholar] [CrossRef] [PubMed]
 - Eriksson, J.E. The Influence of PH, Soil Type and Time on Adsorption and Uptake by Plants of Cd Added to the Soil. Water Air Soil Pollut. 1989, 48, 317–335. [Google Scholar] [CrossRef]
 - Pasricha, S.; Mathur, V.; Garg, A.; Lenke, S.; Verma, K.; Agarwal, S. Molecular Mechanisms Underlying Heavy Metal Uptake, Translocation and Tolerance in Hyperaccumulators analysis: Heavy Metal Tolerance in Hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
 - Qin, L.; Han, P.; Chen, L.; Walk, C.T.; Li, Y.; Hu, X.; Xie, L.; Liao, H.; Liao, X. Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine max L.). Front. Plant Sci. 2017, 8, 1436. [Google Scholar] [CrossRef]
 - Yang, J.; Li, L.; Zhang, X.; Wu, S.; Han, X.; Li, X.; Xu, J. Comparative Transcriptomics Analysis of Roots and Leaves under Cd Stress in Calotropis gigantea L. Int. J. Mol. Sci. 2022, 23, 3329. [Google Scholar] [CrossRef]
 - Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in Plants: Uptake, Toxicity, and Its Interactions with Selenium Fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef] [PubMed]
 - Song, Y.; Jin, L.; Wang, X. Cadmium Absorption and Transportation Pathways in Plants. Int. J. Phytoremediation 2017, 19, 133–141. [Google Scholar] [CrossRef] [PubMed]
 - Abedi, T.; Mojiri, A. Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef] [PubMed]
 - Sandeep, G.; Vijayalatha, K.R.; Anitha, T. Heavy Metals and Its Impact in Vegetable Crops. Int. J. Chem. Stud. 2019, 7, 1612–1621. [Google Scholar]
 - Rascio, N.; Navari-Izzo, F. Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
 - Urano, K.; Kurihara, Y.; Seki, M.; Shinozaki, K. ‘Omics’ Analyses of Regulatory Networks in Plant Abiotic Stress Responses. Curr. Opin. Plant Biol. 2010, 13, 132–138. [Google Scholar] [CrossRef]
 - Baker, A.J.M.; Brooks, R.R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
 - Reeves, R.D.; Baker, A.J.; Jaffré, M.T.; Erskine, P.D.; Echevarria, G.; Van der Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef]
 - Phaenark, C.; Pokethitiyook, P.; Kruatrachue, M.; Ngernsansaruay, C. Cd and Zn Accumulation in Plants from the Padaeng Zinc Mine Area. Int. J. Phytoremediation 2009, 11, 479–495. [Google Scholar] [CrossRef]
 - Sun, Y.; Zhou, Q.; Wang, L.; Liu, W. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J. Hazard. Mater. 2009, 161, 808–814. [Google Scholar] [CrossRef]
 - Kubota, H.; Takenaka, C. Field Note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int. J. Phytoremediation 2003, 5, 197–201. [Google Scholar] [CrossRef] [PubMed]
 - Reeves, R.D. Hyperaccumulation of trace elements by plants. In Phytoremediation of Metal-Contaminated Soils; Morel, J.L., Echevarria, G., Goncharova, N., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 68, pp. 25–52. [Google Scholar]
 - Wei, S.; Zhou, Q.X. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting (5 pp). Environ. Sci. Pollut. Res. 2006, 13, 151–155. [Google Scholar] [CrossRef]
 - Liu, H.; Zhao, H.; Wu, L.; Zhao, F.-J.; Xu, W. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol. 2017, 215, 687–698. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, S.; Chen, M.; Li, T.; Xu, X.; Deng, L. A Newly Found Cadmium Accumulator-Malva sinensis Cavan. J. Hazard. Mater. 2010, 173, 705–709. [Google Scholar] [CrossRef] [PubMed]
 - Wei, S.; Zhou, Q.; Wang, X.; Zhang, K.; Guo, G. A newly discovered Cd-hyperaccumulator Solatium nigrum L. Chin. Sci. Bull. 2005, 50, 33–38. [Google Scholar] [CrossRef]
 - Liu, W.; Shu, W.; Lan, C. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin. Sci. Bull. 2004, 49, 29–32. [Google Scholar] [CrossRef]
