Efficacy of Azadirachtin in the Integrated Management of the Root Knot Nematode Meloidogyne incognita on Short- and Long-Cycle Crops
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNEP; FAO. Global Assessment of Soil Pollution: Report; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Marrone, P.G. Pesticidal natural products—Status and future potential. Pest Manag. Sci. 2019, 75, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Sikora, R.A.; Fernandez, E. Nematode parasites of vegetables. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; Luc, M., Sikora, R.A., Bridge, J., Eds.; CABI: Wallingford, UK, 2005; pp. 319–322. [Google Scholar]
- Ragozzino, A.; d’Errico, G. Interactions between nematodes and fungi: A concise review. Redia 2011, 94, 123–125. [Google Scholar]
- Chen, J.; Li, Q.X.; Song, B. Chemical nematicides: Recent research progress and outlook. J. Agric. Food Chem. 2020, 68, 12175–12188. [Google Scholar] [CrossRef] [PubMed]
- Forghani, F.; Hajihassani, A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Caboni, P. Botanical nematicides: A review. J. Agric. Food Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Lovelli, S.; Candido, V.; Avato, P. Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems. Ital. J. Agron. 2014, 9, 137–145. [Google Scholar] [CrossRef]
- Avato, P.; D’Addabbo, T.; Leonetti, P.; Argentieri, M.P. Nematicidal potential of Brassicaceae. Phytochem. Rev. 2013, 12, 791–802. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Carbonara, T.; Argentieri, M.P.; Radicci, V.; Leonetti, P.; Villanova, L.; Avato, P. Nematicidal potential of Artemisia annua and its main metabolites. Eur. J. Plant Pathol. 2013, 137, 295–304. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Żuchowski, J.; Biazzi, E.; Tava, A.; Oleszek, W.; Avato, P. Activity of saponins from Medicago species against phytoparasitic nematodes. Plants 2020, 9, 443. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Laquale, S.; Candido, V.; Avato, P. Relationship between chemical composition and nematicidal activity of different essential oils. Plants 2020, 9, 1546. [Google Scholar] [CrossRef]
- Benge, M.D. Cultivation and propagation of the neem tree. In Focus on Phytochemical Pesticides, Vol. I (The Neem Tree); Jacobson, M., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 1–18. [Google Scholar]
- Jones, P.S.; Ley, S.V.; Morgan, E.D.; Santahanos, D. The chemistry of the neem tree. In Focus on Phytochemical Pesticides, Vol. I (The Neem Tree); Jacobson, M., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 19–45. [Google Scholar]
- Oka, Y.; Tkachi, N.; Shuker, S.; Yerumiyahu, U. Enhanced nematicidal activity of organic and inorganic ammonia-releasing amendments by Azadirachta indica extracts. J. Nematol. 2007, 39, 9–16. [Google Scholar]
- Chitwood, D.J. Phytochemical based strategies for nematode control. Ann. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef]
- Akhtar, M. Nematicidal potential of the neem tree Azadirachta indica (A. Juss). Integ. Pest Manag. Rev. 2000, 5, 57–66. [Google Scholar] [CrossRef]
- Mojumder, V. Nematoda, Nematodes. In The Neem Tree: Azadirachta indica A. Juss. and Other Meliacious Plants; Source of Unique Natural Products for Integrated Pest Management Medicine, Industry and Other Purposes; Schmutterer, H., Ed.; VCH Publications: Weinheim, Germany, 1995; pp. 129–150. [Google Scholar]
- Devakumar, C.; Goswami, B.K.; Mukherjee, S.K. Nematicidal principles from neern (Azadirachta indica A. Juss) part 1, Screening of neem kernel fractions against Meloidogyne incognita. Ind. J. Nematol. 1985, 15, 121–124. [Google Scholar]
