Transcriptome Analysis Reveals the Response Mechanism of Digitaria sanguinalis, Arabidopsis thaliana and Poa annua under 4,8-Dihydroxy-1-tetralone Treatment
Abstract
:1. Introduction
2. Results
2.1. The Effect of 4,8-DHT on the Growth of Three Plant Species
2.2. Analysis of Differentially Expressed Genes after the 4,8-DHT Treatment
2.3. GO Classification and KEGG Analysis of Differentially Expressed Genes
2.4. The Identification of Key Pathways’ Response to the 4,8-DHT Treatment
2.5. The Identification of Key 4,8-DHT-Responsive Genes
3. Discussion
3.1. The Downregulation of Photosynthesis-Related Genes in Response to Treatment with 4,8-DHT
3.2. ROS Scavenging System May Be the Key to the Response to 4,8-DHT
3.3. Hormonal Signaling Involved in Resistance Formation after 4,8-DHT Treatment
3.4. Oxidative Phosphorylation at Different Expression Levels in Response to 4,8-DHT
4. Materials and Methods
4.1. Plant Material and 4,8-DHT Treatment
4.2. RNA Extraction, Library Preparation, and Sequencing
4.3. Quality Control and Transcriptome Assembly
4.4. The Identification and Annotation of Differentially Expressed Genes
4.5. Gene Expression Pattern Analysis Using STEM
4.6. The Identification of Key Genes via Correlation Network Analysis
4.7. Statistical Analysis of Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, J.M.; Owen, M.D. Herbicide-resistant crops: Utilities and limitations for herbicide-resistant weed management. J. Agric. Food Chem. 2011, 59, 5819–5829. [Google Scholar] [CrossRef]
- Singh, N.S.; Sharma, R.; Parween, T.; Patanjali, P.K. Pesticide contamination and human health risk factor. In Modern Age Environmental Problems and Their Remediation; Springer: Cham, Switzerland, 2018; pp. 49–68. [Google Scholar] [CrossRef]
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Soltys-Kalina, D.; Krasuska, U.; Bogatek, R.; Gniazdowska, A. Allelochemicals as bioherbicides—Present and perspectives. In Herbicides—Current Research and Case Studies in Use; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Rios, M.Y.; Córdova-Albores, L.C.; Ramírez-Cisneros, M.Á.; King-Díaz, B.; Lotina-Hennsen, B.; Leon Rivera, I.; Miranda-Sánchez, D. Phytotoxic potential of Zanthoxylum affine and its major compound linarin as a possible natural herbicide. ACS Omega 2018, 3, 14779–14787. [Google Scholar] [CrossRef] [Green Version]
- Dayan, F.E.; Owens, D.K.; Watson, S.B.; Asolkar, R.N.; Boddy, L.G. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. Front. Plant Sci. 2015, 6, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dourmap, C.; Roque, S.; Morin, A.; Caubrière, D.; Kerdiles, M.; Béguin, K.; Perdoux, R.; Reynoud, N.; Bourdet, L.; Audebert, P.A.; et al. Stress signaling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. Ann. Bot. 2020, 125, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Thakur, J.K. Photosynthesis and abiotic stress in plants. In Biotic and Abiotic Stress Tolerance in Plants; Springer: Singapore, 2018; pp. 24–27. [Google Scholar] [CrossRef]
- Reyes-Impellizzeri, S.; Moreno, A.A. The endoplasmic reticulum role in the plant response to abiotic stress. Front. Plant Sci. 2021, 12, 755447. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.; Singh, N.B.; Singh, A.; Hussain, I.; Niharika, K.M.; Yadav, V.; Chanda, B.; Ravi Kumar, Y.; Amist, N. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 2020, 63, 203–216. [Google Scholar] [CrossRef]
- Agostinetto, D.; Perboni, L.T.; Langaro, A.C.; Gomes, J.; Fraga, D.S.; Franco, J.J. Changes in photosynthesis and oxidative stress in wheat plants submmited to herbicides application. Planta Daninha 2016, 34, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.K.; Qidwai, A.; Kumar, R. Reactive oxygen and nitrogen species and antioxidant defense studies in plants. In Heavy Metal Toxicity in Plants; CRC Press: Boca Raton, FL, USA, 2021; pp. 249–258. [Google Scholar] [CrossRef]
- Liebthal, M.; Maynard, D.; Dietz, K.J. Peroxiredoxins and redox signaling in plants. Antioxid. Redox Signal. 2018, 28, 609–624. [Google Scholar] [CrossRef] [Green Version]
- de Zelicourt, A.; Colcombet, J.; Hirt, H. The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 2016, 21, 677–685. [Google Scholar] [CrossRef]
- Berriri, S.; Garcia, A.V.; Frei dit Frey, N.; Rozhon, W.; