MangoBase: A Genomics Portal and Gene Expression Atlas for Mangifera indica
Abstract
:1. Introduction
2. Results
2.1. Available Genomic Data
2.2. Tools
2.2.1. Genome Browser
2.2.2. Gene Annotation Search
2.2.3. BLAST
2.2.4. Sequence and Annotation Extraction Tools
2.2.5. Gene Lookup and Gene Enrichment Set Tools
2.2.6. Gene Expression Atlas
2.3. Gene Expression Data Clustering and Enrichment
3. Discussion
4. Materials and Methods
4.1. Genomics Portal Implementation
4.2. Gene Expression Atlas Data Analysis
4.3. Gene Expression Data Clustering and Enrichment Analyses
4.4. Gene Lookup and Gene Enrichment Set Tools
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petri, C.; Litz, R.E.; Singh, S.K.; Hormaza, J.I. In Vitro Culture and Genetic Transformation in Mango. In The Mango Genome; Compendium of Plant Genomes; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 131–151. ISBN 978-3-030-47828-5. [Google Scholar]
- Litz, R.E. The Mango: Botany, Production and Uses, 2nd ed.; CABI: Wallingford, UK, 2009; ISBN 978-1-84593-490-3. [Google Scholar]
- Mango Genome Consortium; Bally, I.S.E.; Bombarely, A.; Chambers, A.H.; Cohen, Y.; Dillon, N.L.; Innes, D.J.; Islas-Osuna, M.A.; Kuhn, D.N.; Mueller, L.A.; et al. The ‘Tommy Atkins’ Mango Genome Reveals Candidate Genes for Fruit Quality. BMC Plant Biol. 2021, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Cortaga, C.Q.; Lachica, J.A.P.; Lantican, D.V.; Ocampo, E.T.M. Genome-Wide SNP and InDel Analysis of Three Philippine Mango Species Inferred from Whole-Genome Sequencing. J. Genet. Eng. Biotechnol. 2022, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Luo, Y.; Huang, J.; Gao, S.; Zhu, G.; Dang, Z.; Gai, J.; Yang, M.; Zhu, M.; Zhang, H.; et al. The Genome Evolution and Domestication of Tropical Fruit Mango. Genome Biol. 2020, 21, 60. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Luo, X.; Wei, Y.; Bai, T.; Shi, J.; Zheng, B.; Xu, W.; Li, L.; Wang, S.; Zhang, J.; et al. Chromosome-Scale Genome and Comparative Transcriptomic Analysis Reveal Transcriptional Regulators of β-Carotene Biosynthesis in Mango. Front. Plant Sci. 2021, 12, 749108. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.-G.; Zhang, Q.-J.; Li, K.; Zhang, D.; Shi, C.; Gao, L.-Z. SMRT Sequencing Generates the Chromosome-Scale Reference Genome of Tropical Fruit Mango; Mangifera indica; Genomics: London, UK, 2020. [Google Scholar]
- Dautt-Castro, M.; Ochoa-Leyva, A.; Contreras-Vergara, C.A.; Pacheco-Sanchez, M.A.; Casas-Flores, S.; Sanchez-Flores, A.; Kuhn, D.N.; Islas-Osuna, M.A. Mango (Mangifera indica L.) Cv. Kent Fruit Mesocarp de Novo Transcriptome Assembly Identifies Gene Families Important for Ripening. Front. Plant Sci. 2015, 6, 62. [Google Scholar] [CrossRef]
- Karim, S.K.A.; Zaini, M.Z.M.; Zainal, Z. Data on Transcriptome Analysis from Mesocarp Tissue of Mango Mangifera indica ‘Chokanan’ Fruits. Data Brief 2022, 42, 108160. [Google Scholar] [CrossRef]
- Lawson, T.; Lycett, G.W.; Mayes, S.; Ho, W.K.; Chin, C.F. Transcriptome-Wide Identification and Characterization of the Rab GTPase Family in Mango. Mol. Biol. Rep. 2020, 47, 4183–4197. [Google Scholar] [CrossRef]
