Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors
Abstract
:1. Introduction
2. Results
2.1. Behavior of Both C. papaya Genotypes in Response to Water Deficit Stress (WDS)
2.2. Genome-Wide Identification of the WRKY and NAC Gene Family in C. papaya
2.3. Phylogenetic Analysis and Classification of the WRKY and NAC Proteins between A. thaliana and C. papaya
2.4. Multiple Sequence Alignment of the CpWRKY and CpNAC Proteins
2.5. Conserved Motifs of CpWRKY and CpNAC Proteins
2.6. Cis-Elements Analysis of CpWRKYs and CpNACs Genes
2.7. Chromosomal Lacalization of CpWRKY and CpNAC Genes
2.8. TPM and FC of the CpWRKYs and CpNACs Genes under Water Stress Obtained from RNA-Seq Data
2.9. Relative Expression Levels of the CpWRKY50 and CpNAC83.1 Genes Associated to the WDS Tolerance
3. Discussion
4. Materials and Methods
4.1. Identification of the WRKY and NAC Sequences, and the Gene Structure
4.2. Multiple Sequence Alignment, Phylogenetic Analysis and Motif Identification
4.3. Cis-Acting Regulatory Elements Analysis and Gene Ontology Annotation (GO)
4.4. Chromosomal Localization
4.5. Expression Profiles under Water Deficit Using RNA-Seq Data
4.6. Experimental Conditions, RNA Isolation and RT-qPCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latchman, D.S. Transcription factors: An overview. Int. J. Exp. Pathol. 1993, 74, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciolkowski, I.; Wanke, D.; Birkenbihl, R.P.; Somssich, I.E. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol. Biol. 2008, 68, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, H.; Shao, H.; Tang, X. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Front. Plant Sci. 2016, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Abdullah-Zawawi, M.-R.; Ahmad-Nizammuddin, N.-F.; Govender, N.; Harun, S.; Mohd-Assaad, N.; Mohamed-Hussein, Z.-A. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice. Sci. Rep. 2021, 11, 19678. [Google Scholar] [CrossRef]
- Rushton, D.L.; Tripathi, P.; Rabara, R.C.; Lin, J.; Ringler, P.; Boken, A.K.; Langum, T.J.; Smidt, L.; Boomsma, D.D.; Emme, N.J.; et al. WRKY transcription factors: Key components in abscisic acid signalling. Plant Biotechnol. J. 2012, 10, 2–11. [Google Scholar] [CrossRef]
- Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef]
- Rinerson, C.I.; Rabara, R.C.; Tripathi, P.; Shen, Q.J.; Rushton, P.J. The evolution of WRKY transcription factors. BMC Plant Biol. 2015, 15, 66. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.; Xu, Y.; Ye, Q.; Yin, T.; Ye, N. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis. PeerJ 2016, 4, e2437. [Google Scholar] [CrossRef] [Green Version]
- Ernst, H.A.; Olsen, A.N.; Skriver, K.; Larsen, S.; Leggio, L.L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 2004, 5, 297–303. [Google Scholar] [CrossRef]
- Hu, W.; Wei, Y.; Xia, Z.; Yan, Y.; Hou, X.; Zou, M.; Lu, C.; Wang, W.; Peng, M. Genome-wide identification and expression analysis of the NAC transcription factor family in Cassava. PLoS ONE 2015, 10, e0136993. [Google Scholar] [CrossRef]
- Mathew, I.E.; Agarwal, P. May the fittest protein evolve: Favoring the plant-specific origin and expansion of NAC transcription factors. BioEssays 2018, 40, e1800018. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhang, Q.; Shi, Y.; Sun, Z.; Zhang, Q.; Hou, S.; Wu, R.; Jiang, L.; Zhao, X.; Guo, Y. Genome-Wide Analysis of the NAC Domain Transcription Factor Gene Family in Theobroma cacao. Genes 2019, 11, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Hou, L.; Liu, S.; Zhang, C.; Yang, W.; Pang, X.; Li, Y. Genome-wide identification and expression analysis of NAC transcription factors in Ziziphus jujuba Mill. reveal their putative regulatory effects on tissue senescence and abiotic stress responses. Ind. Crops Prod. 2021, 173, 114093. [Google Scholar] [CrossRef]
- Li, W.; Pang, S.; Lu, Z.; Jin, B. Function and Mechanism of WRKY Transcription Factors in Abiotic Stress Responses of Plants. Plants 2020, 9, 1515. [Google Scholar] [CrossRef]
- Wen, F.; Wu, X.; Li, T.; Jia, M.; Liao, L. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum. BMC Plant Biol. 2022, 22, 115. [Google Scholar] [CrossRef]
- Estrella-Maldonado, H.; Ramírez, A.G.; Ortiz, G.F.; Peraza-Echeverría, S.; la Vega, O.M.-D.; Góngora-Castillo, E.; Santamaría, J.M. Transcriptomic analysis reveals key transcription factors associated to drought tolerance in a wild papaya (Carica papaya) genotype. PLoS ONE 2021, 16, e0245855. [Google Scholar] [CrossRef]
