Holistic Photoprotection, Broad Spectrum (UVA-UVB), and Biological Effective Protection Factors (BEPFs) from Baccharis antioquensis Hydrolysates Polyphenols
Abstract
:1. Introduction
2. Results
2.1. Extraction of Metabolites from Dried Plant Material of Baccharis antioquensis
2.2. Chemical Characterization
2.2.1. HPLC–DAD Analysis
2.2.2. UPLC–ESI–MS/MS Analysis
2.3. Cellular Cytotoxicity of PME
2.4. Evaluation of Photoprotection and Photostability
3. Discussion
4. Materials and Methods
4.1. Reagents and Plant Material
4.2. Establishment of the Conditions for the Extraction of Metabolites from Dried Plant Material of Baccharis antioquensis
- Assay 1. Sequence extractions of DPM was carried out using solvents of different polarities, as follows: hexane, dichloromethane, ethyl acetate, ethanol, and methanol. The DPM was exposed to the solvent by maceration for 24 h, this procedure was carried out three times. Then, the DPM obtained was dried at room temperature and continued with the following solvent in order of polarity, taking a 1:20 (p/v) DPM-solvent ratio for each extraction. All extractions were performed in triplicate (Figure S1).
- Assay 2. The DPM was treated with hexane 1:20 (w/v) for 2 h with ultrasound exposure (Branson, 2510E-MT), to remove lipids compounds. Then, the solvent was removed by centrifugation, decantation, and drying at room temperature for 24 h. Subsequently, extractions of DPM were made with three different solvents; this procedure was carried out twice with a DPM–solvent ratio of 1:20 (p/v) using a different composition of solvents, as follows: ethanol, ethanol:water (50:50), and solution alkaline 3.0 M. The DPM extraction technique was carried out first by mechanical disruption and subsequent exposure to ultrasound for 2 h at a controlled temperature of 25 °C with the corresponding solvent. Then, it was centrifuged, decanted, and the solvent was removed by rotary evaporation at 35 °C and/or subsequent lyophilization depending on solvent type. All extractions were performed in triplicate.
- Assay 3. The DPM was degreased with dichloromethane in a 1:10 (w/v) ratio for 24 h. This treatment was carried out three times, and the DPM resulting was dried at 35 °C in an oven (Memmert, UF55) for 24 h. Subsequently, the extraction by maceration with methanol was realized in a 1:10 w/v ratio for 24 h; this procedure was repeated five times and the methanolic extract obtained was dried in a rotary evaporator (IKA, RV10 basic) at 40 °C. The dry methanolic extract (DME) was stored at room temperature and protected from light. All extractions were performed in triplicate.
4.3. Hydrolysis of Methanolic Extract of Baccharis antioquensis
4.4. Purification of the Hydrolyzed Extract of Baccharis antioquensis
4.5. Chemical Characterization
4.5.1. UV–Vis Absorption Spectra and Relative Absorption Coefficients (RAC) in the UVA–UVB Range
4.5.2. Total Phenol Content
4.5.3. Evaluation of the Inhibition Capacity of DPPH
4.5.4. High Performance Liquid Chromatography HPLC–DAD
4.5.5. UPLC–ESI–MS/MS Analysis
4.6. Cytotoxicity Test
4.7. Development of the Emulsion-Type Cosmetic Formulation
4.8. In Vitro Evaluation of Photoprotective Efficacy
4.9. Photostability of Sunscreen Formulations
4.10. In Vitro Evaluation of BEPF’s
