The Biochemical Response of Soybean Cultivars Infected by Diaporthe Species Complex
Abstract
:1. Introduction
2. Results
2.1. Preliminary Study
2.2. Research 1. Sensitivity of Soybean Plants (cv. Sava) to Diaporthe Isolates
2.3. Research 2. Sensitivity of Different Soybean Cultivars to D. eres
3. Discussion
4. Materials and Methods
4.1. Preliminary Study
4.2. Research 1
4.3. Research 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pratap, A.; Gupta, S.K.; Kumar, J.; Solanki, R. Soybean. In Technological Innovations in Major World Oil Crops; Gupta, S.K., Ed.; Springer: New York, NY, USA, 2012; Chapter 12, Volume 1, pp. 293–321. [Google Scholar] [CrossRef]
- Roy, K.W.; Baird, R.E.; Abney, T.S. A review of soybean (Glycine max) seed, pod, and flower mycofloras in North America, with methods and a key for identification of selected fungi. Mycopathologia 2001, 150, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.L.; Rupe, J.C.; Sikora, E.J.; Domier, L.L.; Davies, J.A.; Steffey, K.L. Compendium of Soybean Diseases and Pests, 5th ed.; The American Phytopathological Society: St. Paul, MN, USA, 2015. [Google Scholar] [CrossRef]
- Mena, E.; Stewart, S.; Monteano, M.; de Leon, I.P. Soybean stem canker caused by Diaporthe caulivora; Pathogen diversity, Colonization Process, and Plant Defense Activation. Front. Plant Sci. 2020, 10, 1733. [Google Scholar] [CrossRef] [PubMed]
- Petrović, K. Morphological, Molecular and Pathogenic Characterization of Species Diaporthe/Phomosis on Soybean in Serbia. Ph.D. Thesis, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia, 2012; p. 135. [Google Scholar] [CrossRef] [Green Version]
- Petrović, K.; Skaltsas, D.; Castlebury, L.; Kontz, B.; Allen, T.; Chilvers, I.M.; Gregory, F.N.; Kelly, M.H.; Koehler, M.A.; Kleczewski, M.N.; et al. Diaporthe seed decay of soybean [Glycine max (L.) Merr.] is endemic in the United States, but new fungi are involved. Plant Dis. 2021, 105, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.B. Diaporthe/Phomopsis Complex. In Compendium of Soybean Diseases, 4th ed.; Hartman, G.L., Sinclair, J.B., Rupe, J.C., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 1999. [Google Scholar] [CrossRef]
- Zhao, X.; Li, K.; Zheng, S.; Yang, J.; Chen, C.; Zheng, X.; Wang, Y.; Ye, W. Diaporthe diversity and pathogenicity revealed from a broad survey of soybean stem blight in China. Plant Dis. 2022, 106, 2892–2903. [Google Scholar] [CrossRef] [PubMed]
- Vidić, M.; Petrović, K.; Đorđević, V.; Riccioni, L. Occurrence of Phomopsis longicolla β conidia in naturally infected soybean. J. Phytopathol. 2013, 161, 470–477. [Google Scholar] [CrossRef]
- Olson, T.R.; Gebreil, A.; Micijevic, A.; Bradley, C.A.; Wise, K.A.; Mueller, D.S.; Chilvers, M.I.; Mathew, F.M. Association of Diaporthe longicolla with black zone lines on mature soybean plants. Plant Health Prog. 2015, 16, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Vidić, M.; Đorđević, V.; Petrović, K.; Miladinović, J. Review of soybean resistance to pathogens. Ratar. Povrt. 2013, 50, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.D.A. Taxonomy and Pathogenicity of Fungi Associated with Stem, Pod and Seed Diseases of Soybean. Ph.D. Thesis, The Federal University of Viçosa, Viçosa, Brazil, 2021; p. 59. Available online: https://www.locus.ufv.br/bitstream/123456789/30122/1/texto%20completo.pdf (accessed on 1 July 2023).