- Li, L.; Wu, H.-X.; Ma, X.-W.; Xu, W.-T.; Liang, Q.-Z.; Zhan, R.-L.; Wang, S.-B. Transcriptional Mechanism of Differential Sugar Accumulation in Pulp of Two Contrasting Mango (Mangifera indica L.) Cultivars. Genomics 2020, 112, 4505–4515. [Google Scholar] [CrossRef]
- Tafolla-Arellano, J.C.; Zheng, Y.; Sun, H.; Jiao, C.; Ruiz-May, E.; Hernández-Oñate, M.A.; González-León, A.; Báez-Sañudo, R.; Fei, Z.; Domozych, D.; et al. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes. Sci. Rep. 2017, 7, 46163. [Google Scholar] [CrossRef]
- Sivankalyani, V.; Sela, N.; Feygenberg, O.; Zemach, H.; Maurer, D.; Alkan, N. Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress. Front. Plant Sci. 2016, 7, 1579. [Google Scholar] [CrossRef]
- Luria, N.; Sela, N.; Yaari, M.; Feygenberg, O.; Kobiler, I.; Lers, A.; Prusky, D. De-Novo Assembly of Mango Fruit Peel Transcriptome Reveals Mechanisms of Mango Response to Hot Water Treatment. BMC Genom. 2014, 15, 957. [Google Scholar] [CrossRef] [PubMed]
- Sudheeran, P.K.; Sela, N.; Carmeli-Weissberg, M.; Ovadia, R.; Panda, S.; Feygenberg, O.; Maurer, D.; Oren-Shamir, M.; Aharoni, A.; Alkan, N. Induced Defense Response in Red Mango Fruit against Colletotrichum gloeosporioides. Hortic. Res. 2021, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Pozo, N.; Bombarely, A. EasyGDB: A Low-Maintenance and Highly Customizable System to Develop Genomics Portals. Bioinformatics 2022, 38, 4048–4050. [Google Scholar] [CrossRef] [PubMed]
- Buels, R.; Yao, E.; Diesh, C.M.; Hayes, R.D.; Munoz-Torres, M.; Helt, G.; Goodstein, D.M.; Elsik, C.G.; Lewis, S.E.; Stein, L.; et al. JBrowse: A Dynamic Web Platform for Genome Visualization and Analysis. Genome Biol. 2016, 17, 66. [Google Scholar] [CrossRef]
- Berardini, T.Z.; Reiser, L.; Li, D.; Mezheritsky, Y.; Muller, R.; Strait, E.; Huala, E. The Arabidopsis Information Resource: Making and Mining the “Gold Standard” Annotated Reference Plant Genome: Tair: Making and Mining the “Gold Standard” Plant Genome. Genesis 2015, 53, 474–485. [Google Scholar] [CrossRef]
- The UniProt Consortium; Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Hawkins, C.; Ginzburg, D.; Zhao, K.; Dwyer, W.; Xue, B.; Xu, A.; Rice, S.; Cole, B.; Paley, S.; Karp, P.; et al. Plant Metabolic Network 15: A Resource of Genome-wide Metabolism Databases for 126 Plants and Algae. J. Integr. Plant Biol. 2021, 63, 1888–1905. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Xin, M.; Li, C.; Khoo, H.E.; Li, L.; He, X.; Yi, P.; Tang, Y.; Sun, J. Dynamic Analyses of Transcriptome and Metabolic Profiling: Revealing Molecular Insight of Aroma Synthesis of Mango (Mangifera indica L. Var. Tainong). Front. Plant Sci. 2021, 12, 666805. [Google Scholar] [CrossRef]
- Dautt-Castro, M.; Ochoa-Leyva, A.; Contreras-Vergara, C.A.; Muhlia-Almazán, A.; Rivera-Domínguez, M.; Casas-Flores, S.; Martinez-Tellez, M.A.; Sañudo-Barajas, A.; Osuna-Enciso, T.; Baez-Sañudo, M.A.; et al. Mesocarp RNA-Seq Analysis of Mango (Mangifera indica L.) Identify Quarantine Postharvest Treatment Effects on Gene Expression. Sci. Hortic. 2018, 227, 146–153. [Google Scholar] [CrossRef]
