Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage
Abstract
:1. Introduction
2. Results
2.1. Identification and Classification of SPS8 Proteins in Zea mays
2.2. Phylogenetic Relationships Analysis, SPS8 Conserved Motifs Prediction and Gene Structure Analysis of ZmSPS8
2.3. Chromosomal Distributions, Gene Duplications and Divergence Time
2.4. Prediction of the Protein Structure, Signal Peptides and Trans-Membrane Helix
2.5. Cis-Element Analysis of ZmSPS8 Genes in Maize
2.6. Expression Patterns of ZmSPS8 Genes at Different Developmental Stages
2.7. Drought Tolerance Test of Qi319, Zheng58 and B73 Seedlings
2.8. Expression Analysis of ZmSPS8 Genes under Drought Treatment
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Identification and Characterization of ZmSPS8 Genes in Maize
5.2. Phylogenetic Analysis of SPS8 Proteins
5.3. Conserved Motif, Gene Structure and Promoter Analysis of ZmSPS8 Genes in Maize
5.4. Distribution of ZmSPS8 Genes on Chromosomes and Their Duplications and Divergence Time
5.5. Signal Peptides and Trans-Membrane Helix Analysis of SPS8 Proteins
5.6. Secondary Structure Prediction and 3D Model Construction of SPS8 Proteins
5.7. Expression Patterns of ZmSPS8 Genes in Different Tissues and Organs
5.8. Plant Materials and Stress Treatments
5.9. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Analysis
5.10. NBT Staining Assay
5.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, H.; Yokawa, K.; Nakano, S.; Yoshida, Y.; Fabrissin, I.; Okamoto, T.; Baluška, F.; Koshiba, T. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex. J. Exp. Bot. 2016, 67, 4581–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Sheteiwy, M.S.; Han, J.; Dong, Z.; Pan, R.; Guan, Y.; Alhaj Hamoud, Y.; Hu, J. Polyamine biosynthetic pathways and their relation with the cold tolerance of maize (Zea mays L.) seedlings. Plant Signal. Behavoir 2020, 15, 1807722. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Ulhassan, Z.; Qi, W.; Lu, H.; AbdElgawad, H.; Minkina, T.; Sushkova, S.; Rajput, V.D.; El-Keblawy, A.; Josko, I.; et al. Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress. Front. Plant Sci. 2022, 13, 886862. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wu, J.; Sun, X.; Dai, M. The maize clade A PP2C phosphatases play critical roles in multiple abiotic stress responses. Int. J. Mol. Sci. 2019, 20, 3573. [Google Scholar] [CrossRef] [Green Version]
- Dudziak, K.; Bulak, P.; Zapalska, M.; Börner, A.; Szczerba, H.; Leśniowska-Nowak, J.; Nowak, M. Using intervarietal substitution lines for the identification of wheat chromosomes involved in early responses to water-deficit stress. PLoS ONE 2019, 14, e0221849. [Google Scholar] [CrossRef]
- Janiak, A.; Kwasniewski, M.; Sowa, M.; Gajek, K.; Żmuda, K.; Kościelniak, J.; Szarejko, I. No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front. Plant Sci. 2018, 8, 2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magwanga, R.O.; Kirungu, J.N.; Lu, P.; Cai, X.; Zhou, Z.; Xu, Y.; Hou, Y.; Agong, S.G.; Wang, K.; Liu, F. Map-based functional analysis of the GhNLP genes reveals their roles in enhancing tolerance to N-deficiency in cotton. Int. J. Mol. Sci. 2019, 20, 4953. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, S.; Li, L.; Sahu, S.K.; Petersen, M.; Liu, X.; Melkonian, M.; Zhang, G.; Liu, H. Molecular evidence for origin, diversification and ancient gene duplication of plant subtilases (SBTs). Sci. Rep. 2019, 9, 12485. [Google Scholar] [CrossRef] [Green Version]
- Seidah, N.G.; Chrétien, M. Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999, 848, 45–62. [Google Scholar] [CrossRef]