- Mena, E.; Garaycochea, S.; Stewart, S.; Montesano, M.; Ponce De León, I. Comparative genomics of plant pathogenic Diaporthe species and transcriptomics of Diaporthe caulivora during host infection reveal insights into pathogenic strategies of the genus. BMC Genomics 2022, 23, 175. [Google Scholar] [CrossRef]
- Pioli, R.N.; Morandi, E.N.; Martínez, M.C.; Lucca, F.; Tozzini, A.; Bisaro, V. Morphologic, molecular, and pathogenic characterization of Diaporthe phaseolorum variability in the core soybean-producing area of Argentina. Phytopathology 2003, 93, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.M.; Vrandečić, K.; Ćosić, J.; Duvnjak, T.; Phillips, A.J. Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia 2011, 27, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Udayanga, D.; Castlebury, L.A.; Rossman, A.Y.; Chukeatirote, E.; Hyde, K.D. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol. 2015, 119, 383–407. [Google Scholar] [CrossRef]
- Mathew, F.M.; Gulya, T.J.; Jordahl, J.G.; Markell, S.G. First Report of Stem Disease of Soybean (Glycine max) Caused by Diaporthe gulyae in North Dakota. Plant Dis. 2017, 102, 240. [Google Scholar] [CrossRef]
- Vidić, M.; Jasnić, S.; Petrović, K. Diaporthe/Phomopsis species on soybean in Serbia. Pestic. Fitomed. 2011, 26, 301–315. [Google Scholar] [CrossRef]
- Lin, F.; Chhapekar, S.S.; Vieira, C.C.; Da Silva, M.P.; Rojas, A.; Lee, D.; Liu, N.; Pardo, E.M.; Lee, Y.C.; Dong, Z.; et al. Breeding for disease resistance in soybean: A global perspective. Theor. Appl. Genet. 2022, 135, 3773–3872. [Google Scholar] [CrossRef]
- Edreva, A. Pathogenesis-Related Proteins: Research Progress in the Last 15 Years. Gen. Appl. Plant Physiol. 2005, 31, 105–124. Available online: http://www.bio21.bas.bg/ipp/gapbfiles/v-31/05_1-2_105-124.pdf?origin (accessed on 1 July 2023).
- van Loon, L.C.; Rep, M.; Pieterse, C.M. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef] [Green Version]
- Modolo, L.V.; Cunha, F.Q.; Braga, M.R.; Salgado, I. Nitric Oxide synthase- Mediated Phytoalexin Accumulation in soybean cotyledons in Response to the Diaporthe phaseolorum f. sp. meridionalis Elicitor. Plant Physiol. 2002, 130, 1288–1297. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, K.; Petrović, K.; Kontz, B.J.; Bradley, C.A.; Chilvers, M.I.; Mueller, D.S.; Smith, D.L.; Wisea, K.A.; Mathew, F.M. Inoculation method impacts symptom development associated with Diaporthe aspalathi, D. caulivora, and D. longicolla on soybean (Glycine max). Plant Dis. 2019, 103, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Petrović, K.; Riccioni, L.; Đorđević, V.; Balešević-Tubić, S.; Miladinović, J.; Ćeran, M.; Rajković, D. Diaporthe pseudolongicolla: The new pathogen on soybean seed in Serbia. Field Crops Res. 2018, 55, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Jha, B.A.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative DefenseMechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef] [Green Version]
- Fortunanto, A.; Debona, D.; Bernardeli, A.; Rodrigues, F. Changes in the antioxidant system in soybean leaves infected by Corynespora cassiicola. Biochem. Cell Biol. 2015, 105, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Kuzniak, E.; Skłodowska, M. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 2005, 222, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Mitra, A.; Mallick, N. Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol. Mol. Plant Pathol. 2008, 72, 56–61. [Google Scholar] [CrossRef]
- Šućur Elez, J.; Petrović, K.; Crnković, M.; Krsmanović, S.; Rajković, M.; Kaitović, Ž.; Malenčić, Đ. Susceptibility of the Most Popular Soybean Cultivars in South-East Europe to Macrophomina phaseolina (Tassi) Goid. Plants 2023, 12, 2467. [Google Scholar] [CrossRef] [PubMed]
- Mathew, F.; Olson, T.; Marek, L.; Gulya, T.; Markell, S. Identification of sunflower (Helianthus annuus) accessions resistant to Diaporthe helianthi and Diaporthe gulyae. Plant Health Prog. 2018, 19, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Vidić, M.; Jasnić, S. Contribution to the Study of the Epidemiology of Diaporthe phaseolorum var. caulivora on Soyabean. Zašt. Bilja 1988, 39, 297–310. Available online: https://www.cabdirect.org/cabdirect/abstract/19901148043 (accessed on 1 July 2023).