 - Ng, C.W.W.; So, P.S.; Wong, F.T.J.; Lau, Y.S. Intercropping of Pinellia ternata (herbal plant) with Sedum alfredii (Cd-hyperaccumulator) to reduce soil cadmium (Cd) absorption and improve yield. Environ. Pollut. 2023, 318, 120930. [Google Scholar] [CrossRef]
 - Singh, R.; Jha, A.B.; Misra, A.N.; Sharma, P. Chapter 13-Adaption Mechanisms in Plants Under Heavy Metal Stress Conditions During Phytoremediation. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 329–360. ISBN 978-0-12-813912-7. [Google Scholar]
 - Memon, A.R.; Aktoprakligil, D.; Özdemir, A.; Vertii, A. Heavy metal accumulation and detoxification mechanisms in plants. Turk. J. Bot. 2001, 25, 111–121. [Google Scholar]
 - Memon, A.R.; Yatazawa, M. Chemical nature of manganese in the leaves of manganese accumulator plants. Soil Sci. Plant Nutr. 1982, 28, 401–412. [Google Scholar] [CrossRef]
 - Memon, A.R. Heavy metal–induced gene expression in plants. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–173. ISBN 978-3-030-41552-5. [Google Scholar]
 - Ijaz, M.; Rasul, B.; Zaib, P.; Masoud, M.S.; Zubair, M.; Iqbal, M.; Mahmood-ur-Rahman. Chapter 21-Genetics of Metal Hyperaccumulation in Plants. In Handbook of Bioremediation; Hasanuzzaman, M., Prasad, M.N.V., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 329–340. ISBN 978-0-12-819382-2. [Google Scholar]
 - Talke, I.N.; Hanikenne, M.; Kramer, U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol. 2006, 142, 148–167. [Google Scholar] [CrossRef]
 - Mishra, S.; Mishra, A.; Küpper, H. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant Sci. 2017, 8, 835. [Google Scholar] [CrossRef] [PubMed]
 - Wojas, S.; Clemens, S.; Hennih, J.; Sklodowska, A.; Kopera, E.; Schat, H.; Bal, W.; Antosiewicz, D.M. Overexpression of phytochelatin synthase in tobacco: Distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J. Exp. Bot. 2008, 59, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
 - Wang, F.; Tan, H.; Han, J.; Zhang, Y.; He, X.; Ding, Y.; Chen, Z.; Zhu, C. A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice. Environ. Sci. Eur. 2019, 31, 82. [Google Scholar] [CrossRef]
 - Chen, H.; Li, Y.; Ma, X.; Guo, L.; He, Y.; Ren, Z.; Kuang, Z.; Zhang, X.; Zhang, Z. Analysis of Potential Strategies for Cadmium Stress Tolerance Revealed by Transcriptome Analysis of Upland Cotton. Sci. Rep. 2019, 9, 86. [Google Scholar] [CrossRef]
 - Wu, M.; Luo, Q.; Liu, S.; Zhai, Y.; Long, Y.L.; Pan, Y. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol. Environ. Saf. 2018, 162, 35–41. [Google Scholar] [CrossRef]
 - Sun, L.; Wang, J.; Song, K.; Sun, Y.; Qin, Q.; Xue, Y. Transcriptome Analysis of Rice (Oryza sativa L.) Shoots Responsive to Cadmium Stress. Sci. Rep. 2019, 9, 10177. [Google Scholar] [CrossRef] [PubMed]
 - Cheng, D.; Tan, M.; Yu, H.; Li, L.; Thu, D.; Chen, Y.; Jiang, M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genom. 2018, 19, 709. [Google Scholar] [CrossRef]
 - DalCorso, G.; Farinati, S.; Furini, A. Regulatory networks of cadmium stress in plants. Plant Signal. Behav. 2010, 5, 663–667. [Google Scholar] [CrossRef]
 - Van Den Brûle, S.; Smart, C.C. The plant PDR family of ABC transporters. Planta 2002, 216, 95–106. [Google Scholar] [CrossRef]
 - Schellingen, K.; Van Der Straeten, D.; Vandenbussche, F.; Prinsen, E.; Remans, T.; Vangronsveld, J.; Cuypers, A. Cadmium-Induced Ethylene Production and Responses in Arabidopsis thaliana Rely on ACS2 and ACS6 Gene Expression. BMC Plant Biol. 2014, 14, 214. [Google Scholar] [CrossRef]
 - Wu, X.; Han, Y.; Zhu, X.; Shah, A.; Wang, W.; Sheng, Y.; Fan, T.; Cao, S. Negative regulation of cadmium tolerance in Arabidopsis by MMDH2. Plant Mol. Biol. 2019, 101, 507–516. [Google Scholar] [CrossRef] [PubMed]