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Colantonio, S.; Dawson, A.; Lin, X.; Beecker, J. Sunscreen Application, Safety, and Sun Protection: The Evidence. J. Cutan. Med. Surg. 2019, 23, 357–369. [Google Scholar] [CrossRef] [PubMed]
- de Gruijl, F.R. Skin Cancer and Solar UV Radiation. Eur. J. Cancer 1999, 35, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Osterwalder, U.; Jung, K. Ex Vivo Evaluation of Radical Sun Protection Factor in Popular Sunscreens with Antioxidants. J. Am. Acad. Dermatol. 2011, 65, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Giraldo, J.C.; Atehortúa, L.L.; Puertas-Mejía, M.Á.; Mejía, J.C.; Atehortúa, L.L.; Puertas, M.Á. Foto-Protección: Mecanismos Bioquímicos, Punto de Partida Hacia Mejores Filtros Solares. Dermatol. Cosmética Médica Y Quirúrgica 2014, 12, 272–281. [Google Scholar]
- Wang, S.Q.; Lim, H.W. Principles and Practice of Photoprotection; Springer: Cham, Switzerland, 2016; pp. 1–487. [Google Scholar] [CrossRef]
- Ghetti, F.; Checcucci, G.; Bornman, J.F. (Eds.) Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Diffey, B.L. The Impact of Topical Photoprotectants Intended for Daily Use on Lifetime Ultraviolet Exposure. J. Cosmet. Dermatol. 2011, 10, 245–250. [Google Scholar] [CrossRef]
- Mancebo, S.E.; Hu, J.Y.; Wang, S.Q. Sunscreens: A Review of Health Benefits, Regulations, and Controversies. Dermatol. Clin. 2014, 32, 427–438. [Google Scholar] [CrossRef]
- de Gruijl, F.R.; Van der Leun, J.C. Estimate of the Wavelength Dependency of Ultraviolet Carcinogenesis in Humans and Its Relevance to the Risk Assessment of a Stratospheric Ozone Depletion. Health Phys. 1994, 67, 319–325. [Google Scholar] [CrossRef]
- Setlow, R.B. The Wavelengths in Sunlight Effective in Producing Skin Cancer: A Theoretical Analysis. Proc. Natl. Acad. Sci. USA 1974, 71, 3363–3366. [Google Scholar] [CrossRef] [Green Version]
- De Fabo, E.; Noonan, F.P. Mechanism of Immune Suppression by Ultraviolet Irradiation In Vivo. J. Exp. Med. 1983, 157, 84–98. [Google Scholar] [CrossRef]
- Pikulski, M.; Brodbelt, J.S. Differentiation of Flavonoid Glycoside Isomers by Using Metal Complexation and Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 1437–1453. [Google Scholar] [CrossRef] [Green Version]
- de la Coba, F.; Aguilera, J.; Korbee, N.; de Gálvez, M.V.; Herrera-Ceballos, E.; Álvarez-Gómez, F.; Figueroa, F.L. UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (Maas) through Different Biological Effective Protection Factors (BEPFs). Mar. Drugs 2019, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Tonolli, P.N.; Tasso, T.T.; Baptista, M.S. Chapter 10—Nanocosmetics for Broadband Light Protection Sun Care Products. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Rajendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–203. ISBN 978-0-12-822286-7. [Google Scholar]
- Millington, K.R.; Osmond, M.J.; McCall, M.J. Detecting Free Radicals in Sunscreens Exposed to UVA Radiation Using Chemiluminescence. J. Photochem. Photobiol. B Biol. 2014, 133, 27–38. [Google Scholar] [CrossRef]
- Barbosa, J.; Neto, D.; Freire, R.; Rocha, J.; Fechine, L.; Denardin, J.; Valentini, A.; de Araújo, T.; Mazzetto, S.; Fechine, P. Ultrafast Sonochemistry-Based Approach to Coat TiO2 Commercial Particles for Sunscreen Formulation. Ultrason. Sonochem. 2018, 48, 340–348. [Google Scholar] [CrossRef]
