Grape Heterogeneity Index: Assessment of Overall Grape Heterogeneity Using an Aggregation of Multiple Indicators
Abstract
:1. Introduction
2. Results and Discussion
2.1. Exclusion/Inclusion of Grape Maturity Indicators
2.2. Viticultural Regime Effects on Individual Indicator Variability
2.3. Calculation, Normalisation, Aggregation, and Weighting Methods
2.4. Uncertainty and Sensitivity Analysis
2.5. Viticultural Regime Effects on Overall Grape Heterogeneity
2.6. GHI Relationship with Vineyard Variability
3. Materials and Methods
3.1. Climate Observations
3.2. Vineyard Site
3.3. Viticultural Treatments
3.4. Vine Physiology, Canopy, and Yield Measures
3.5. Sampling and Berry Sorting
3.6. Vineyard Spatial Variation
3.7. Analysis of Grape Physical and Chemical Parameters
3.7.1. Average TSS, pH, and Berry FW
3.7.2. Total Tannin and Organic Acid Measurements
3.7.3. Methoxypyrazine Extraction and Quantification
3.7.4. Absorbance and CIELab Measures
3.8. Data Analysis
3.8.1. Treatment Trial Vine Data
3.8.2. Missing Values
3.8.3. Linear Mixed Models
3.8.4. Grape Chemical and Physical Data Mean and Residual Analysis
3.8.5. Spatial Trial Vine Canopy and Size Attributes
3.8.6. Grape Heterogeneity Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Z.W.; Ollat, N.; Gomès, E.; Decroocq, S.; Tandonnet, J.P.; Bordenave, L.; Pieri, P.; Hilbert, G.; Kappel, C.; van Leeuwen, C.; et al. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. Am. J. Enol. Vitic. 2011, 62, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Dal Santo, S.; Tornielli, G.B.; Zenoni, S.; Fasoli, M.; Farina, L.; Anesi, A.; Guzzo, F.; Delledonne, M.; Pezzotti, M. The plasticity of the grapevine berry transcriptome. Genome Biol. 2013, 14, r54. [Google Scholar] [CrossRef] [Green Version]
- Pagay, V.; Cheng, L. Variability in berry maturation of Concord and Cabernet franc in a cool climate. Am. J. Enol. Vitic. 2010, 61, 61–67. [Google Scholar] [CrossRef]
- Rolle, L.; Río Segade, S.; Torchio, F.; Giacosa, S.; Cagnasso, E.; Marengo, F.; Gerbi, V. Influence of grape density and harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening. J. Agric. Food Chem. 2011, 59, 8796–8805. [Google Scholar] [CrossRef]
- Bigard, A.; Romieu, C.; Sire, Y.; Veyret, M.; Ojéda, H.; Torregrosa, L. The kinetics of grape ripening revisited through berry density sorting. OENO One 2019, 53, 709–724. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Ough, C.S.; Nelson, K.E. Density separations of wine grape berries and ripeness distribution. Am. J. Enol. Vitic. 1966, 17, 95–105. [Google Scholar]
- Rolle, L.; Torchio, F.; Giacosa, S.; Río Segade, S. Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chem. 2015, 173, 105–113. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Tian, Y.; Liao, M.; Zhang, Z. Influence of berry heterogeneity on phenolics and antioxidant activity of grapes and wines: A primary study of the new winegrape cultivar Meili (Vitis vinifera L.). PLoS ONE 2016, 11, e0151276. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Esteruelas, M.; Fort, F.; Canals, J.M.; De Freitas, V.; Zamora, F. Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chem. 2011, 124, 767–774. [Google Scholar] [CrossRef]
- Carbonell-Bejerano, P.; Rodríguez, V.; Hernáiz, S.; Royo, C.; Dal Santo, S.; Pezzotti, M.; Martínez-Zapater, J.M. Reducing sampling bias in molecular studies of grapevine fruit ripening: Transcriptomic assessment of the density sorting method. Theor. Exp. Plant Physiol. 2016, 28, 109–129. [Google Scholar] [CrossRef]