 - Guan, Z.; Chai, T.; Zhang, Y.; Xu, J.; Wei, W. Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 2009, 76, 623–630. [Google Scholar] [CrossRef] [PubMed]
 - Pan, C.; Lua, H.; Yua, J.; Liua, J.; Liuc, Y.; Yana, C.H. Identification of Cadmium-responsive Kandelia obovata SOD family genes and response to Cd toxicity. Environ. Exp. Bot. 2019, 162, 230–238. [Google Scholar] [CrossRef]
 - Chen, J.; Yang, L.; Yan, X.; Liu, Y.; Wang, R.; Fan, T.; Ren, Y.; Tang, X.; Xiao, F.; Liu, Y.; et al. Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis. Plant Physiol. 2016, 171, 707–719. [Google Scholar] [CrossRef]
 - Zhou, L.; Yang, G.; Sun, H.; Tang, J.; Yang, J.; Wang, Y.; Garran, T.A.; Guo, L. Effects of Different Doses of Cadmium on Secondary Metabolites and Gene Expression in Artemisia annua L. Front. Med. 2017, 11, 137–146. [Google Scholar] [CrossRef]
 - Santoro, D.F.; Sicilia, A.; Testa, G.; Cosento, S.L.; Roberta Lo Piero, A. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. BMC Genom. 2022, 23, 427. [Google Scholar] [CrossRef]
 - DalCorso, G.; Farinati, S.; Maistri, S.; Furini, A. How plants cope with cadmium: Staking all on metabolism and gene expression. J. Integr. Plant Biol. 2008, 50, 1268–1280. [Google Scholar] [CrossRef]
 - Syed, R.; Kapoor, D.; Bhat, A.A. Heavy Metal Toxicity in Plants: A Review. Plant Arch. 2018, 18, 1229–1238. [Google Scholar]
 - Foyer, C.H.; Lopez-Delgado, H.; Dat, F.J.; Scott, M.I. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 1997, 100, 241–254. [Google Scholar] [CrossRef]
 - Fan, P.; Wu, L.; Wang, Q.; Wang, Y.; Luo, H.; Song, J.; Yang, M.; Yao, H.; Chen, S. Physiological and Molecular Mechanisms of Medicinal Plants in Response to Cadmium Stress: Current Status and Future Perspective. J. Hazard. Mater. 2023, 450, 131008. [Google Scholar] [CrossRef]
 - Romero-Puertas, M.C.; Corpas, F.J.; Rodríguez-Serrano, M.; Gómez, M.; del Río, L.A.; Sandalio, L.M. Differential Expression and Regulation of Antioxidative Enzymes by Cadmium in Pea Plants. J. Plant Physiol. 2007, 164, 1346–1357. [Google Scholar] [CrossRef] [PubMed]
 - Chaoui, A.; Mazhoudi, S.; Ghorbal, M.H.; El Ferjani, E. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 1997, 127, 139–147. [Google Scholar] [CrossRef]
 - Sharma, S.S.; Dietz, K.-J.; Mimura, T. Vacuolar Compartmentalization as Indispensable Component of Heavy Metal Detoxification in Plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
 - Hu, X.; Li, T.; Xu, W.; Chai, Y. Distribution of cadmium in subcellular fraction and expression difference of its transport genes among three cultivars of pepper. Ecotoxicol. Environ. Saf. 2021, 216, 112182. [Google Scholar] [CrossRef]
 - Zhang, J.; Zhu, Y.; Yu, L.; Yang, M.; Zou, X.; Yin, C.H.; Lin, Y. Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.). Cells 2022, 11, 569. [Google Scholar] [CrossRef]
 - Li, S.; Han, X.; Lu, Z.; Qiu, W.; Yu, M.; Li, H.; He, Z.; Zhuo, R. MAPK cascades and transcriptional factors: Regulation of heavy metal tolerance in plants. Int. J. Mol. Sci. 2022, 23, 4463. [Google Scholar] [CrossRef]
 - Liptáková, Ľ.; Demecsová, L.; Valentovičová, K.; Zelinová, V.; Tamás, L. Early Gene Expression Response of Barley Root Tip to Toxic Concentrations of Cadmium. Plant Mol. Biol. 2022, 108, 145–155. [Google Scholar] [CrossRef]
 - Han, Y.; Fan, T.; Zhu, X.; Wu, X.; Ouyang, J.; Jiang, L.; Cao, S. WRKY12 Represses GSH1 Expression to Negatively Regulate Cadmium Tolerance in Arabidopsis. Plant Mol. Biol. 2019, 99, 149–159. [Google Scholar] [CrossRef]
 - Li, G.-Z.; Zheng, Y.-X.; Liu, T.-H.; Liu, J.; Kang, G.-Z. WRKY74 regulates cadmium tolerance through glutathione-dependent pathway in wheat. Environ. Sci. Pollut. Res. 2022, 29, 68191–68201. [Google Scholar] [CrossRef]
 - Zheng, T.; Lu, X.; Yang, F.; Zhang, D. Synergetic Modulation of Plant Cadmium Tolerance via MYB75-Mediated ROS Homeostasis and Transcriptional Regulation. Plant Cell Rep. 2022, 41, 1515–1530. [Google Scholar] [CrossRef]
 - Sterckeman, T.; Thomine, S. Mechanisms of cadmium accumulation in plants. Crit. Rev. Plant Sci. 2020, 39, 322–359. [Google Scholar] [CrossRef]
 - Gupta, D.K.; Vandenhove, H.; Inouhe, M. Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In Heavy Metal Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 73–94. [Google Scholar] [CrossRef]
 - Rono, J.K.; Sun, D.; Yang, Z.M. Metallochaperones: A Critical Regulator of Metal Homeostasis and Beyond. Gene 2022, 822, 146352. [Google Scholar] [CrossRef]
 - Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef] [PubMed]
 - Xu, L.; Tian, S.; Hu, Y.; Zhao, J.; Ge, J.; Lu, L. Cadmium Contributes to Heat Tolerance of a Hyperaccumulator Plant Species Sedum alfredii. J. Hazard. Mater. 2023, 441, 129840. [Google Scholar] [CrossRef] [PubMed]
 - Tan, M.; Cheng, D.; Yang, Y.; Zhang, G.; Qin, M.; Chen, J.; Chen, Y.; Jiang, M. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biol. 2017, 17, 194. [Google Scholar] [CrossRef]
 - Dahuja, A.; Kumar, R.R.; Sakhare, A.; Watts, A.; Singh, B.; Goswami, S.; Sachdev, A.; Praveen, S. Role of ATP-Binding Cassette Transporters in Maintaining Plant Homeostasis under Abiotic and Biotic Stresses. Physiol. Plant 2021, 171, 785–801. [Google Scholar] [CrossRef]
 - Lin, Y.-F.; Aarts, M.G.M. The Molecular Mechanism of Zinc and Cadmium Stress Response in Plants. Cell. Mol. Life Sci. 2012, 69, 3187–3206. [Google Scholar] [CrossRef]
 - Kim, D.-Y.; Bover, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef]
 - Song, W.-Y.; Hörtensteiner, S.; Tomioka, R.; Lee, Y.; Martinoia, E. Common Functions or Only Phylogenetically Related? The Large Family of PLAC8 Motif-Containing/PCR Genes. Mol. Cells 2011, 31, 1–7. [Google Scholar] [CrossRef]
 - Lin, Y.; Gao, X.; Zhao, J.; Zhang, J.; Chen, S.; Lu, L. Plant Cadmium Resistance 2 (SaPCR2) facilitates cadmium efflux in the roots of hyperaccumulator Sedum alfredii Hance. Front. Plant Sci. 2020, 11, 568887. [Google Scholar] [CrossRef]
 - Wang, F.; Wang, M.; Liu, Z.; Shi, Y.; Han, T.; Ye, Y.; Gong, N.; Sun, J.; Zhu, C. Different Responses of Low Grain-Cd-Accumulating and High Grain-Cd-Accumulating Rice Cultivars to Cd Stress. Plant Physiol. Biochem. 2015, 96, 261–269. [Google Scholar] [CrossRef]
 - Hu, X.; Wang, S.; Zhang, H.; Zhang, H.; Feng, S.; Qiao, K.; Lv, F.; Gong, S.; Zhou, A. Plant Cadmium Resistance 6 from Salix linearistipularis (SlPCR6) Affects Cadmium and Copper Uptake in Roots of Transgenic Populus. Ecotoxicol. Environ. Saf. 2022, 245, 114116. [Google Scholar] [CrossRef]
 - Nakanishi, H.; Ogawa, I.; Ishimaru, Y.; Mori, S.; Nishizawa, N.K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 2006, 52, 464–469. [Google Scholar] [CrossRef]
 - Song, J.; Feng, S.J.; Chen, J.; Zhao, W.T.; Yang, Z.M. A Cadmium Stress-Responsive Gene AtFC1 Confers Plant Tolerance to Cadmium Toxicity. BMC Plant Biol. 2017, 17, 187. [Google Scholar] [CrossRef]
 - Zhang, C.; Tong, C.; Cao, L.; Zheng, P.; Tang, X.; Wang, L.; Miao, M.; Liu, Y.; Cao, S.; Zheng, P.; et al. Regulatory Module WRKY33-ATL31-IRT1 Mediates Cadmium Tolerance in Arabidopsis. Plant Cell Environ. 2023, 46, 1653–1670. [Google Scholar] [CrossRef] [PubMed]
 - Rogers, E.E.; Eide, D.J.; Guerinot, M.L. Altered selectivity in an Arabidopsis metal transporter. Proc. Natl. Acad. Sci. USA 2000, 97, 12356–12360. [Google Scholar] [CrossRef] [PubMed]
 - Li, Z.; Wang, C.; Wang, K.; Zhao, J.; Shao, J.; Chen, H.; Zhou, M.; Zhu, X. Metal tolerance protein encoding gene family in Fagopyrum tartaricum: Genome-wide identification, characterization, and expression under multiple metal stresses. Plants 2022, 11, 850. [Google Scholar] [CrossRef]
 - El-Sappah, A.H.; Elbaiomy, R.G.; Elrys, A.S.; Wang, Y.; Zhu, Y.; Huang, Q.; Yan, K.; Xianming, Z.; Abbas, M.; El-Tarabily, K.A.; et al. Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein Gene Family in Medicago truncatula Under a Broad Range of Heavy Metal Stress. Front. Genet. 2021, 12, 1340. [Google Scholar] [CrossRef]
 - Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef]
 - Chen, Y.; Zhao, X.; Li, G.; Kumar, S.; Sun, Z.; Li, Y.; Guo, W.; Yang, J.; Hou, H. Genome-Wide Identification of the Nramp Gene Family in Spirodela polyrhiza and Expression Analysis under Cadmium Stress. Int. J. Mol. Sci. 2021, 22, 6414. [Google Scholar] [CrossRef]
 - Oomen, R.J.F.J.; Wu, J.; Lelièvre, F.; Blanchet, S.; Richaud, P.; Barbier-Brygoo, H.; Aarts, M.G.M.; Thomine, S. Functional Characterization of NRAMP3 and NRAMP4 from the Metal Hyperaccumulator Thlaspi caerulescens. New Phytol. 2009, 181, 637–650. [Google Scholar] [CrossRef] [PubMed]
 - Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishmi, H.; Nishizawa, N.K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef] [PubMed]
 - Van De Poel, B.; Van Der Straeten, D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene! Front. Plant Sci. 2014, 5, 640. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, H.; Zhang, X.; Liu, J.; Niu, Y.; Chen, Y.; Hao, Y.; Zhao, J.; Sun, L.; Wang, H.; Xiao, J.; et al. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein (HIPP) Gene Family from Triticeae Species. Int. J. Mol. Sci. 2020, 21, 6191. [Google Scholar] [CrossRef] [PubMed]
 - Zhao, Y.N.; Wang, M.Q.; Li, C.; Cao, H.W.; Rono, J.K.; Yang, Z.M. The Metallochaperone OsHIPP56 Gene Is Required for Cadmium Detoxification in Rice Crops. Environ. Exp. Bot. 2022, 193, 104680. [Google Scholar] [CrossRef]
 - Zhang, X.; Rui, H.; Zhang, F.; Hu, Z.; Xia, Y.; Shen, Z. Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Front. Plant Sci. 2018, 9, 107. [Google Scholar] [CrossRef]
 - Chen, J.; Yang, L.; Gu, J.; Bai, X.; Ren, Y.; Fan, T.; Han, Y.; Jiang, L.; Xiao, F.; Liu, Y.; et al. MAN3 Gene Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis thaliana. New Phytol. 2015, 205, 570–582. [Google Scholar] [CrossRef]
 - Yan, X.; Huang, Y.; Song, H.; Chen, F.; Geng, Q.; Hu, M.; Zhang, C.; Wu, X.; Fan, T.; Cao, S. A MYB4-MAN3-Mannose-MNB1 Signaling Cascade Regulates Cadmium Tolerance in Arabidopsis. PLoS Genet. 2021, 17, e1009636. [Google Scholar] [CrossRef]
 - Gao, C.; Gao, K.; Yang, H.; Ju, T.; Zhu, J.; Tang, Z.; Zhao, L.; Chen, Q. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal. Biol. Res. 2022, 55, 1. [Google Scholar] [CrossRef]
 - Pakdee, O.; Thsering, S.; Pokethitiyook, P.; Meetam, M. Examination of the Metallothionein Gene Family in Greater Duckweed Spirodela polyrhiza. Plants 2023, 12, 125. [Google Scholar] [CrossRef]
 - Shim, D.; Hwang, J.-U.; Lee, J.; Lee, S.; Choi, Y.; An, G.; Martinoia, E.; Lee, Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 2009, 21, 4031–4043. [Google Scholar] [CrossRef] [PubMed]
 - Zameer, R.; Fatima, K.; Azeem, F.; Algwaiz, H.I.M.; Sadaqat, M.; Rasheed, A.; Batool, R.; Shah, A.N.; Zaynab, M.; Shah, A.A.; et al. Genome-Wide Characterization of Superoxide Dismutase (SOD) Genes in Daucus Carota: Novel Insights into Structure, Expression, and Binding Interaction With Hydrogen Peroxide (H2O2) Under Abiotic Stress Condition. Front. Plant Sci. 2022, 13, 870241. [Google Scholar] [CrossRef] [PubMed]