- Veitch, G.E.; Beckmann, E.; Burke, B.J.; Boyer, A.; Ayats, C.; Ley, S.V. A relay route for the synthesis of azadirachtin. Angew. Chem. Int. 2007, 46, 7633–7635. [Google Scholar] [CrossRef]
- Veitch, G.; Boyer, A.; Ley, S. The Azadirachtin Story. Angew. Chem. Int. Edit. 2008, 47, 9402–9429. [Google Scholar] [CrossRef]
- Boeke, S.J.; Boersma, M.G.; Alink, G.M.; van Loon, J.J.; van Huis, A.; Dicke, M.; Rietjens, I.M. Safety evaluation of neem (Azadirachta indica) derived pesticides. J. Ethnopharmacol. 2004, 94, 25–41. [Google Scholar] [CrossRef]
- Stark, J.D. Ecotoxicology of Neem. In Crop Protection Products for Organic Agriculture—ACS Symposium Series 947; Felsot, A.S., Racke, K.D., Eds.; American Chemical Society: Washington, DC, USA, 2007; pp. 275–286. [Google Scholar] [CrossRef]
- Isman, M.B.; Koul, O.; Luczynski, A.; Kaminskis, J. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 1990, 38, 1406–1411. [Google Scholar] [CrossRef]
- Bernardi, D.; Botton, M.; da Cunha, U.S.; Bernardi, O.; Malausa, T.; Garcia, M.S.; Nava, D.E. Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manag. Sci. 2013, 69, 75–80. [Google Scholar] [CrossRef]
- Benelli, G.; Canale, A.; Toniolo, C.; Higuchi, A.; Murugan, K.; Pavela, R.; Nicoletti, M. Neem (Azadirachta indica): Towards the ideal insecticide? Nat. Prod. Res. 2017, 31, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Mojumder, V.; Kamra, A.; Dureja, P. Effect of neem extract on activity and mortality of second stage of Meloidogyne incognita. Nematol. Medit. 2002, 30, 83–84. [Google Scholar]
- Ambrogioni, L.; Caroppo, S.; Capella, A. Valutazione in vitro nei confronti di uova, larve di secondo stadio libere e larve di secondo stadio incluse negli ovisacchi di Meloidogyne incognita (Kofoid et White) Chitwood. In Oikos una Soluzione Naturale Contro i Nematodi Fitoparassiti; d’Errico, F.P., Lamberti, F., Capella, A., Guarnone, A., Eds.; Sipcam: Milan, Italy, 2003; pp. 21–27. [Google Scholar]
- Colombo, A.; Cataldi, S.; Serges, T.; Barraco, D. Management of the southern root-knot nematode Meloidogyne incognita on tomato in Sicily using azadirachtin (Neem). Nematol. Medit. 2005, 33, 19–28. [Google Scholar]
- D’Addabbo, T.; Greco, P.; Radicci, V. Effectiveness of plant commercial formulations for the control of root-knot nematodes. Atti Giorn. Fitopatol. 2008, 1, 317–322. [Google Scholar]
- Lynn, O.M.; Song, W.G.; Shim, J.K.; Kim, J.E.; Lee, K. Effects of azadirachtin and neem-based formulations for the control of sweetpotato whitefly and root-knot nematode. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 598–604. [Google Scholar] [CrossRef]
- Kumar, P.; Poehling, H.M. Persistence of soil and foliar azadirachtin treatments to control sweetpotato whitefly Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomatoes under controlled (laboratory) and field (netted greenhouse) conditions in the humid tropics. J. Pest Sci 2006, 79, 189. [Google Scholar] [CrossRef]
- Javed, N.; Gowen, S.R.; Inam-ul-Haq, M.; Abdullah, K.; Shahina, F. Systemic and persistent effect of neem (Azadirachta indica) formulations against root-knot nematodes, Meloidogyne javanica and their storage life. Crop Prot. 2007, 26, 911–916. [Google Scholar] [CrossRef]
- Caroppo, S.; Coniglio, D.; Capella, A.; Ambrogioni, L. Azione di due diversi formulati di azadiractina nei confronti di Meloidogyne incognita su pomodoro in ambiente controllato. Atti Giorn. Fitopatol. 2008, 1, 317–322. [Google Scholar]