- Zouid, I.; Siret, R.; Jourjon, F.; Mehinagic, E.; Rolle, L. Impact of grapes heterogeneity according to sugar level on both physical and mechanical berries properties and their anthocyanins extractability at harvest. J. Texture Stud. 2013, 44, 95–103. [Google Scholar] [CrossRef]
- Calderon-Orellana, A.; Mercenaro, L.; Shackel, K.A.; Willits, N.; Matthews, M.A. Responses of fruit uniformity to deficit irrigation and cluster thinning in commercial winegrape production. Am. J. Enol. Vitic. 2014, 65, 354–362. [Google Scholar] [CrossRef]
- Shahood, R.; Torregrosa, L.; Savoi, S.; Romieu, C. First quantitative assessment of growth, sugar accumulation and malate breakdown in a single ripening berry. OENO One 2020, 54, 1077–1092. [Google Scholar] [CrossRef]
- Armstrong, C.E.J.; Ristic, R.; Boss, P.K.; Pagay, V.; Jeffery, D.W. Effect of grape heterogeneity on wine chemical composition and sensory attributes for Vitis vinifera cv. Cabernet Sauvignon. Aust. J. Grape Wine Res. 2021, 27, 206–218. [Google Scholar] [CrossRef]
- Vondras, A.M.; Gouthu, S.; Schmidt, J.A.; Petersen, A.-R.; Deluc, L.G. The contribution of flowering time and seed content to uneven ripening initiation among fruits within Vitis vinifera L. cv. Pinot noir clusters. Planta 2016, 243, 1191–1202. [Google Scholar] [CrossRef]
- Bramley, R.G.V. Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Aust. J. Grape Wine Res. 2005, 11, 33–42. [Google Scholar] [CrossRef]
- Carroll, D.E.; Ballinger, W.E.; McClure, W.F.; Nesbitt, W.B. Wine quality versus ripeness of light-sorted Carlos Muscadine grapes. Am. J. Enol. Vitic. 1978, 29, 169–171. [Google Scholar] [CrossRef]
- Jasse, A.; Berry, A.; Aleixandre-Tudo, J.L.; Poblete-Echeverría, C. Intra-block spatial and temporal variability of plant water status and its effect on grape and wine parameters. Agric. Water Manag. 2021, 246, 106696. [Google Scholar] [CrossRef]
- Sams, B.; Bramley, R.G.V.; Sanchez, L.; Dokoozlian, N.; Ford, C.; Pagay, V. Remote sensing, yield, physical characteristics, and fruit composition variability in Cabernet Sauvignon vineyards. Am. J. Enol. Vitic. 2022, 73, 93–105. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Boss, P.K. Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229. [Google Scholar] [CrossRef]
- Sanders, R.D.; Boss, P.K.; Capone, D.L.; Kidman, C.M.; Bramley, R.G.V.; Nicholson, E.L.; Jeffery, D.W. Rootstock, vine vigor, and light mediate methoxypyrazine concentrations in the grape bunch rachis of Vitis vinifera L. cv. Cabernet Sauvignon. J. Agric. Food Chem. 2022, 70, 5417–5426. [Google Scholar] [CrossRef]
- Petrie, P.R.; Clingeleffer, P.R. Crop thinning (hand versus mechanical), grape maturity and anthocyanin concentration: Outcomes from irrigated Cabernet Sauvignon (Vitis vinifera L.) in a warm climate. Aust. J. Grape Wine Res. 2006, 12, 21–29. [Google Scholar] [CrossRef]
- Sipiora, M.J.; Cihlar, A.; Abbate, S.; Coker, W.; Harris, J.; Drayton, W. Autonomous phenological development in different Merlot grapevine shoots. Am. J. Enol. Vitic. 2022, 73, 237–246. [Google Scholar] [CrossRef]
- Böttcher, C.; Harvey, K.; Forde, C.G.; Boss, P.K.; Davies, C. Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust. J. Grape Wine Res. 2011, 17, 1–8. [Google Scholar] [CrossRef]
- Armstrong, C.E.J.; Gilmore, A.M.; Boss, P.K.; Pagay, V.; Jeffery, D.W. Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra. Food Chem. 2023, 403, 134321. [Google Scholar] [CrossRef]
- Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008; Available online: https://www.oecd.org/sdd/42495745.pdf (accessed on 24 February 2023).
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Sustainability assessment in wine-grape growing in the New World: Economic, environmental, and social indicators for agricultural businesses. Sustainability 2015, 7, 8178–8204. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A.; et al. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Rienth, M.; Torregrosa, L.; Sarah, G.; Ardisson, M.; Brillouet, J.-M.; Romieu, C. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biol. 2016, 16, 164. [Google Scholar] [CrossRef]
- Sun, R.-Z.; Cheng, G.; Li, Q.; He, Y.-N.; Wang, Y.; Lan, Y.-B.; Li, S.-Y.; Zhu, Y.-R.; Song, W.-F.; Zhang, X.; et al. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Reshef, N.; Walbaum, N.; Agam, N.; Fait, A. Sunlight modulates fruit metabolic profile and shapes the spatial pattern of compound accumulation within the grape cluster. Front. Plant Sci. 2017, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Sams, B.; Bramley, R.G.V.; Sanchez, L.; Dokoozlian, N.K.; Ford, C.M.; Pagay, V. Characterising spatio-temporal variation in fruit composition for improved winegrowing management in California Cabernet Sauvignon. Aust. J. Grape Wine Res. 2022, 28, 407–423. [Google Scholar] [CrossRef]
- Keller, M.; Smithyman, R.P.; Mills, L.J. Interactive effects of deficit irrigation and crop load on Cabernet Sauvignon in an arid climate. Am. J. Enol. Vitic. 2008, 59, 221–234. [Google Scholar] [CrossRef]
- Rolle, L.; Guidoni, S. Color and anthocyanin evaluation of red winegrapes by CIE L*, a*, b* parameters. J. Int. Sci. Vigne Vin 2007, 41, 193–201. [Google Scholar] [CrossRef]
- Rodríguez-Pulido, F.J.; Ferrer-Gallego, R.; Lourdes González-Miret, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T.; Heredia, F.J. Preliminary study to determine the phenolic maturity stage of grape seeds by computer vision. Anal. Chim. Acta 2012, 732, 78–82. [Google Scholar] [CrossRef]
- Harborne, J.B. Spectral methods of characterizing anthocyanins. Biochem. J. 1958, 70, 22–28. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agr. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.; Maschmedt, D.J.; Billing, N.B. The soils of southern South Australia; Geological Survey of South Australia Bulletin, 56, v. 1; Department of Water, Land and Biodiversity Conservation: Adelaide, Australia, 2009. [Google Scholar]
- Gautam, D.; Ostendorf, B.; Pagay, V. Estimation of grapevine crop coefficient using a multispectral camera on an unmanned aerial vehicle. Remote Sens. 2021, 13, 2639. [Google Scholar] [CrossRef]
- De Bei, R.; Fuentes, S.; Gilliham, M.; Tyerman, S.; Edwards, E.; Bianchini, N.; Smith, J.; Collins, C. VitiCanopy: A free computer app to estimate canopy vigor and porosity for grapevine. Sensors 2016, 16, 585. [Google Scholar] [CrossRef] [Green Version]
- Howell, G.S. Sustainable grape productivity and the growth-yield relationship: A review. Am. J. Enol. Vitic. 2001, 52, 165–174. [Google Scholar] [CrossRef]
- Fournand, D.; Vicens, A.; Sidhoum, L.; Souquet, J.-M.; Moutounet, M.; Cheynier, V. Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J. Agric. Food Chem. 2006, 54, 7331–7338. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Dunlevy, J.D.; Soole, K.L.; Perkins, M.V.; Dennis, E.G.; Keyzers, R.A.; Kalua, C.M.; Boss, P.K. Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: Grape-derived aroma compounds important to wine flavour. Plant Mol. Biol. 2010, 74, 77–89. [Google Scholar] [CrossRef]
- Ranaweera, R.K.R.; Gilmore, A.M.; Capone, D.L.; Bastian, S.E.P.; Jeffery, D.W. Authentication of the geographical origin of Australian Cabernet Sauvignon wines using spectrofluorometric and multi-element analyses with multivariate statistical modelling. Food Chem. 2021, 335, 127592. [Google Scholar] [CrossRef]
- Ratcliff, C.; Gobbett, D.; Bramley, R.G.V. PAT: Precision Agriculture Tools. version 3; CSIRO Software Collection. 2020. Available online: https://data.csiro.au/collection/csiro:38758 (accessed on 24 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armstrong, C.E.J.; Previtali, P.; Boss, P.K.; Pagay, V.; Bramley, R.G.V.; Jeffery, D.W. Grape Heterogeneity Index: Assessment of Overall Grape Heterogeneity Using an Aggregation of Multiple Indicators. Plants 2023, 12, 1442. https://doi.org/10.3390/plants12071442
Armstrong CEJ, Previtali P, Boss PK, Pagay V, Bramley RGV, Jeffery DW. Grape Heterogeneity Index: Assessment of Overall Grape Heterogeneity Using an Aggregation of Multiple Indicators. Plants. 2023; 12(7):1442. https://doi.org/10.3390/plants12071442
Chicago/Turabian StyleArmstrong, Claire E. J., Pietro Previtali, Paul K. Boss, Vinay Pagay, Robert G. V. Bramley, and David W. Jeffery. 2023. "Grape Heterogeneity Index: Assessment of Overall Grape Heterogeneity Using an Aggregation of Multiple Indicators" Plants 12, no. 7: 1442. https://doi.org/10.3390/plants12071442