- Ran, L.-Y.; Su, H.-N.; Zhou, M.-Y.; Wang, L.; Chen, X.-L.; Xie, B.-B.; Song, X.-Y.; Shi, M.; Qin, Q.-L.; Pang, X. Characterization of a novel subtilisin-like protease myroicolsin from deep sea bacterium Myroides profundi D25 and molecular insight into its collagenolytic mechanism. J. Biol. Chem. 2014, 289, 6041–6053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Hwang, R.; Hwang, S.F.; Strelkov, S.E.; Gossen, B.D.; Zhou, Q.X.; Peng, G. Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Mol. Plant Pathol. 2010, 11, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Rautengarten, C.; Steinhauser, D.; Büssis, D.; Stintzi, A.; Schaller, A.; Kopka, J.; Altmann, T. Inferring hypotheses on functional relationships of genes: Analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput. Biol. 2005, 1, e40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beers, E.P.; Jones, A.M.; Dickerman, A.W. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 2004, 65, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, L.P.; Sowdhamini, R. Cross genome comparisons of serine proteases in Arabidopsis and rice. BMC Genom. 2006, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Roberts, I.N.; Veliz, C.G.; Criado, M.V.; Signorini, A.; Simonetti, E.; Caputo, C. Identification and expression analysis of 11 subtilase genes during natural and induced senescence of barley plants. J. Plant Physiol. 2017, 211, 70–80. [Google Scholar] [CrossRef]
- Cao, J.; Han, X.; Zhang, T.; Yang, Y.; Huang, J.; Hu, X. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera. BMC Genom. 2014, 15, 1116. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, S.; Repper, D.; Tuzhikov, A.I.; Galiullina, R.A.; Planas-Marquès, M.; Chichkova, N.V.; Vartapetian, A.B.; Stintzi, A.; Schaller, A. The tomato subtilase family includes several cell death-related proteinases with caspase specificity. Sci. Rep. 2018, 8, 10531. [Google Scholar] [CrossRef] [Green Version]
- Schaller, A.; Stintzi, A.; Graff, L. Subtilases–versatile tools for protein turnover, plant development, and interactions with the environment. Physiol. Plant. 2012, 145, 52–66. [Google Scholar] [CrossRef]
- Figueiredo, J.; Sousa Silva, M.; Figueiredo, A. Subtilisin-like proteases in plant defence: The past, the present and beyond. Mol. Plant Pathol. 2018, 19, 1017–1028. [Google Scholar] [CrossRef]
- Rose, R.; Schaller, A.; Ottmann, C. Structural features of plant subtilases. Plant Signal. Behav. 2010, 5, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Onouchi, H.; Kondo, M.; Hara-Nishimura, I.; Nishimura, M.; Machida, C.; Machida, Y. A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 2001, 128, 4681–4689. [Google Scholar] [CrossRef] [PubMed]
- Armijos Jaramillo, V.D.; Vargas, W.A.; Sukno, S.A.; Thon, M.R. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum. PLoS ONE 2013, 8, e59078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höllbacher, B.; Schmitt, A.O.; Hofer, H.; Ferreira, F.; Lackner, P. Identification of proteases and protease inhibitors in allergenic and non-allergenic pollen. Int. J. Mol. Sci. 2017, 18, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoi, Y.; Horinaka, M.; Tsujimoto, Y.; Matsui, H.; Watanabe, K. Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from the thermophile Geobacillus collagenovorans MO-1. J. Bacteriol. 2006, 188, 6572–6579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastianelli, G.; Bouillon, A.; Nguyen, C.; Le-Nguyen, D.; Nilges, M.; Barale, J.-C. Computational design of protein-based inhibitors of Plasmodium vivax subtilisin-like 1 protease. PLoS ONE 2014, 9, e109269. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.J.; Hu, Y.Y.; Liu, F.; Yan, S.W.; Liu, R.D.; Long, S.R.; Jiang, P.; Cui, J.; Wang, Z.Q. Molecular cloning and characterization of a novel peptidase from Trichinella spiralis and protective immunity elicited by the peptidase in BALB/c mice. Vet. Res. 2020, 51, 111. [Google Scholar] [CrossRef]