- Pilkington, S.M.; Montefiori, M.; Galer, A.L.; Neil Emery, R.J.; Allan, A.C.; Jameson, P.E. Endogenous Cytokinin in Developing Kiwifruit Is Implicated in Maintaining Fruit Flesh Chlorophyll Levels. Ann. Bot. 2013, 112, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Bottcher, C.; Boss, P.K.; Davies, C. Increase in Cytokinin Levels during Ripening in Developing Vitis vinifera Cv. Shiraz Berries. Am. J. Enol. Vitic. 2013, 64, 527–531. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, C.; Pervaiz, T.; Zhao, P.; Liu, Z.; Wang, B.; Wang, C.; Zhang, L.; Fang, J.; Qian, J. Jasmonic Acid Involves in Grape Fruit Ripening and Resistant against Botrytis cinerea. Funct. Integr. Genom. 2016, 16, 79–94. [Google Scholar] [CrossRef]
- Fenn, M.A.; Giovannoni, J.J. Phytohormones in Fruit Development and Maturation. Plant J. 2021, 105, 446–458. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The Subread Aligner: Fast, Accurate and Scalable Read Mapping by Seed-and-Vote. Nucleic Acids Res. 2013, 41, e108. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
Dataset Name | Experiment Number | Description | Publication |
---|---|---|---|
‘Alphonso’ multiple tissues | 7 | Root, bark, leaf, flower, peel, pulp, and seed in control conditions used for the annotation of the ‘Alphonso’ genome | [5] |
Pulp and peel ripening | 16 | Pulp and peel ripening of ‘Hongyu’, ‘Guire-82’, and ‘Sensation’, which show different coloration over maturation | [5] |
‘Chokanan’ pulp ripening | 2 | Pulp ripening in ‘Chokanan’ | [9] |
‘Chokanan’ and ‘Golden phoenix’ pulp ripening | 4 | Pulp ripening of varieties showing different pulp firmness | [10] |
‘Kent’ pulp ripening | 2 | Pulp ripening in ‘Kent’ | [8] |
‘Tainong’ and ‘Renong’ pulp ripening | 8 | Time series of pulp ripening of two varieties with different fruit sweetness | [11] |
‘Tainong’ pulp ripening | 8 | Time series of pulp ripening | [23] |
‘Keitt’ peel ripening | 2 | Peel ripening in ‘Keitt’ | [12] |
‘Keitt’ peel storage | 7 | Peel response to storage in low temperatures | [13] |
‘Shelly’ peel hot water treatment | 8 | Time series of peel response to hot water treatment | [14] |
‘Ataulfo’ pulp quarantine postharvest treatment | 4 | Pulp ripening quarantine postharvest treatment | [24] |
‘Shelly’ peel Colletotrichum gloeosporioides treatment | 12 | Time series of peel in response to C. gloeosporioides | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Ollé, A.; Bullones, A.; Hormaza, J.I.; Mueller, L.A.; Fernandez-Pozo, N. MangoBase: A Genomics Portal and Gene Expression Atlas for Mangifera indica. Plants 2023, 12, 1273. https://doi.org/10.3390/plants12061273
Gómez-Ollé A, Bullones A, Hormaza JI, Mueller LA, Fernandez-Pozo N. MangoBase: A Genomics Portal and Gene Expression Atlas for Mangifera indica. Plants. 2023; 12(6):1273. https://doi.org/10.3390/plants12061273
Chicago/Turabian StyleGómez-Ollé, Aynhoa, Amanda Bullones, Jose I. Hormaza, Lukas A. Mueller, and Noe Fernandez-Pozo. 2023. "MangoBase: A Genomics Portal and Gene Expression Atlas for Mangifera indica" Plants 12, no. 6: 1273. https://doi.org/10.3390/plants12061273