- Mathew, F.M.; Jordahl, J.G.; Gulya, T.J.; Markell, S.G. Comparison of Greenhouse-Based Inoculation Methods to Study Aggressiveness of Diaporthe helianthi Isolates Causing Phomopsis Stem Canker of Sunflower (Helianthus annuus). Plant Health Prog. 2018, 19, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Sathya, E.; Bjorn, M. Plant Stress Tolerance; Sunkar, R., Ed.; Humana Press: Oklahoma City, OK, USA, 2010; pp. 273–280. [Google Scholar] [CrossRef]
- Morkunas, I.; Gmerek, J. The possible involvement of peroxidase in defense of yellow lupine embryo axes against Fusarium oxysporum. J. Plant Physiol. 2007, 164, 185–194. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, H. Estimation of total protein bound and non protein sulphydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- TIBCO Statistica; v. 13.3.0; TIBCO Software Inc.: Palo Alto, CA, USA, 2017; Available online: https://www.tibco.com/products/tibco-statistica (accessed on 1 July 2023).
Mycelium Contact | Toothpick Method | Plug Method | |
---|---|---|---|
Control | 36.27 ± 0.71 a | 45.13 ± 1.51 d | 43.71 ± 0.54 c |
D. aspalathi | 36.27 ± 0.71 a | 57.73 ± 1.13 h | 46.10 ± 0.95 e |
D. caulivora | 54.25 ± 1.32 g | 51.26 ± 1.44 f | 58.52 ± 3.02 i |
D. longicolla | 38.29 ± 2.36 b | 61.54 ± 0.93 j | 64.09 ± 1.41 k |
SOD | CAT | PX | GSH | LP | |
---|---|---|---|---|---|
Control | 88.10 ± 16.26 b | 1.42 ± 0.15 a | 25.48 ± 0.14 d | 10.15 ± 0.15 bc | 62.75 ± 0.52 c |
D. aspalathi | 95.94 ± 20.26 b | 1.28 ± 0.15 a | 42.46 ± 0.16 b | 8.44 ± 0.15 b | 79.31 ± 0.51 b |
D. caulivora | 57.51 ± 7.33 b | 1.16 ± 0.15 a | 36.79 ± 0.16 a | 14.52 ± 0.15 d | 73.01 ± 0.56 bc |
D. eres | 163.39 ± 12.69 a | 1.34 ± 0.16 a | 32.11 ± 0.14 a | 20.20 ± 0.16 a | 94.21 ± 11.19 a |
D. gulyae | 73.20 ± 10.77 b | 0.91 ± 0.17 a | 68.08 ± 0.17 c | 8.75 ± 0.17 bc | 73.59 ± 2.66 bc |
D. longicolla | 81.83 ± 11.27 b | 1.12 ± 0.15 a | 40.18 ± 0.15 a | 12.82 ± 0.15 c | 71.77 ± 0.72 bc |
MG | SOD | CAT | PX | GSH | LP | ||
---|---|---|---|---|---|---|---|
Favorit | 000 | C | 17.11 ± 4.71 a | 0.67 ± 0.07 a | 16.43 ± 0.79 a | 1.73 ± 0.03 a | 278.80 ± 6.50 a |
T | 26.31 ± 0.74 b | 0.61 ± 0.13 a | 17.61 ± 0.99 a | 1.77 ± 0.09 a | 268.63 ± 4.79 a | ||
Altona | 00 | C | 22.09 ± 0.95 a | 1.11 ± 0.11 a | 18.36 ± 0.83a | 2.10 ± 0.07 a | 283.89 ± 3.38 a |
T | 22.76 ± 1.37 a | 0.77 ± 0.04 a | 18.63 ± 0.79 a | 2.03 ± 0.07 a | 267.29 ± 7.05 a | ||
Capitol | 00 | C | 29.42 ± 1.25 a | 2.42 ± 0.13 a | 25.56 ± 1.12 a | 1.79 ± 0.11 a | 346.41 ± 1.36 a |
T | 19.88 ± 0.88 b | 0.79 ± 0.10 b | 16.51 ± 0.89 b | 1.54 ± 0.01 a | 275.51 ± 1.01 b | ||