- Book, A.J.; Yang, P.; Scalf, M.; Smith, L.M.; Vierstra, R.D. Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis. Plant Physiol. 2005, 138, 1046–1057. [Google Scholar] [CrossRef] [Green Version]
- Polge, C.; Jaquinod, M.; Holzer, F.; Bourguignon, J.; Walling, L.; Brouquisse, R. Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway: ACTIVATION IN RESPONSE TO CADMIUM. J. Biol. Chem. 2009, 284, 35412–35424. [Google Scholar] [CrossRef] [Green Version]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Joshi, R.; Wani, S.H.; Singh, B.; Bohra, A.; Dar, Z.A.; Lone, A.A.; Pareek, A.; Singla-Pareek, S.L. Transcription factors and plants response to drought stress: Current understanding and future directions. Front. Plant Sci. 2016, 7, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oumarou Abdoulaye, A.; Lu, H.; Zhu, Y.; Alhaj Hamoud, Y.; Sheteiwy, M. The global trend of the net irrigation water requirement of maize from 1960 to 2050. Climate 2019, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Cañas, R.A.; Yesbergenova-Cuny, Z.; Simons, M.; Chardon, F.; Armengaud, P.; Quilleré, I.; Cukier, C.; Gibon, Y.; Limami, A.M.; Nicolas, S.; et al. Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. Plant Cell 2017, 29, 919–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahi, M.; Saremi, H.; Javan-Nikkhah, M.; Somma, S.; Haidukowski, M.; Logrieco, A.F.; Moretti, A. Isolation, Molecular identification and mycotoxin profile of fusarium species isolated from maize kernels in Iran. Toxins 2019, 11, 297. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, X.; Wang, H.; Xin, H.; Yang, X.; Yan, J.; Li, J.; Tran, L.-S.P.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet. 2013, 9, e1003790. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Wang, H.; Liu, S.; Li, Z.; Yang, X.; Yan, J.; Li, J.; Tran, L.-S.P.; Qin, F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 2015, 6, 8326. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, L.; Su, W.; Ren, Y.; You, C.; Zhang, C.; Que, Y.; Su, Y. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci. Rep. 2020, 10, 20964. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Zidek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, J.; Wang, X.; Guo, C.; Li, Z.; Wang, Y.; Wang, X. Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 121, 275–287. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Liu, S.; Ferjani, A.; Li, J.; Yan, J.; Yang, X.; Qin, F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 2016, 48, 1233–1241. [Google Scholar] [CrossRef]
- Hajibarat, Z.; Saidi, A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J. Genet. Eng. Biotechnol. 2022, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, R.S.; Saski, C.; Kumar, R.; Flinn, B.S.; Luo, F.; Beissinger, T.M.; Ackerman, A.J.; Breitzman, M.W.; Bridges, W.C.; de Leon, N.; et al. Integrated genome-scale analysis identifies novel genes and networks underlying senescence in maize. Plant Cell 2019, 31, 1968–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caicedo, M.; Munaiz, E.D.; Malvar, R.A.; Jimenez, J.C.; Ordas, B. Precision mapping of a maize MAGIC population identified a candidate gene for the senescence-associated physiological traits. Front. Genet. 2021, 12, 716821. [Google Scholar] [CrossRef]
- Chen, P.; Yan, M.; Li, L.; He, J.; Zhou, S.; Li, Z.; Niu, C.; Bao, C.; Zhi, F.; Ma, F. The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. Hortic. Res. 2020, 7, 195. [Google Scholar] [CrossRef] [PubMed]
