Volatilome Analysis of Soursop Fruits for the Determination of Kairomone Components That Attract the Annonaceae Fruit Weevil (Optatus palmaris Pascoe)
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Plant Collection
3.2. Insect Collection and Rearing Conditions
3.3. Volatile Collection
3.4. Gas Chromatography–Mass Spectrometry (GC–MS)
3.5. Olfactometry
3.6. Univariate Data Analysis
3.7. Multivariate Data Analysis (MVDA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leite, D.O.; de FA Nonato, C.; Camilo, C.J.; de Carvalho, N.K.; da Nobrega, M.G.; Pereira, R.C.; da Costa, J.G. Annona genus: Traditional uses, phytochemistry and biological activities. Curr. Pharm. Des. 2020, 26, 4056–4091. [Google Scholar] [CrossRef]
- George, A.P.; Nissen, R.J. Annonaceous fruits. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; Volume 1, pp. 239–243. [Google Scholar]
- Padmanabhan, P.; Paliyath, G. Annonaceous Fruits. In The Encyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 1, pp. 169–173. [Google Scholar]
- Jiménez-Zurita, J.O.; Balois-Morales, R.; Alia-Tejacal, I.; Juárez-López, P.; Jiménez-Ruíz, E.I.; Sumaya-Martínez, M.T.; Bello-Lara, J.E. Tópicos del manejo poscosecha del fruto de guanábana (Annona muricata L.). Rev. Mex. Cienc. Agríc. 2017, 8, 1155–1167. [Google Scholar]
- Ojeda, G.; Coronado, J.; Nava, R.; Sulbarán, B.; Araujo, D.; Cabrera, L. Caracterización fisicoquímica de la pulpa de la guanábana (Annona Muricata) cultivada en el occidente de Venezuela. Bol. Cent. Investig. Biol. 2007, 41, 151–160. [Google Scholar]
- Solís, F.J.A.; Amador, C.; Hernández, M.R.; Duran, M.C. Caracterización fisicoquímica y comportamiento térmico del aceite de “almendra” de guanábana (Annona muricata L). Grasas Y Aceites 2010, 61, 58–66. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Almeida, P.P.; Brito, M.L.; Cruz, B.O.; Costa, N.S.; Ito, R.V.A.; Mota, J.C.; Bertolo, M.R.; Morais, S.T.; Neto, R.P.; et al. In vivo functional and health benefits of a prebiotic soursop whey beverage processed by high-intensity ultrasound: Study with healthy Wistar rats. Food Chem. 2022, 380, 132193. [Google Scholar] [CrossRef]
- Pennisi, A.M.; Agosteo, G.E. Foliar alterations by Colleotrichum gloeosporioides on Annona. Inf. Fitopatol. 1994, 44, 63–64. [Google Scholar]
- Zarate-Reyes, R.D. Diseases of the soursop, Annona muricata L., in Colombia: Characteristics, management and control. Fitopatol. Col. 1995, 19, 68–74. [Google Scholar]
- Bradie, N.; Schauss, A.G. Soursop (Annona muricata L.) uses: Composition, nutritional value, medicinal uses, and toxicology. In Bioactive Foods in Promoting Health: Fruits and Vegetables, 1st ed.; Watson, R.R., Preedy, V., Eds.; Academic Press: Oxford, MI, USA, 2010; Volume 1, pp. 621–643. [Google Scholar]
- Hernández-Fuentes, L.M.; Bautista-Martínez, N.; Carrillo-Sánchez, J.L.; Sánchez-Arroyo, H.; Urías-López, M.A.; Salas-Araiza, M.D. Control del barrenador de las semillas, Bephratelloides cubensis Ashmead (Hymenoptera: Eurytomidae) en guanábana, Annona muricata L. (Annonales: Annonaceae). Acta Zool. Mex. 2008, 24, 199–206. [Google Scholar] [CrossRef]
- Maldonado, E.; Hernández, L.M.; Luna, G.; Gómez, J.R.; Flores, R.J.; Orozco-Santos, M. Bioecology of Optatus palmaris Pascoe (Coleoptera:Curculionidae) in Annona muricata L. Southw. Entomol. 2014, 39, 773–782. [Google Scholar] [CrossRef]
- Hernández, F.L.M.; Castañeda, V.A.; Urías, L.M.A. Weevil borers in tropical fruit crops: Importance, biology and management. In Insect Physiology and Ecology, 2nd ed.; Shields, V.D.C., Ed.; Intech Open: Rijeka, Croatia, 2017; Volume 3, pp. 154–196. [Google Scholar]