- Javed, N.; Gowen, S.R.; El-Hassan, S.A.; Inam-ul-Haq, M.; Shahina, F.; Pembroke, B. Efficacy of neem (Azadirachta indica) formulations on biology of root-knot nematodes (Meloidogyne javanica) on tomato. Crop Prot. 2008, 27, 36–43. [Google Scholar] [CrossRef]
- Meyer, J.; Ebssa, L.; Poehling, H.M. Effects of NeemAzal-U on survival, host infestation and reproduction of entomopathogenic and plant-parasitic nematodes: Heterorhabditis bacteriophora and Meloidogyne incognita. J. Plant Dis. Prot. 2012, 119, 142–151. [Google Scholar] [CrossRef]
- Myers, R.; Mello, C.L.; Ragasa, T. Azadirachtin powder for control of root-knot nematodes in tomato. J. Nematol. 2017, 49, 517. [Google Scholar]
- Khan, M.R.; Solanki, R.D.; Bohra, B.; Vyas, B.N. Evaluation of Achook (Azadirachtin 1500 ppm) against root-knot nematode (Meloidogyne incognita) infecting okra. South As. J. Exp. Biol. 2012, 2, 149–156. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Menkissoglu-Spiroudi, U.; Giannakou, I.O.; Prophetou-Athanasiadou, D.A. Efficacy evaulation of a neem (Azadirachta indica A. Juss) formulation against root-knot nematodes Meloidogyne incognita. Crop Prot. 2009, 28, 489–494. [Google Scholar] [CrossRef]
- Mordue, A.J.; Blackwell, A. Azadirachtin: An update. J. Insect Physiol. 1993, 39, 903–924. [Google Scholar] [CrossRef]
- Caboni, P.; Sarais, G.; Angioni, A.; Garcia, A.J.; Lai, F.; Dedola, F.; Cabras, P. Residues and persistence of neem formulations on strawberry after field treatment. J. Agric. Food Chem. 2006, 54, 10026–10032. [Google Scholar] [CrossRef]
- Mordue, A.J. Present concepts of the mode of action of azadirachtin from neem. In Neem: Today and in the New Millennium; Koul, O., Wahab, S., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 229–242. [Google Scholar]
- Rembold, H.; Sharma, G.K.; Czoppelt, C.; Schmuterer, H.Z. Azadirachtin: A potent insect growth regulator of plant origin. J. Appl. Entomol. 2009, 93, 12–17. [Google Scholar] [CrossRef]
- Caillaud, M.C.; Dubreuil, G.; Quentin, M.; Perfus-Barbeoch, L.; Lecomte, P.; de Almeida Engler, J.; Abad, P.; Rosso, M.N.; Favery, B. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J. Plant Physiol. 2008, 165, 104–113. [Google Scholar] [CrossRef]
- Martinez, S.S.; Van Emden, H.F. Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) caused by azadirachtin. Neotrop. Entomol. 2001, 30, 113–125. [Google Scholar] [CrossRef]
- Gelbič, I.; Němec, V. Developmental changes caused by metyrapone and azadirachtin in Spodoptera littoralis (Boisd.) (Lep., Noctuidae) and Galleria mellonella (L.) (Lep., Pyralidae). J. Appl. Entomol. 2001, 125, 417–422. [Google Scholar] [CrossRef]
- Jallow, M.F.; Dahab, A.A.; Albaho, M.S.; Devi, V.Y. Efficacy of some biorational insecticides against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory and greenhouse conditions in Kuwait. Appl. Entomol. 2019, 143, 187–195. [Google Scholar] [CrossRef]
- Petrikovszki, R.; Doshi, P.; Turóczi, G.; Tóth, F.; Nagy, P. Investigating the side-effects of neem-derived pesticides on commercial entomopathogenic and slug-parasitic nematodes products under laboratory conditions. Plants 2019, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Waisen, P.; Wang, K.; Uyeda, J.; Myers, R.Y. Effects of fluopyram and azadirachtin integration with sunn hemp on nematode communities in zucchini, tomato and sweet potato in Hawaii. J. Nematol. 2021, 53, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, P.; Eder, R.; Consoli, E.; Krauss, J.; Kiewnick, S. Integrated control of Meloidogyne incognita in tomatoes using fluopyram and Purpureocillium lilacinum strain 251. Crop Prot. 2019, 124, 104874. [Google Scholar] [CrossRef]