- Serpone, N.; Dondi, D.; Albini, A. Inorganic and Organic UV Filters: Their Role and Efficacy in Sunscreens and Suncare Products. Inorg. Chim. Acta 2007, 360, 794–802. [Google Scholar] [CrossRef]
- Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection: Part II. Sunscreen: Development, Efficacy, and Controversies. J. Am. Acad. Dermatol. 2013, 69, 867.e1–867.e14. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Henao-Zuluaga, K.; Gallardo, C.; Atehortúa, L.; Puertas-Mejía, M.A. Novel In Vitro Antioxidant and Photoprotection Capacity of Plants from High Altitude Ecosystems of Colombia. Photochem. Photobiol. 2016, 92, 150–157. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Gallardo, C.; Puertas-Mejía, M.A. Selected Extracts from High Mountain Plants as Potential Sunscreens with Antioxidant Capacity. Photochem. Photobiol. 2022, 98, 211–219. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Scaiano, J.C.; Gallardo-cabrera, C.; Puertas-Mejía, M.A. Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis Antioquensis-Based Hybrid Biomaterial. Antioxidants 2021, 10, 1904. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Winkler, R.; Gallardo, C.; Sánchez-Zapata, A.M.; Puertas-Mejía, M.A. Photoprotective Potential of Baccharis Antioquensis (Asteraceae) as Natural Sunscreen. Photochem. Photobiol. 2016, 92, 742–752. [Google Scholar] [CrossRef]
- Guidi, L.; Tattini, M.; Landi, M. How Does Chloroplast Protect Chlorophyll Against Excessive Light? In Chlorophyll; IntechOpen: London, UK, 2017; ISBN 978-953-51-3107-6. [Google Scholar]
- Friedman, M.; Jürgens, H.S. Effect of PH on the Stability of Plant Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Gallardo, C.; Puertas-Mejía, M.A. In Vitro Photoprotection and Antioxidant Capacity of Sphagnum Meridense Extracts, a Novel Source of Natural Sunscreen from the Mountains of Colombia. Pure Appl. Chem. 2015, 87, 961–970. [Google Scholar] [CrossRef]
- Kajdžanoska, M.; Petreska, J.; Stefova, M. Comparison of Different Extraction Solvent Mixtures for Characterization of Phenolic Compounds in Strawberries. J. Agric. Food Chem. 2011, 59, 5272–5278. [Google Scholar] [CrossRef] [PubMed]
- Rossi, Y.E.; Bohl, L.P.; Vanden Braber, N.L.; Ballatore, M.B.; Escobar, F.M.; Bodoira, R.; Maestri, D.M.; Porporatto, C.; Cavaglieri, L.R.; Montenegro, M.A. Polyphenols of Peanut (Arachis hypogaea L.) Skin as Bioprotectors of Normal Cells. Studies of Cytotoxicity, Cytoprotection and Interaction with ROS. J. Funct. Foods 2020, 67, 103862. [Google Scholar] [CrossRef]
- Mendoza-Meza, D.L.; España-Puccini, P. Cytotoxic Andgenotoxic Activity of Phenolic Fractions from Ulomoides Dermestoides Fairmaire, 1893 (Coleoptera, Tenebrionidae), in HaCaT Cells. TIP 2016, 19, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Milanezi, F.G.; Meireles, L.M.; de Christo Scherer, M.M.; de Oliveira, J.P.; da Silva, A.R.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Guimarães, M.C.C.; Scherer, R. Antioxidant, Antimicrobial and Cytotoxic Activities of Gold Nanoparticles Capped with Quercetin. Saudi Pharm. J. 2019, 27, 968–974. [Google Scholar] [CrossRef]
- ISO 24443:2012; Determination of Sunscreen UVA Photoprotection In Vitro. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 24444:2010; Sun Protection Test Methods—In Vivo Determination of the Sun Protection Factor (SPF). International Organization for Standardization: Geneva, Switzerland, 2010.