 - Cui, B.; Liu, C.; Hu, C.; Liang, S. Transcriptomic Sequencing Analysis on Key Genes and Pathways Regulating Cadmium (Cd) in Ryegrass (Lolium perenne L.) under Different Cadmium Concentrations. Toxics 2022, 10, 734. [Google Scholar] [CrossRef] [PubMed]
 - Luo, H.; Li, H.; Zhang, X.; Fu, J. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 2011, 20, 770–778. [Google Scholar] [CrossRef] [PubMed]
 - Pan, C.; Lu, H.; Yang, C.; Wang, L.; Chen, J.; Yan, C. Comparative Transcriptome Analysis Reveals Different Functions of Kandelia Obovata Superoxide Dismutases in Regulation of Cadmium Translocation. Sci. Total Environ. 2021, 771, 144922. [Google Scholar] [CrossRef]
 - Huang, Q.; Qiu, W.; Yu, M.; Li, S.; Lu, Z.; Zhu, Y.; Kan, X.; Zhou, R. Genome-wide characterization of Sedum plumbizincicola HMA gene family provides functional implications in cadmium response. Plants 2022, 11, 215. [Google Scholar] [CrossRef]
 - Sasaki, A.; Yamaji, N.; Ma, J.F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 2014, 65, 6013–6021. [Google Scholar] [CrossRef]
 - Zhang, C.; Yang, Q.; Zhang, X.; Zhang, X.; Yu, T.; Wu, Y.; Fang, Y.; Xue, D. Genome-Wide Identification of the HMA Gene Family and Expression Analysis under Cd Stress in Barley. Plants 2021, 10, 1849. [Google Scholar] [CrossRef]
 - Wu, Y.; Li, X.; Chen, D.; Han, X.; Li, B.; Yang, Y.; Yang, Y. Comparative expression analysis of heavy metal ATPase subfamily genes between Cd-tolerant and Cd-sensitive turnip landraces. Plant Divers. 2019, 41, 275–283. [Google Scholar] [CrossRef]
 - Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef]
 - Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J.F. Gene Limiting Cadmium Accumulation in Rice. Proc. Natl. Acad. Sci. USA 2010, 107, 16500–16505. [Google Scholar] [CrossRef] [PubMed]
 - Peng, J.; Yi, H.; Gong, J. Isolation and characterization of cadmium tolerant gene SpMT2 in the hyperaccumulator Sedum plumbizincicola. Sheng Wu Gong Cheng Xue Bao 2020, 36, 541–548. [Google Scholar] [CrossRef]
 - Cailliatte, R.; Lapeyre, B.; Briat, J.-F.; Mari, S.; Curie, C. The NRAMP6 Metal Transporter Contributes to Cadmium Toxicity. Biochem. J. 2009, 422, 217–228. [Google Scholar] [CrossRef] [PubMed]
 - Kühnlenz, T.; Schmidt, H.; Uraguchi, S.; Clemens, S. Arabidopsis Thaliana Phytochelatin Synthase 2 Is Constitutively Active in Vivo and Can Rescue the Growth Defect of the PCS1-Deficient Cad1-3 Mutant on Cd-Contaminated Soil. J. Exp. Bot. 2014, 65, 4241–4253. [Google Scholar] [CrossRef]
 - Bughio, N.; Yamaguchi, H.; Nishizawa, N.K.; Nakanishi, H.; Mori, S. Cloning an Iron-Regulated Metal Transporter from Rice. J. Exp. Bot. 2002, 53, 1677–1682. [Google Scholar] [CrossRef]
 - Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef]
 - Zanella, L.; Fattorini, L.; Brunetti, P.; Roccotiello, E.; Cornara, L.; D’Angeli, S.; Della Rovere, F.; Cardarelli, M.; Barbieri, M.; Sanità di Toppi, L.; et al. Overexpression of AtPCS1 in Tobacco Increases Arsenic and Arsenic plus Cadmium Accumulation and Detoxification. Planta 2016, 243, 605–622. [Google Scholar] [CrossRef] [PubMed]
 - Lee, S.; Kang, B.S. Expression of Arabidopsis Phytochelatin Synthase 2 Is Too Low to Complement an AtPCS1-Defective Cad1-3 Mutant. Mol. Cells 2005, 19, 81–87. [Google Scholar] [CrossRef]
 - Djemal, R.; Khoudi, H. The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. Protoplasma 2022, 259, 19–31. [Google Scholar] [CrossRef]
 


| Gene Family | Plant | Gene ID | Gene | Function | Reference | 
|---|---|---|---|---|---|
| ABC | Arabidopsis thaliana | BK001007.1 | AtPDR8 | Cd transport | [87] | 
| Oryza sativa | 4327728 | ABCG36 | Cd transport | [57] | |