- Fuentes, G.; Santamaría, J.M. Papaya (Carica papaya L.): Origin, Domestication, and Production. In Genetics and Genomics of Papaya; Ming, R., Moore, P.H., Eds.; Springer: New York, NY, USA, 2014; pp. 3–16. [Google Scholar] [CrossRef]
- Hernández-Salinas, G.; Luna-Cavazos, M.; Soto-Estrada, A.; García-Pérez, E.; Pérez-Vázquez, A.; Córdova-Téllez, L. Distribution and eco-geographic characterization of Carica papaya L. native to Mexico. Genet. Resour. Crop Evol. 2021, 69, 99–116. [Google Scholar] [CrossRef]
- Carvalho, G.C.; Coelho, E.F.; da Silva, A.d.S.A.M.; Pamponet, A.J.M. Trickle irrigation: Effects on papaya crop. Eng. Agríc. Jaboticabal. 2014, 34, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Basu, S.; Ramegowda, V.; Kumar, A.; Pereira, A. Plant adaptation to drought stress. F1000Research 2016, 5, 1554. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Girón-Ramírez, A.; Peña-Rodríguez, L.M.; Erosa-Escalante, F.; Fuentes, G.; Santamaría, J.M. Identification of the SHINE clade of AP2/ERF domain transcription factors genes in Carica papaya; Their gene expression and their possible role in wax accumulation and water deficit stress tolerance in a wild and a commercial papaya genotypes. Environ. Exp. Bot. 2021, 183, 104341. [Google Scholar] [CrossRef]
- Espín, F.M.I.; Peraza-Echeverria, S.; Fuentes, G.; Santamaría, J.M. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya. Plant Physiol. Biochem. 2012, 54, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Ming, R.; Hou, S.; Feng, Y.; Yu, Q.; Dionne-Laporte, A.; Saw, J.H.; Senin, P.; Wang, W.; Ly, B.V.; Lewis, K.L.T.; et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 2008, 452, 991–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, J.; Van Buren, R.; Liu, J.; Fang, J.; Zhang, X.; Liao, Z.; Wai, C.M.; Xu, X.; Chen, S.; Zhang, S.; et al. Sunup and sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nat. Genet. 2022, 54, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Souer, E.; van Houwelingen, A.; Kloos, D.; Mol, J.; Koes, R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 1996, 85, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.-J.; Jiang, L. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses. Mol. Biol. Rep. 2014, 41, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Pesqueira, M.; Núñez-Farfán, J. Domestication and genetics of Papaya: A review. Front. Ecol. Evol. 2017, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series No. 41; Oxford University Press: Oxford, UK, 1999; pp. 95–98. [Google Scholar]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Estrella-Maldonado, H.; Chan-León, A.; Fuentes, G.; Girón-Ramírez, A.; Desjardins, Y.; Santamaría, J.M. The interaction between exogenous IBA with sucrose, light and ventilation alters the expression of ARFs and Aux/IAA genes in Carica papaya plantlets. Plant Mol. Biol. 2022, 110, 107–130. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Fernie, A.R.; Yan, J. De Novo Domestication: An Alternative Route towards New Crops for the Future. Mol. Plant 2019, 12, 615–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koziol, L.; Rieseberg, L.H.; Kane, N.; Bever, J.D. Reduced drought tolerance during domestication and the evolution of weediness results from tolerance-growth trade-offs. Evolution 2012, 66, 3803–3814. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo-Álvarez, E.; Chan-León, A.; Girón-Ramírez, A.; Fuentes, G.; Estrella-Maldonado, H.; Santamaría, J.M. Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors. Plants 2023, 12, 2775. https://doi.org/10.3390/plants12152775
Arroyo-Álvarez E, Chan-León A, Girón-Ramírez A, Fuentes G, Estrella-Maldonado H, Santamaría JM. Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors. Plants. 2023; 12(15):2775. https://doi.org/10.3390/plants12152775
Chicago/Turabian StyleArroyo-Álvarez, Erick, Arianna Chan-León, Amaranta Girón-Ramírez, Gabriela Fuentes, Humberto Estrella-Maldonado, and Jorge M. Santamaría. 2023. "Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors" Plants 12, no. 15: 2775. https://doi.org/10.3390/plants12152775
APA StyleArroyo-Álvarez, E., Chan-León, A., Girón-Ramírez, A., Fuentes, G., Estrella-Maldonado, H., & Santamaría, J. M. (2023). Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors. Plants, 12(15), 2775. https://doi.org/10.3390/plants12152775