Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels
Abstract
:1. Introduction
2. Results
2.1. Effect of the Exogenous Methionine Application on Maize Seed Germination
2.2. Effect of the Application of Methionine on the Contents of Free Methionine and 5-Methyl-tetrahydrofolate (5-M-THF) in Seeds
2.3. Transcriptome Analysis during Maize Germination
2.4. Differentially Expressed Genes (DEGs) Analysis
2.5. Gene Ontology (GO) Analysis of the DEGs
2.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis of the DEGs
2.7. Validation of DEGs by Quantitative Real-Time PCR (qRT-PCR)
2.8. Multiple Phenylpropanoid Biosynthetic Processes Were Mainly Activated by the Application of Methionine
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Measurement of Free Methionine Contents by Liquid Chromatography Mass Spectrometer (LC/MS)
4.3. Measurement of 5-M-THF Contents by LC/MS
4.4. Transcriptome Sequencing Data Analysis
4.5. Quantitative Real-Time PCR (qRT-PCR)
4.6. Protein–Protein Interaction (PPI) Networks Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-M-THF | 5-methyl-tetrahydrofolate |
ABA | Abscisic acid |
ABI | Abscisic-acid-insensitive transcription factor |
ACCO | 1-aminocyclopropane-1-carboxylate oxidase |
ACS | 1-aminocyclopropane-1-carboxylate synthase |
ADT | Arogenate dehydratase |
ARODH | Arogenate dehydrogenase |
BM3 | Caffeic acid 3-O-methyltransferase |
BM5 | 4-coumarate--CoA ligase |
CCP | Cysteine protease |
CYP | Trans-cinnamate 4-monooxygenas |
DEGs | Differentially expressed genes |
DTT | Dithiothreitol |
GA | Gibberellins |
GID1 | Gibberellin-intensive DWARF1 |
GO | Gene Ontology |
GOT5 | Aspartate aminotransferase |
h | Hours |
H | H2O, water |
HMT4 | Homocysteine S-methyltransferase |
JA | Jasmonic acid |
JAZ | JASMONATE ZIM DOMAIN |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LC/MS | Liquid Chromatography Mass Spectrometer |
M | Met, Methionine |
min | Minutes |
METS | Methionine synthase |
MTHFR | 5,10-methylenetetrahydrofolate reductase |
MYB | V-myb avian myeloplastosis viral oncogene homolog |
NAAT-A | Nicotianamine aminotransferase |
PAL | Phenylalanine ammonia lyase |
PPI | Protein–protein interaction |
qRT-PCR | Quantitative real-time PCR |
RGL2 | RGA-LIKE 2 |
ROS | Reactive oxygen species |
SAM | S-adenosylmethionine |
SAMS | S-adenosylmethionine synthetase |
SD1 | SEMIDWARF1 |
SnRK2 | Sucrose non-fermenting-1-related protein kinase 2s |
References
- Wu, H.; Becraft, P.W.; Dannenhoffer, J.M. Maize endosperm development: Tissues, cells, molecular regulation and grain quality improvement. Front. Plant Sci. 2022, 13, 852082. [Google Scholar] [CrossRef]
- Han, C.; Yang, P. Studies on the molecular mechanisms of seed germination. Proteomics 2015, 15, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Nancy, S.; Abrams, S.R.; Kermode, A.R. Changes in ABA turnover and sensitivity that accompany dormancy termination of yellow-cedar (Chamaecyparis nootkatensis) seeds. J. Exp. Bot. 2002, 53, 89–103. [Google Scholar] [CrossRef]
- Ali, F.; Qanmber, G.; Li, F.; Wang, Z. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 2022, 35, 199–214. [Google Scholar] [CrossRef]
- Kuroha, T.; Nagai, K.; Gamuyao, R.; Wang, D.R.; Furuta, T.; Nakamori, M.; Kitaoka, T.; Adachi, K.; Minami, A.; Mori, Y.; et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 2018, 361, 181–186. [Google Scholar] [CrossRef]
- Hauvermale, A.L.; Steber, C.M. GA signaling is essential for the embryo-to-seedling transition during Arabidopsis seed germination, a ghost story. Plant Signal. Behav. 2020, 15, 1705028. [Google Scholar] [CrossRef]
- Zhai, K.; Zhao, G.; Jiang, H.; Sun, C.; Ren, J. Overexpression of maize ZmMYB59 gene plays a negative regulatory role in seed germination in Nicotiana tabacum and Oryza sativa. Front. Plant Sci. 2020, 11, 564665. [Google Scholar] [CrossRef] [PubMed]
- Nambara, E.; Okamoto, M.; Tatematsu, K.; Yano, R.; Seo, M.; Kamiya, Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 2010, 20, 55–67. [Google Scholar] [CrossRef]
- Pan, J.; Wang, H.; You, Q.; Cao, R.; Sun, G.; Yu, D. Jasmonate-regulated seed germination and crosstalk with other phytohormones. J. Exp. Bot. 2023, 74, 1162–1175. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.G.; Park, C.M. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol. 2010, 188, 626–637. [Google Scholar] [CrossRef]
- Xi, W.; Yu, H. Mother of ft and tfl1 regulates seed germination and fertility relevant to the brassinosteroid signaling pathway. Plant Signal. Behav. 2010, 5, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.L.; Kim, H.; Bakshi, A.; Binder, B.M. The ethylene receptors Ethylene Response1 and Ethylene Response2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol. 2014, 165, 1353–1366. [Google Scholar] [CrossRef]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef]
- Nee, G.; Xiang, Y.; Soppe, W.J. The release of dormancy, a wake-up call for seeds to germinate. Curr. Opin. Plant Biol. 2017, 35, 8–14. [Google Scholar] [CrossRef]