- Hernández, F.L.M.; Nolasco, G.Y.; Orozco, S.M.; Montalvo, G.E. Toxicidad de insecticidas contra (Optatus palmaris Pascoe) en guanábana. Rev. Mex. Cienc. Agríc. 2021, 12, 49–60. [Google Scholar] [CrossRef]
- Pineda-Ríos, J.M.; Cibrián-Tovar, J.; Hernández-Fuentes, L.M.; López-Romero, R.M.; Soto-Rojas, L.; Romero-Nápoles, J.; LLanderal-Cazares, C.; Salomé-Abarca, L.F. α-terpineol: An Aggregation Pheromone in Optatus palmaris (Coleoptera: Curculionidae) (Pascoe, 1889) Enhanced by Its Host-Plant Volatiles. Molecules 2021, 26, 2861. [Google Scholar] [CrossRef]
- Lako, J.; Trenerry, V.C.; Wahlqvist, M.; Wattanapenpaiboon, N.; Sotheeswaran, S.; Premier, R. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 2007, 101, 1727–1741. [Google Scholar] [CrossRef]
- Pino, J.A.; Agüero, J.; Marbot, R. Volatile components of soursop (Annona muricata L.). J. Essent. Oil Res. 2001, 13, 140–141. [Google Scholar] [CrossRef]
- Cheong, K.W.; Tan, C.P.; Mirhosseini, H.; Hamid, N.S.A.; Osman, A.; Basri, M. Equilibrium headspace analysis of volatile flavor compounds extracted from soursop (Annona muricata) using solid-phase microextraction. Food Res. Int. 2010, 43, 1267–1276. [Google Scholar] [CrossRef]
- Cheong, K.W.; Tan, C.P.; Mirhosseini, H.; Chin, S.T.; Man, Y.B.C.; Hamid, N.S.A.; Osman, A.; Basri, M. Optimization of equilibrium headspace analysis of volatile flavor compounds of Malaysian soursop (Annona muricata): Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC× GC-TOFMS). Food Chem. 2011, 125, 1481–1489. [Google Scholar] [CrossRef]
- Galvao, S.K.L.D.; Nogueira, J.P.; Narain, N. HS-SPME optimization and extraction of volatile compounds from soursop (Annona muricata L.) pulp with emphasis on their characteristic impact compounds. Food Sci. Technol. 2017, 37, 250–260. [Google Scholar]
- Wongkaew, M.; Sangta, J.; Chansakaow, S.; Jantanasakulwong, K.; Rachtanapun, P.; Sommano, S.R. Volatile profiles from over-ripe purée of Thai mango varieties and their physiochemical properties during heat processing. PLoS ONE 2021, 16, e0248657. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Cardozo, C.J.; Villacorta-Lozano, V.; Yepes-Betancur, D.P.; Ciro-Velásquez, H.J.; Cartagena-Valenzuela, J.R. Physiological and physico-chemical characterization of the soursop fruit (Annona muricata L. cv. Elita). Rev. Fac. Nac. Agron. Medellín 2012, 65, 6477–6486. [Google Scholar]
- Salomé-Abarca, L.F.; van der Pas, J.; Kim, H.K.; van Uffelen, G.A.; Klinkhamer, P.G.; Choi, Y.H. Metabolic discrimination of pine resins using multiple analytical platforms. Phytochemistry 2018, 155, 37–44. [Google Scholar] [CrossRef]
- Ekundayo, O. A review of the volatiles of the Annonaceae. J. Essent. Oil Res. 1989, 1, 223–245. [Google Scholar] [CrossRef]
- Schäffler, I.; Steiner, K.E.; Haid, M.; van Berkel, S.S.; Gerlach, G.; Johnson, S.D.; Wessjohann, S.D.; Dötterl, S. Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci. Rep. 2015, 5, 12779. [Google Scholar] [CrossRef]
- Bellavia, V.; Natangelo, M.; Fanelli, R.; Rotilio, D. Analysis of benzothiazole in Italian wines using headspace solid-phase microextraction and gas chromatography− mass spectrometry. J. Agric. Food Chem. 2000, 48, 1239–1242. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spectrometric identification of organic compounds. J. Chem. Edu. 1962, 39, 546. [Google Scholar] [CrossRef]
- Garagounis, C.; Delkis, N.; Papadopoulou, K.K. Unraveling the roles of plant specialized metabolites: Using synthetic biology to design molecular biosensors. New Phytol. 2021, 231, 1338–1352. [Google Scholar] [CrossRef]