Chico | 00 | C | 15.16 ± 2.70 a | 0.76 ± 0.09 a | 14.22 ± 1.11 a | 1.82 ± 0.06 a | 224.96 ± 6.44 a |
T | 21.11 ± 1.32 a | 1.25 ± 0.22 b | 13.28 ± 1.34 a | 1.49 ± 0.20 a | 211.50 ± 8.57 a | ||
McCall | 00 | C | 32.94 ± 0.84 a | 2.56 ± 0.21 a | 31.81 ± 3.77 a | 2.11 ± 0.19 a | 231.09 ± 2.24 a |
T | 16.19 ± 1.89 b | 0.55 ± 0.10 b | 17.77 ± 2.02 b | 1.13 ± 0.09 b | 160.64 ± 2.47 b | ||
Morsoy | 00 | C | 31.54 ± 1.55 a | 1.85 ± 0.13 a | 14.47 ± 0.59 a | 1.67 ± 0.14 a | 276.41 ± 4.24 a |
T | 21.36 ± 1.63 b | 0.47 ± 0.05 b | 9.07 ± 0.43 b | 1.18 ± 0.01 b | 232.89 ± 1.64 b | ||
Strain | 00 | C | 17.25 ± 0.90 a | 0.48 ± 0.06 a | 11.94 ± 0.49 a | 1.37 ± 0.10 a | 174.85 ± 8.55 a |
T | 19.91 ± 1.12 a | 0.54 ± 0.06 a | 11.31 ± 0.60 a | 1.81 ± 0.14 a | 291.67 ± 5.10 b | ||
Atlas | 0 | C | 27.32 ± 2.59 a | 1.38 ± 0.13 a | 22.59 ± 0.50 a | 1.92 ± 0.12 a | 264.74 ± 1.03 a |
T | 22.82 ± 1.09 a | 0.73 ± 0.10 b | 19.47 ± 0.45 a | 1.08 ± 0.05 b | 435.11 ± 8.72 b | ||
CX134 | I | C | 20.11 ± 1.80 a | 0.55 ± 0.02 a | 19.44 ± 0.77 a | 1.49 ± 0.08 a | 234.83 ± 1.50 a |
T | 29.03 ± 2.57 b | 0.81 ± 0.18 a | 20.93 ± 1.02 a | 2.03 ± 0.17 b | 272.37 ± 2.23 b | ||
Lakota | I | C | 22.57 ± 1.33 a | 0.62 ± 0.08 a | 19.10 ± 0.79 a | 1.37 ± 0.21 a | 177.99 ± 2.98 a |
T | 17.09 ± 2.53 a | 1.12 ± 0.06 b | 17.82 ± 0.30 a | 1.73 ± 0.23 a | 173.95 ± 7.20 a | ||
Victoria | I | C | 10.15 ± 1.30 a | 0.23 ± 0.04 a | 8.96 ± 0.34 a | 1.19 ± 0.20 a | 241.26 ± 1.22 a |
T | 26.73 ± 3.20 b | 0.71 ± 0.13 b | 22.69 ± 0.77 b | 1.65 ± 0.16 b | 431.82 ± 1.22 b | ||
Rubin | II | C | 24.55 ± 0.50 a | 0.49 ± 0.08 a | 18.05 ± 0.46 a | 2.72 ± 0.24 a | 427.18 ± 7.18 a |
T | 22.90 ± 0.95 a | 0.60 ± 0.10 a | 14.47 ± 1.40 a | 1.57 ± 0.16 b | 420.45 ± 7.98 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, K.; Šućur Elez, J.; Crnković, M.; Krsmanović, S.; Rajković, M.; Kuzmanović, B.; Malenčić, Đ. The Biochemical Response of Soybean Cultivars Infected by Diaporthe Species Complex. Plants 2023, 12, 2896. https://doi.org/10.3390/plants12162896
Petrović K, Šućur Elez J, Crnković M, Krsmanović S, Rajković M, Kuzmanović B, Malenčić Đ. The Biochemical Response of Soybean Cultivars Infected by Diaporthe Species Complex. Plants. 2023; 12(16):2896. https://doi.org/10.3390/plants12162896
Chicago/Turabian StylePetrović, Kristina, Jovana Šućur Elez, Marina Crnković, Slobodan Krsmanović, Miloš Rajković, Boris Kuzmanović, and Đorđe Malenčić. 2023. "The Biochemical Response of Soybean Cultivars Infected by Diaporthe Species Complex" Plants 12, no. 16: 2896. https://doi.org/10.3390/plants12162896