| ACS | Arabidopsis thaliana | 825324 | ACS1 | Cd tolerance | [58] | 
| Arabidopsis thaliana | 837082 | ACS2 | Cd tolerance | [58] | |
| Arabidopsis thaliana | 816812 | ACS4 | Cd tolerance | [58] | |
| Arabidopsis thaliana | 836709 | ACS5 | Cd tolerance | [58] | |
| Arabidopsis thaliana | 826730 | ACS6 | Cd tolerance | [58] | |
| Arabidopsis thaliana | 828726 | ACS7 | Cd tolerance | [58] | |
| Arabidopsis thaliana | 829933 | ACS8 | Cd tolerance | [58] | |
| Antioxidant genes | Lolium perenne L. | N/A | MnSOD | Cd tolerance | [112] | 
| Kandelia obovata | N/A | KoFSD2 | Cd tolerance | [114] | |
| Kandelia obovata | N/A | KoCSD3 | Cd tolerance | [114] | |
| CDF/MTP | Citrus sinensis L. | N/A | CitMTP1 | Cd tolerance | [19] | 
| Citrus sinensis L. | N/A | CitMTP3 | Cd tolerance | [19] | |
| Citrus sinensis L. | N/A | CitMTP4 | Cd tolerance | [19] | |
| Citrus sinensis L. | N/A | CitMTP5 | Cd tolerance | [19] | |
| Citrus sinensis L. | N/A | CitMTP7 | Cd tolerance | [19] | |
| Citrus sinensis L. | N/A | CitMTP10 | Cd tolerance | [19] | |
| Citrus sinensis L. | N/A | CitMTP11 | Cd tolerance | [19] | |
| Citrus sinensis L. | N/A | CitMTP12 | Cd tolerance | [19] | |
| Citrus sinensis L. | N/A | CitMTP8 | Cd tolerance | [19] | |
| Glycine max | N/A | GmaMTP1.1 | Cd tolerance | [10] | |
| Glycine max | N/A | GmaMTP1.2 | Cd tolerance | [10] | |
| Glycine max | N/A | GmaMTP3.1 | Cd tolerance | [10] | |
| Glycine max | N/A | GmaMTP3.2 | Cd tolerance | [10] | |
| Glycine max | N/A | GmaMTP4 | Cd tolerance | [10] | |
| Glycine max | N/A | GmaMTP4.3 | Cd tolerance | [10] | |
| Glycine max | N/A | GmaMTP10.4 | Cd tolerance | [10] | |
| Glycine max | N/A | GmaMTP11.1 | Cd tolerance | [10] | |
| Fagopyrum tartaricum | N/A | FtMTP8.2 | Cd tolerance | [96] | |
| Medicago truncatula | N/A | MtMTP1.2 | Cd tolerance | [97] | |
| Medicago truncatula | N/A | MtMTP4 | Cd tolerance | [97] | |
| Medicago truncatula | N/A | MtMTP1.2 | Cd tolerance | [97] | |
| Medicago truncatula | N/A | MtMTP4 | Cd tolerance | [97] | |
| HMA | Oryza sativa | 4342783 | OsHMA3 | Cd translocation, acccumulation | [120] | 
| MT | Sedum plumbizincicola | MK893990.1 | SpMT2 | Cd detoxification | [121] | 
| Zea mays | N/A | ZmMT3 | Cd tolerance | [108] | |
| Zea mays | N/A | ZmMT7 | Cd tolerance | [108] | |
| Zea mays | N/A | ZmMT1 | Cd tolerance | [108] | |
| Zea mays | N/A | ZmMT7 | Cd tolerance | [108] | |
| Zea mays | N/A | ZmMT8 | Cd tolerance | [108] | |
| Spirodela polyrhiza | N/A | SpMT2a | Cd tolerance | [109] | |
| Calotropis gigantea | N/A | MTB2 | Cd tolerance | [24] | |
| Calotropis gigantea | N/A | MTB3 | Cd tolerance | [24] | |
| Calotropis gigantea | N/A | MTB15 | Cd tolerance | [24] | |
| NRAMP | Arabidopsis thaliana | 841127 | AtNRAMP2 | Cd transport | [20] | 
| Arabidopsis thaliana | 816847 | AtNRAMP3 | Cd transport | [20] | |
| Arabidopsis thaliana | 836868 | AtNRAMP4 | Cd transport | [20] | |
| Arabidopsis thaliana | 827613 | AtNRAMP5 | Cd transport | [20] | |
| Arabidopsis thaliana | 838166 | AtNRAMP6 | Cd transport | [122] | |
| Glycine max | 100812381 | NRAMP2A | Cd transport | [23] | |
| Glycine max | 100815628 | NRAMP5A | Cd transport | [23] | |
| Glycine max | 100789871 | NRAMP1B | Cd transport | [23] | |
| Glycine max | 100791117 | NRAMP3A | Cd transport | [23] | |
| Glycine max | 100797298 | NRAMP6A | Cd transport | [23] | |
| Oryza sativa | 4342862 | OsNRAMP1 | Cd transport | [101] | |
| Spirodela polyrhiza | N/A | SpNramp1 | Cd transport | [99] | |
| Spirodela polyrhiza | N/A | SpNramp2 | Cd transport | [99] | |
| Spirodela polyrhiza | N/A | SpNramp3 | Cd transport | [99] | |