- Honda, K. Chemical basis of differential oviposition by lepidopterous insects. Arch. Insect Biochem. Physiol. 1995, 30, 1–23. [Google Scholar] [CrossRef]
- Johnston, J.C.; Welch, R.C.; Hunter, G.L.K. Volatile constituents of litchi (Litchi chinesis Sonn.). J. Agric. Food Chem. 1980, 28, 859–861. [Google Scholar] [CrossRef]
- Engel, K.H.; Tressl, R. Studies on the volatile components of two mango varieties. J. Agric. Food Chem. 1983, 31, 796–801. [Google Scholar] [CrossRef]
- Clery, R.A.; Hammond, C.J. New sulfur components of pink guava fruit (Psidium guajava L.). J. Essent. Oil Res. 2008, 20, 315–317. [Google Scholar] [CrossRef]
- Ulrich, D.; Wijaya, C.H. Volatile patterns of different papaya (Carica papaya L.) varieties. J. Appl. Bot. Food Qual. 2010, 83, 128–132. [Google Scholar]
- Cheong, M.W.; Liu, S.Q.; Yeo, J.; Chionh, H.K.; Pramudya, K.; Curran, P.; Yu, B. Identification of aroma-active compounds in Malaysian pomelo (Citrus grandis (L.) Osbeck) peel by gas chromatography-olfactometry. J. Essent. Oil Res. 2011, 23, 34–42. [Google Scholar] [CrossRef]
- Ong, P.K.; Acree, T.E.; Lavin, E.H. Characterization of volatiles in rambutan fruit (Nephelium lappaceum L.). J. Agric. Food Chem. 1998, 46, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.S.M. Volatile esters and sulfur compounds in durians & a suggested approach to enhancing economic value of durians. Malays. J. Sustain. Agric. 2019, 3, 5–15. [Google Scholar]
- Idstein, H.; Herres, W.; Schreier, P. High-resolution gas chromatography-mass spectrometry and-Fourier transform infrared analysis of cherimoya (Annona cherimolia, Mill.) volatiles. J. Agric. Food Chem. 1984, 32, 383–389. [Google Scholar] [CrossRef]
- Dong, B.; Tang, H.; Zhu, D.; Yao, Q.; Han, H.; He, K.; Ding, X. Benzothiazole Treatment Regulates the Reactive Oxygen Species Metabolism and Phenylpropanoid Pathway of Rosa roxburghii Fruit to Delay Senescence During Low Temperature Storage. Front. Plant Sci. 2021, 12, 753261. [Google Scholar] [CrossRef]
- Djuidje, E.N.; Barbari, R.; Baldisserotto, A.; Durini, E.; Sciabica, S.; Balzarini, J.; Liekens, S.; Vertuani, S.; Manfredini, S. Benzothiazole derivatives as multifunctional antioxidant agents for skin damage: Structure–activity relationship of a scaffold bearing a five-membered ring system. Antioxidants 2022, 11, 407. [Google Scholar] [CrossRef]
- Addesso, K.M.; McAuslane, H.J.; Alborn, H.T. Attraction of pepper weevil to volatiles from damaged pepper plants. Entomol. Exp. Appl. 2011, 138, 1–11. [Google Scholar] [CrossRef]
- Bautista-San Juan, A.; Cibrián-Tovar, J.; López-Romero, R.M.; Bautista-Martínez, N.; Gómez-Domínguez, N.S. Atracción de adultos de Anthonomus eugenii (Cano) a mezclas de compuestos volátiles Sintéticos. Southw. Entomol. 2019, 44, 743–754. [Google Scholar] [CrossRef]
- Magalhães, D.M.; Borges, M.; Laumann, R.A.; Woodcock, C.M.; Withall, D.M.; Pickett, J.A.; Birkett, M.A.; Blassioli-Moraes, M.C. Identification of volatile compounds involved in host location by Anthonomus grandis (Coleoptera: Curculionidae). Front. Ecol. Evol. 2018, 6, 98. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, H.; Sun, Y.; Wu, Z.; Liu, M. The analysis of aroma components for Oenothera odorata Jacq. fresh flowers. Acta Bot. Sin. 1989, 31, 69–72. [Google Scholar]
- Chung, M.S. Volatile compounds of the cultivated dumebuchu (Allium senescens L. var. senescens). Food Sci. Biotechnol. 2010, 19, 1679–1682. [Google Scholar] [CrossRef]