- De Caroli, M.; Lenucci, M.S.; Manualdi, F.; Dalessandro, G.; De Lorenzo, G.; Piro, G. Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall. Front. Plant Sci. 2015, 6, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Yao, Q.; Patil, G.B.; Agarwal, G.; Deshmukh, R.K.; Lin, L.; Wang, B.; Wang, Y.; Prince, S.J.; Song, L.; et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Front. Plant Sci. 2016, 7, 1044. [Google Scholar] [CrossRef] [Green Version]
- Bacete, L.; Schulz, J.; Engelsdorf, T.; Bartosova, Z.; Vaahtera, L.; Yan, G.; Gerhold, J.M.; Ticha, T.; Ovstebo, C.; Gigli-Bisceglia, N.; et al. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2022, 119, e2119258119. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, Z.; Xu, L.; Galli, M.; Gallavotti, A.; Dooner, H.K.; Chuck, G. Necrotic upper tips1 mimics heat and drought stress and encodes a protoxylem-specific transcription factor in maize. Proc. Natl. Acad. Sci. USA 2020, 117, 20908–20919. [Google Scholar] [CrossRef]
- Sun, X.; Xiong, H.; Jiang, C.; Zhang, D.; Yang, Z.; Huang, Y.; Zhu, W.; Ma, S.; Duan, J.; Wang, X.; et al. Natural variation of DROT1 confers drought adaptation in upland rice. Nat. Commun. 2022, 13, 4265. [Google Scholar] [CrossRef]
- Wang, N.-N.; Xu, S.-W.; Sun, Y.-L.; Liu, D.; Zhou, L.; Li, Y.; Li, X.-B. The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress. Sci. Rep. 2019, 9, 724. [Google Scholar] [CrossRef]
- Fu, J.; Wu, H.; Ma, S.; Xiang, D.; Liu, R.; Xiong, L. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front. Plant Sci. 2017, 8, 2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-C.; Wu, Y.-R.; Huang, X.-H.; Sun, J.; Xie, Q. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol. Plant 2011, 4, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.M.; Imran, M.; Atta, B.M.; Ashraf, M.Y.; Hameed, A.; Waqar, I.; Shafiq, M.; Hussain, K.; Naveed, M.; Aslam, M. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC Plant Biol. 2020, 20, 171. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Sun, X.; Gao, S.; Qin, F.; Dai, M. Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol. Plant 2017, 10, 456–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.D.; Mistry, J.; Schuster-Böckler, B.; Griffiths-Jones, S.; Hollich, V.; Lassmann, T.; Moxon, S.; Marshall, M.; Khanna, A.; Durbin, R. Pfam: Clans, web tools and services. Nucleic Acids Res. 2006, 34, D247–D251. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34, W369–W373. [Google Scholar] [CrossRef]
- Guo, A.-Y.; Zhu, Q.-H.; Chen, X.; Luo, J.-C. GSDS: A gene structure display server. Hereditas 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Ayaz, A.; Saqib, S.; Huang, H.; Zaman, W.; Lu, S.; Zhao, H. Genome-wide comparative analysis of long-chain acyl-CoA synthetases (LACSs) gene family: A focus on identification, evolution and expression profiling related to lipid synthesis. Plant Physiol. Biochem. 2021, 161, 1–11. [Google Scholar] [CrossRef]
- Walley, J.W.; Sartor, R.C.; Shen, Z.; Schmitz, R.J.; Wu, K.J.; Urich, M.A.; Nery, J.R.; Smith, L.G.; Schnable, J.C.; Ecker, J.R. Integration of omic networks in a developmental atlas of maize. Science 2016, 353, 814–818. [Google Scholar] [CrossRef]
Gene Name | Sequence ID | Chr | Gene Length (bp) | Number of Amino Acid (aa) | Theoretical pI | Molecular Weight (Da) | Instability Index | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Predicted |
---|---|---|---|---|---|---|---|---|---|---|
ZmSPS8.1.3 | Zm00001eb331110 | Chr7 | 2262 | 753 | 7.11 | 77,699.79 | 31.87 | 85.92 | 0.054 | Cell wall. |
ZmSPS8.1.9 | Zm00001eb150910 | Chr3 | 873 | 290 | 8.31 | 30,112.91 | 29.16 | 87.17 | 0.108 | Cell wall. |
ZmSPS8.1.10 | Zm00001eb112750 | Chr2 | 2277 | 758 | 7.28 | 80,160.82 | 38.76 | 85.95 | −0.007 | Cell wall. |