- Caplan, J.L.; Kumar, A.S.; Park, E.; Padmanabhan, M.S.; Hoban, K.; Modla, S.; Czymmek, K.; Dinesh-Kumar, S.P. Chloroplast stromules function during innate immunity. Dev. Cell 2015, 34, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Beligni, M.V.; Lamattina, L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 2000, 210, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhao, J.; Wang, M.; Song, S.; Xia, Z. Sulfur dioxide promotes seed germination by modulating reactive oxygen species production in maize. Plant Sci. 2021, 312, 111027. [Google Scholar] [CrossRef]
- Perkowski, M.C.; Warpeha, K.M. Phenylalanine roles in the seed-to-seedling stage: Not just an amino acid. Plant Sci. 2019, 289, 110223. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Mu, K.; Cai, W.; Zhao, Y.; Shen, H.; Wang, X.; Ma, H. Phenylalanine ammonia lyase GmPAL1.1 promotes seed vigor under high-temperature and -humidity stress and enhances seed germination under salt and drought stress in transgenic Arabidopsis. Plants 2022, 11, 3239. [Google Scholar] [CrossRef]
- Ju, C.; Kong, D.; Lee, Y.; Ge, G.; Song, Y.; Liu, J.; Kwak, J.M. Methionine synthase 1 provides methionine for activation of the GLR3.5 Ca2+ channel and regulation of germination in Arabidopsis. J. Exp. Bot. 2020, 71, 178–187. [Google Scholar] [CrossRef]
- Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vanderkerckhove, J.L.; Job, D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 2001, 126, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vanderkerckhove, J.L.; Job, D. Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol. 2002, 129, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Chiba, Y.; Hirai, M.Y. Metabolism and regulatory functions of o-acetylserine, S-Adenosylmethionine, homocysteine, and serine in plant development and environmental responses. Front. Plant Sci. 2021, 12, 643403. [Google Scholar] [CrossRef] [PubMed]
- Jabrin, S.; Ravanel, S.; Gambonnet, B.; Douce, R.; Rébeillé, F. One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol. 2003, 131, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Tsuchisaka, A.; Yu, G.; Jin, H.; Alonso, J.M.; Ecker, J.R.; Zhang, X.; Gao, S.; Theologis, A. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 2009, 183, 979–1003. [Google Scholar] [CrossRef]
- Müntz, K.; Belozersky, M.A.; Dunaevsky, Y.E.; Schlereth, A.; Tiedemann, J. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J. Exp. Bot. 2001, 52, 1741–1752. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Fontecave, M.; Atta, M.; Mulliez, E. S-adenosylmethionine: Nothing goes to waste. Trends Biochem. Sci. 2004, 29, 243–249. [Google Scholar] [CrossRef]
- Galili, G.; Amir, R.; Fernie, A.R. The regulation of essential amino acid synthesis and accumulation in plants. Annu. Rev. Plant Biol. 2016, 67, 153–178. [Google Scholar] [CrossRef]
- Singh, K.L.; Chaudhuri, A.; Kar, R.K. Role of peroxidase activity and Ca2+ in axis growth during seed germination. Planta 2015, 242, 997–1007. [Google Scholar] [CrossRef]
- Yan, H.; Chaumont, N.; Gilles, J.F.; Bolte, S.; Hamant, O.; Bailly, C. Microtubule self-organisation during seed germination in Arabidopsis. BMC Biol. 2020, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Fu, X.; Jia, X.; Wang, W.; Li, Y.; Li, J.; Yang, X.; Ju, C. Identification of quantitative trait loci controlling ethylene production in germinating seeds in maize (Zea mays L.). Sci. Rep. 2020, 10, 1677. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.H.; Xu, J.; Kim, C.K. Editing of 1-aminocyclopropane-1-carboxylate oxidase genes negatively afects petunia seed germination. Plant Cell Rep. 2022, 41, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Domoto, C.; Watanabe, H.; Abe, M.; Abe, K.; Arai, S. Isolation and characterization of two distinct cDNA clones encoding corn seed cysteine proteinases. Biochim. Biophys. Acta 1995, 1263, 241–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, H.; Deng, B. Mutagen-induced phytotoxicity in maize seed germination is dependent on ROS scavenging capacity. Sci. Rep. 2018, 8, 14078. [Google Scholar] [CrossRef]
- Nikiforova, V.J.; Kopka, J.; Tolstikov, V.; Fiehn, O.; Hopkins, L.; Hawkesford, M.J.; Hesse, H.; Hoefgen, R. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol. 2005, 138, 304–318. [Google Scholar] [CrossRef]
- Shahid, M.; Lian, T.; Wan, X.; Jiang, L.; Han, L.; Zhang, C.; Liang, Q. Folate monoglutamate in cereal grains: Evaluation of extraction techniques and determination by LC-MS/MS. J. Food Compos. Anal. 2020, 91, 10351. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Shen, F.; Liu, J.; Liang, W.; Zhang, C.; Lian, T.; Jiang, L. Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels. Plants 2023, 12, 3802. https://doi.org/10.3390/plants12223802
Ren Y, Shen F, Liu J, Liang W, Zhang C, Lian T, Jiang L. Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels. Plants. 2023; 12(22):3802. https://doi.org/10.3390/plants12223802
Chicago/Turabian StyleRen, Ying, Fengyuan Shen, Ji’an Liu, Wenguang Liang, Chunyi Zhang, Tong Lian, and Ling Jiang. 2023. "Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels" Plants 12, no. 22: 3802. https://doi.org/10.3390/plants12223802
APA StyleRen, Y., Shen, F., Liu, J., Liang, W., Zhang, C., Lian, T., & Jiang, L. (2023). Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels. Plants, 12(22), 3802. https://doi.org/10.3390/plants12223802