- Abdali, S.A.; Al-Haidarey, M.J.S. Identification of lipid compounds in the plant of Ceratophyllum demersum using two different solvents. Mater. Today: Proc. 2020, 60, 1596–1605. [Google Scholar]
- Baroffio, C.A.; Sigsgaard, L.; Ahrenfeldt, E.J.; Borg-Karlson, A.K.; Bruun, S.A.; Cross, J.V.; Fontain, M.T.; Hall, D.; Mozuraitis, R.; Ralle, B.; et al. Combining plant volatiles and pheromones to catch two insect pests in the same trap: Examples from two berry crops. Crop Prot. 2018, 109, 1–8. [Google Scholar] [CrossRef]
- Van Tol, R.W.H.M.; Helsen, H.H.M.; Griepink, F.C.; De Kogel, W.J. Female-induced increase of host-plant volatiles enhance specific attraction of aphid male Dysaphis plantaginea (Homoptera: Aphididae) to the sex pheromone. Bull. Entomol. Res. 2009, 99, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Du, H.T.; Li, Y.; Zhu, J.; Liu, F. Host-plant volatiles enhance the attraction of Cnaphalocrocis medinalis (Lepidoptera: Crambidae) to sex pheromone. Chemoecology 2022, 32, 129–138. [Google Scholar] [CrossRef]
- Schmidt-Büsser, D.; Von Arx, M.; Guerin, P.M. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. 2009, 195, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Zhao, H.; Li, J.F.; Zeng, X.D.; Chen, J.J.; Feng, H.L.; Xu, J.W. Synergism of plant volatiles to insect pheromones and related mechanisms. J. Appl. Ecol. 2008, 19, 2533–2537. [Google Scholar]
- Worrell, D.B.; Carrington, C.M.S.; Huber, D.J. Growth, maturation and ripening of soursop (Annona muricata L.) fruit. Sci. Hort. 1994, 57, 7–15. [Google Scholar] [CrossRef]
- Champion, G.C. Biologia Centrali-Americana. Insecta. Coleoptera, Rhynchophora Part 5; Curculionidae. Curculioninae: Porter, London, UK, 1907; Volume 4, p. 513. [Google Scholar]
- Van Den Dool, H.A.N.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Maurer, B.; Hauser, A.; Froidevaux, J.C. (E)-4, 8-dimethyl-1, 3, 7-nonatriene and (E, E)-4, 8, 12-trimethyl-1,3, 7,11-tridecatetraene, two unusual hydrocarbons from cardamom oil. Tetrahedron Lett. 1986, 27, 2111–2112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pineda-Ríos, J.M.; Cibrián-Tovar, J.; López-Romero, R.M.; Hernández-Fuentes, L.M.; Soto-Rojas, L.; Llanderal-Cázares, C.; García-Sosa, P.R.; Salomé-Abarca, L.F. Volatilome Analysis of Soursop Fruits for the Determination of Kairomone Components That Attract the Annonaceae Fruit Weevil (Optatus palmaris Pascoe). Plants 2023, 12, 3898. https://doi.org/10.3390/plants12223898
Pineda-Ríos JM, Cibrián-Tovar J, López-Romero RM, Hernández-Fuentes LM, Soto-Rojas L, Llanderal-Cázares C, García-Sosa PR, Salomé-Abarca LF. Volatilome Analysis of Soursop Fruits for the Determination of Kairomone Components That Attract the Annonaceae Fruit Weevil (Optatus palmaris Pascoe). Plants. 2023; 12(22):3898. https://doi.org/10.3390/plants12223898
Chicago/Turabian StylePineda-Ríos, J. M., J. Cibrián-Tovar, R. M. López-Romero, L. M. Hernández-Fuentes, L. Soto-Rojas, C. Llanderal-Cázares, P. R. García-Sosa, and L. F. Salomé-Abarca. 2023. "Volatilome Analysis of Soursop Fruits for the Determination of Kairomone Components That Attract the Annonaceae Fruit Weevil (Optatus palmaris Pascoe)" Plants 12, no. 22: 3898. https://doi.org/10.3390/plants12223898
APA StylePineda-Ríos, J. M., Cibrián-Tovar, J., López-Romero, R. M., Hernández-Fuentes, L. M., Soto-Rojas, L., Llanderal-Cázares, C., García-Sosa, P. R., & Salomé-Abarca, L. F. (2023). Volatilome Analysis of Soursop Fruits for the Determination of Kairomone Components That Attract the Annonaceae Fruit Weevil (Optatus palmaris Pascoe). Plants, 12(22), 3898. https://doi.org/10.3390/plants12223898