| Capsicum annuum | N/A | NRAMP1 | Cd transport | [72] | |
| Capsicum annuum | N/A | NRAMP2 | Cd transport | [72] | |
| Capsicum annuum | N/A | NRAMP3 | Cd transport | [72] | |
| Capsicum annuum | N/A | NRAMP5 | Cd transport | [72] | |
| Capsicum annuum | N/A | NRAMP6 | Cd transport | [72] | |
| PCR | Oryza sativa | N/A | OsPCR1 | Cd detoxification | [90] | 
| Salix linearistipulari | N/A | SlPCR6 | Cd detoxification | [91] | |
| Hordeum vulgare L. | N/A | HvPCR2 | Cd detoxification | [12] | |
| Sedum alfredii | N/A | SaPCR2 | Cd detoxification | [89] | |
| PCs | Arabidopsis thaliana | 831845 | PCS1 | Cd detoxification | [62] | 
| Arabidopsis thaliana | 839354 | PCS2 | Cd detoxification | [62,123] | |
| Arabidopsis thaliana | 828409 | GSH1 | Cd tolerance | [76] | |
| Arabidopsis thaliana | 832797 | GSH2 | Cd tolerance | [76] | |
| Arabidopsis thaliana | 842387 | AtIRT3 | Cd transport | [17] | |
| ZIP | Arabidopsis thaliana | 836336 | AtZIP12 | Cd transport | [17] | 
| Arabidopsis thaliana | N/A | AtZIP5 | Cd transport | [17] | |
| Arabidopsis thaliana | 829439 | AtZIP9 | Cd transport | [93] | |
| Arabidopsis thaliana | 827713 | AtIRT1 | Cd transport | [93] | |
| Arabidopsis thaliana | 820457 | AtZIP1 | Cd transport | [93] | |
| Oryza sativa | 4333669 | OsIRT1 | Cd transport | [92,124] | |
| Oryza sativa | 4333667 | OsIRT2 | Cd transport | [92] | |
| Oryza sativa | AY324148.1 | OsZIP1 | Cd transport | [17] | |
| Energetic pathway | Oryza sativa | 4342404 | LOC4342404 | Unknown | [54] | 
| Oryza sativa | 4347395 | LOC4347395 | Unknown | [54] | |
| Oryza sativa | 4334300 | LOC4334300 | Unknown | [54] | |
| Oryza sativa | 4352085 | LOC4352085 | Unknown | [54] | |
| Oryza sativa | 4335799 | LOC4335799 | Unknown | [54] | |
| Oryza sativa | 4342192 | OS07G0105600 | Unknown | [54] | |
| Oryza sativa | 4329766 | LOC4329766 | Unknown | [54] | |
| Oryza sativa | 4344281 | LOC4344281 | Unknown | [54] | |
| Oryza sativa | 4347336 | LOC4347336 | Unknown | [54] | |
| Oryza sativa | 4344281 | LOC4344281 | Unknown | [54] | |
| Signalling pathway | Oryza sativa | 4347336 | LOC4347336 | Unknown | [54] | 
| Oryza sativa | 4324556 | LOC4324556 | Unknown | [54] | |
| Oryza sativa | 4332175 | OS03G0235000 | Unknown | [54] | |
| Oryza sativa | 4332175 | LOC4332175 | Unknown | [54] | |
| Peroxidase pathway | Oryza sativa | 4337483 | LOC4337483 | Unknown | [54] | 
| Oryza sativa | 4337892 | LOC4337892 | Unknown | [54] | |
| Oryza sativa | 4350051 | LOC4350051 | Unknown | [54] | |
| Oryza sativa | 4349585 | LOC4349585 | Unknown | [54] | |
| Oryza sativa | 4324556 | LOC4324556 | Unknown | [54] | |
| Oryza sativa | 4332175 | OS03G0235000 | Unknown | [54] | |
| Oryza sativa | 4332175 | LOC4332175 | Unknown | [54] | |
| Oryza sativa | 4337483 | LOC4337483 | Unknown | [54] | |
| Oryza sativa | 4337892 | LOC4337892 | Unknown | [54] | |
| Oryza sativa | 4350051 | LOC4350051 | Unknown | [54] | |
| Oryza sativa | 4349585 | LOC4349585 | Unknown | [54] | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moravčíková, D.; Žiarovská, J. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. Plants 2023, 12, 1848. https://doi.org/10.3390/plants12091848
Moravčíková D, Žiarovská J. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. Plants. 2023; 12(9):1848. https://doi.org/10.3390/plants12091848
Chicago/Turabian StyleMoravčíková, Dagmar, and Jana Žiarovská. 2023. "The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity" Plants 12, no. 9: 1848. https://doi.org/10.3390/plants12091848
APA StyleMoravčíková, D., & Žiarovská, J. (2023). The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. Plants, 12(9), 1848. https://doi.org/10.3390/plants12091848
        