ZmSPS8.1.4 | Zm00001eb314120 | Chr7 | 2301 | 766 | 8.23 | 79,529.89 | 39.87 | 82.99 | 0.009 | Cell wall. |
ZmSPS8.1.5 | Zm00001eb177190 | Chr4 | 2409 | 802 | 8.22 | 81,600.43 | 38.52 | 85.51 | 0.15 | Cell wall. |
ZmSPS8.2.0 | Zm00001eb095400 | Chr2 | 1236 | 411 | 8.58 | 43,522.29 | 51.42 | 83.43 | −0.026 | Nucleus. |
ZmSPS8.1.14 | Zm00001eb205880 | Chr4 | 1029 | 342 | 11.38 | 36,610.6 | 69.11 | 70 | −0.461 | Nucleus. |
ZmSPS8.1.12 | Zm00001eb152020 | Chr3 | 2283 | 760 | 6.00 | 79,871.07 | 28.59 | 85.37 | 0.074 | Cell wall. |
ZmSPS8.1.6 | Zm00001eb302430 | Chr7 | 1947 | 648 | 8.93 | 67,846 | 41.41 | 83.01 | 0.024 | Cell wall. |
ZmSPS8.1.8 | Zm00001eb275670 | Chr6 | 2304 | 767 | 9.40 | 81,577.47 | 43.31 | 74.68 | −0.153 | Cell wall. |
ZmSPS8.1.1 | Zm00001eb408980 | Chr10 | 2241 | 746 | 5.63 | 78,339.51 | 38.56 | 84.34 | −0.039 | Cell wall. |
ZmSPS8.1.13 | Zm00001eb226820 | Chr5 | 2466 | 821 | 7.35 | 87,158.25 | 27.41 | 85.91 | −0.012 | Cell wall. |
ZmSPS8.3.2 | Zm00001eb223440 | Chr5 | 285 | 94 | 9.67 | 9959.5 | 43.06 | 87.23 | −0.137 | Cell wall. |
ZmSPS8.3.1 | Zm00001eb111040 | Chr2 | 1551 | 516 | 8.93 | 47,421.61 | 41.09 | 94.45 | 0.324 | Cell membrane |
ZmSPS8.1.11 | Zm00001eb419540 | Chr10 | 1350 | 449 | 5.57 | 53,920.23 | 39.6 | 92.87 | 0.239 | Cell membrane/Cell wall. |
ZmSPS8.1.2 | Zm00001eb419570 | Chr10 | 2280 | 759 | 6.25 | 79,388.55 | 27.25 | 88.05 | 0.106 | Cell wall. |
ZmSPS8.1.7 | Zm00001eb302440 | Chr7 | 2256 | 751 | 4.84 | 77,779.66 | 36.47 | 77.62 | −0.055 | Cell wall. |
ZmSPS8.3.3 | Zm00001eb249900 | Chr5 | 4059 | 1352 | 5.95 | 148,109.91 | 39.01 | 89.07 | −0.238 | Cell wall. |
Paralogous Pairs | Gene Alignment Coverage | Ka | Ks | Ka/Ks | Divergence Time (MYA) |
---|---|---|---|---|---|
ZmSPS8.3.2/ZmSPS8.3.3 | 0.993 | 0.004817359 | 0.014907323 | 0.32315386 | 0.496910769 |
ZmSPS8.3.1/ZmSPS8.3.2 | 0.957 | 0.062432033 | 0.038079244 | 1.639529208 | 1.269308134 |
ZmSPS8.3.3/ZmSPS8.3.1 | 0.966 | 0.558916065 | 0.803034338 | 0.696005187 | 26.76781128 |
Gene Name | Alpha Helix (%) | Extended Strand (%) | Beta Turn (%) | Random Coil (%) |
---|---|---|---|---|
ZmSPS8.1.3 | 16.73 | 25.37 | 6.64 | 51.26 |
ZmSPS8.1.9 | 16.90 | 25.52 | 8.96 | 48.62 |
ZmSPS8.1.10 | 17.81 | 24.93 | 5.15 | 52.11 |
ZmSPS8.1.4 | 19.58 | 25.20 | 6.79 | 48.43 |
ZmSPS8.1.5 | 17.08 | 23.45 | 6.98 | 52.49 |
ZmSPS8.2.0 | 41.36 | 13.38 | 4.87 | 40.39 |
ZmSPS8.1.14 | 23.10 | 11.99 | 8.77 | 56.14 |
ZmSPS8.1.12 | 20.00 | 21.97 | 6.45 | 51.58 |
ZmSPS8.1.6 | 16.51 | 26.54 | 5.72 | 51.23 |
ZmSPS8.1.8 | 19.03 | 23.99 | 6.39 | 50.59 |
ZmSPS8.1.1 | 18.63 | 23.59 | 6.84 | 50.94 |
ZmSPS8.1.13 | 22.41 | 20.58 | 5.60 | 51.41 |
ZmSPS8.3.2 | 37.23 | 13.83 | 5.32 | 43.62 |
ZmSPS8.1.11 | 16.86 | 25.19 | 5.04 | 52.91 |
ZmSPS8.3.1 | 25.84 | 25.39 | 7.35 | 41.42 |
ZmSPS8.1.2 | 20.42 | 23.72 | 6.19 | 49.67 |
ZmSPS8.1.7 | 18.77 | 23.17 | 6.39 | 51.67 |
ZmSPS8.3.3 | 31.58 | 20.56 | 5.25 | 42.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Zhou, G.; Ruan, H.; Zhao, J.; Hasi, A.; Zong, N. Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. Plants 2023, 12, 369. https://doi.org/10.3390/plants12020369
Cui H, Zhou G, Ruan H, Zhao J, Hasi A, Zong N. Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. Plants. 2023; 12(2):369. https://doi.org/10.3390/plants12020369
Chicago/Turabian StyleCui, Hongwei, Guyi Zhou, Hongqiang Ruan, Jun Zhao, Agula Hasi, and Na Zong. 2023. "Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage" Plants 12, no. 2: 369. https://doi.org/10.3390/plants12020369
APA StyleCui, H., Zhou, G., Ruan, H., Zhao, J., Hasi, A., & Zong, N. (2023). Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. Plants, 12(2), 369. https://doi.org/10.3390/plants12020369