- Vega, J.; Bonomi-Barufi, J.; Luis Gómez-Pinchetti, J.; Figueroa, F.L. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar. Drugs 2020, 18, 659. [Google Scholar] [CrossRef]
- Schneider, G.; Figueroa, F.L.; Vega, J.; Chaves, P.; Álvarez-Gómez, F.; Korbee, N.; Bonomi-Barufi, J. Photoprotection Properties of Marine Photosynthetic Organisms Grown in High Ultraviolet Exposure Areas: Cosmeceutical Applications. Algal Res. 2020, 49, 101956. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Liu, J.; Jia, L.; Kan, J.; Jin, C.-h. In Vitro and in Vivo Antioxidant Activity of Ethanolic Extract of White Button Mushroom (Agaricus bisporus). Food Chem. Toxicol. 2013, 51, 310–316. [Google Scholar] [CrossRef]
- Puertas-Mejía, M.A.M.A.; Rincón-Valencia, S.; Mejía-giraldo, J.C.J.C. Screening of UVA/UVB Absorption and in Vitro Antioxidant Capacity of Bejaria Aestuans, Cavendishia Pubescens and Cavendishia Bracteata Leaf Extracts. Res. J. Med. Plant 2015, 9, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Gómez, F.; Korbee, N.; Casas-Arrojo, V.; Abdala-Díaz, R.T.; Figueroa, F.L. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules 2019, 24, 341. [Google Scholar] [CrossRef] [Green Version]
- Couteau, C.; Faure, A.; Fortin, J.; Paparis, E.; Coiffard, L.J.M. Study of the Photostability of 18 Sunscreens in Creams by Measuring the SPF In Vitro. J. Pharm. Biomed. Anal. 2007, 44, 270–273. [Google Scholar] [CrossRef]
- Couteau, C.; El-Boury, S.; Paparis, E.; Sébille-Rivain, V.; Coiffard, L.J.M. In Vitro UV-A Protection Factor (PF-UVA) of Organic and Inorganic Sunscreens. Pharm. Dev. Technol. 2009, 14, 369–372. [Google Scholar] [CrossRef]
- Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L.J.M. Quercetin and Rutin as Potential Sunscreen Agents: Determination of Efficacy by an in Vitro Method. J. Nat. Prod. 2008, 71, 1117–1118. [Google Scholar] [CrossRef]
- Jarzycka, A.; Lewińska, A.; Gancarz, R.; Wilk, K.A. Assessment of Extracts of Helichrysum Arenarium, Crataegus Monogyna, Sambucus Nigra in Photoprotective UVA and UVB; Photostability in Cosmetic Emulsions. J. Photochem. Photobiol. B Biol. 2013, 128, 50–57. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Winkler, R.; Puertas-Mejía, M. Novel UV Filters from Pentacalia Pulchella Extracts with Photoprotective Properties and Antioxidant Activity. Photochem. Photobiol. Sci. 2021, 20, 1585–1597. [Google Scholar] [CrossRef]
Methodology | Solvent | TPC (mg GAE/g Extract) | EC50 (g Extract/mmol DPPH) |
---|---|---|---|
Assay 1 | Absolute ethanol | 206.6 ± 1.9 a | 0.31 ± 0.02 a |
Methanol | 248.6 ± 1.7 b | 0.24 ± 0.01 b | |
Assay 2 | Ethanol 96% | 208.5 ± 5.1 a | 0.30 ± 0.03 a |
Ethanol 50% | 213.3 ± 4.7 c | 0.23 ± 0.01 b | |
Assay 3 | Methanol—DME | 206.3 ± 4.6 a | 0.35 ± 0.02 a |
Methanol—PME | 417.6 ± 1.8 d | 0.11 ± 0.003 c | |
Ascorbic acid | - | - | 0.10 ± 0.001 c |
Photoprotection and Photostability Parameter | Exposure Time in the Solar Simulator | ||||
---|---|---|---|---|---|
0 min | 30 min | 60 min | 90 min | 120 min | |
DME | |||||
SPFin vitro | 21.9 ± 3.3 a | 6.0 ± 0.6 | 5.0 ± 0.4 | 4.0 ± 0.4 | 4.0 ± 0.3 a |
%SPFeffective | 100 | 27.4 | 22.8 | 18.3 | 18.3 |