- Peiris, P.U.S.; Xu, C.; Brown, P.; Li, Y. Assessing the efficacy of alternative chemical and organic products against Meloidogyne spp. in sweetpotato. Sci. Hortic. 2021, 283, 110079. [Google Scholar] [CrossRef]
- Giannakou, I.O.; Anastasiadis, I.A.; Gowen, S.R.; Prophetou-Athanasiadou, D.A. Effects of a non-chemical nematicide combined with soil solarization for the control of root-knot nematodes. Crop Prot. 2007, 26, 1644–1654. [Google Scholar] [CrossRef]
- Jepson, S.B. Identification of Root-Knot Nematodes (Meloidogyne Species); CAB International: Wallingford, UK, 1987; p. 265. [Google Scholar]
- Fanelli, E.; Cotroneo, A.; Carisio, L.; Troccoli, A.; Grosso, S.; Boero, C.; Capriglia, F.; De Luca, F. Detection and molecular characterization of the rice root-knot nematode Meloidogyne graminicola in Italy. Eur. J. Plant Pathol. 2017, 149, 467–476. [Google Scholar] [CrossRef]
- van Bezooijen, J. Methods and Techniques for Nematology; Wageningen University: Wageningen, The Netherlands, 2006; pp. 1–112. [Google Scholar]
- Zeck, W.M. A rating scheme for field evaluation of root-knot infestations. Pflanzenschutz Nachr. 1971, 24, 141–144. [Google Scholar]
- Sierotzki, H.; Scalliet, G.A. review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 2013, 103, 880–887. [Google Scholar] [CrossRef]
Treatment | Yield (kg/plot) | M. incognita (J2 mL−1 soil) | Gall Index (0–10) | |||||
---|---|---|---|---|---|---|---|---|
Pi 3 | Pf 4 | |||||||
Azadirachtin | 112.9 ± 3.4 1 | b 2 | 0.8 ± 0.1 | a | 1.5 ± 0.1 | c | 3.9 ± 0.2 | b |
Fluopyram | 108.3 ± 3.3 | b | 0.9 ± 0.1 | a | 1.7 ± 0.1 | b | 3.6 ± 0.2 | b |
Non-treated | 82.6 ± 3.4 | a | 0.8 ± 0.1 | a | 5.1 ± 0.1 | a | 7.3 ± 0.6 | a |
Treatment | Yield (kg/plot) | M. incognita (J2 mL−1 Soil) | Gall Index (0–10) | |||||
---|---|---|---|---|---|---|---|---|
Pi 3 | Pf 4 | |||||||
Azadirachtin | 18.1 ± 0.5 1 | b 2 | 0.9 ± 0.1 | a | 17.8 ± 2.2 | a | 7.4 ± 0.6 | b |
Fluopyram | 17.9 ± 0.1 | b | 0.8 ± 0.2 | a | 18.8 ± 1.0 | a | 7.2 ± 0.5 | b |
Non-treated | 13.1 ± 0.3 | a | 0.9 ± 0.1 | a | 19.8 ± 1.9 | a | 8.8 ± 0.6 | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Errico, G.; Sasanelli, N.; Guastamacchia, F.; Stillittano, V.; D’Addabbo, T. Efficacy of Azadirachtin in the Integrated Management of the Root Knot Nematode Meloidogyne incognita on Short- and Long-Cycle Crops. Plants 2023, 12, 1362. https://doi.org/10.3390/plants12061362
d’Errico G, Sasanelli N, Guastamacchia F, Stillittano V, D’Addabbo T. Efficacy of Azadirachtin in the Integrated Management of the Root Knot Nematode Meloidogyne incognita on Short- and Long-Cycle Crops. Plants. 2023; 12(6):1362. https://doi.org/10.3390/plants12061362
Chicago/Turabian Styled’Errico, Giada, Nicola Sasanelli, Francesco Guastamacchia, Virgilio Stillittano, and Trifone D’Addabbo. 2023. "Efficacy of Azadirachtin in the Integrated Management of the Root Knot Nematode Meloidogyne incognita on Short- and Long-Cycle Crops" Plants 12, no. 6: 1362. https://doi.org/10.3390/plants12061362
APA Styled’Errico, G., Sasanelli, N., Guastamacchia, F., Stillittano, V., & D’Addabbo, T. (2023). Efficacy of Azadirachtin in the Integrated Management of the Root Knot Nematode Meloidogyne incognita on Short- and Long-Cycle Crops. Plants, 12(6), 1362. https://doi.org/10.3390/plants12061362