UVAPF | 6.0 ± 0.5 a | -- | -- | -- | 3.0 ± 0.4 a |
%UVAPFeffective | 100 | -- | -- | -- | 50.0 |
374 | 378 | 379 | 380 | 381 | |
UVA/UVB | 0.702 | 0.757 | 0.784 | 0.798 | 0.803 |
SPF /UVAPF | 3.6 | -- | -- | -- | 1.3 |
PME | |||||
SPFin vitro | 9.4 ± 0.7 b | 8.0 ± 0.6 | 9.0 ± 0.6 | 9.0 ± 1.2 | 9.2 ± 1.0 b |
%SPFeffective | 100 | 85.1 | 95.7 | 95.7 | 97.9 |
UVAPF | 8.0 ± 0.6 b | -- | -- | -- | 8.0 ± 0.9 b |
%UVAPFeffective | 100 | -- | -- | -- | 100 |
389 | 389 | 388 | 388 | 388 | |
UVA/UVB | 0.947 | 0.941 | 0.926 | 0.918 | 0.907 |
SPF /UVAPF | 3.6 | -- | -- | -- | 1.1 |
DME: PME (70:30) | |||||
SPFin vitro | 18.8 ± 1.4 a | 9.0 ± 0.6 | 8.0 ± 0.3 | 7.8 ± 0.4 | 7.8 ± 0.7 b |
%SPFeffective | 100 | 47.9 | 43.2 | 41.5 | 41.5 |
UVAPF | 8.0 ± 0.4 b | -- | -- | -- | 6.0 ± 0.3 c,e |
%UVAPFeffective | 100 | -- | -- | -- | 75 |
383 | 384 | 384 | 385 | 385 | |
UVA/UVB | 0.812 | 0.841 | 0.852 | 0.856 | 0.861 |
SPF /UVAPF | 2.3 | -- | -- | -- | 1.3 |
DME: PME (80:20) | |||||
SPFin vitro | 21.0 ± 3.7 a | 9.0 ± 1.3 | 8.5 ± 1.1 | 8.0 ± 1.1 | 7.5 ± 1.2 b,c |
%SPFeffective | 100 | 42.8 | 40.5 | 38.1 | 35.7 |
UVAPF | 5.0 ± 0.6 a | -- | -- | -- | 5.0 ± 0.5 c |
%UVAPFeffective | 100 | -- | -- | -- | 100 |
381 | 382 | 383 | 384 | 384 | |
UVA/UVB | 0.795 | 0.808 | 0.826 | 0.832 | 0.834 |
SPF /UVAPF | 4.2 | -- | -- | -- | 1.5 |
Sample | DME | PME | Positive Control (Sunscreen SPF 16) | Negative Control (Base Formulation) |
---|---|---|---|---|
Parameter | ||||
Biological effects mediated by UVA | ||||
Elastosis | 5.6 ± 0.5 a | 10.9 ± 1.5 b | 11.0 ± 0.4 b | 1.0 ± 0.0 c |
Photoaging | 8.5 ± 1.1 a | 11.3 ± 1.4 b | 28.7 ± 2.3 c | 1.0 ± 0.0 d |
Lipid peroxidation | 6.1 ± 0.4 a | 7.6 ± 0.8 b | 13.9 ± 0.8 c | 1.0 ± 0.0 d |
Biological effects mediated by UVB | ||||
DNA damage | 10.5 ± 1.3 a | 6.1 ± 0.6 b | 13.9 ± 0.6 c | 1.0 ± 0.0 d |
Photocarcinogenesis (NMSC) | 9.5 ± 1.1 a | 7.2 ± 0.7 b | 12.1 ± 0.6 c | 1.0 ± 0.0 d |
Immunosuppression | 10.5 ± 1.4 a | 6.9 ± 0.7 b | 24.3 ± 2.6 c | 1.1 ± 0.0 d |
Singlet oxygen production | 9.6 ± 1.3 a | 7.9 ± 0.8 a | 25.8 ± 2.8 b | 1.0 ± 0.0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monsalve-Bustamante, Y.A.; Figueroa, F.L.; Vega, J.; Moreira, B.R.; Puertas-Mejía, M.; Mejía-Giraldo, J.C. Holistic Photoprotection, Broad Spectrum (UVA-UVB), and Biological Effective Protection Factors (BEPFs) from Baccharis antioquensis Hydrolysates Polyphenols. Plants 2023, 12, 979. https://doi.org/10.3390/plants12050979
Monsalve-Bustamante YA, Figueroa FL, Vega J, Moreira BR, Puertas-Mejía M, Mejía-Giraldo JC. Holistic Photoprotection, Broad Spectrum (UVA-UVB), and Biological Effective Protection Factors (BEPFs) from Baccharis antioquensis Hydrolysates Polyphenols. Plants. 2023; 12(5):979. https://doi.org/10.3390/plants12050979
Chicago/Turabian StyleMonsalve-Bustamante, Yéssica A., Félix López Figueroa, Julia Vega, Bruna Rodrigues Moreira, Miguel Puertas-Mejía, and Juan C. Mejía-Giraldo. 2023. "Holistic Photoprotection, Broad Spectrum (UVA-UVB), and Biological Effective Protection Factors (BEPFs) from Baccharis antioquensis Hydrolysates Polyphenols" Plants 12, no. 5: 979. https://doi.org/10.3390/plants12050979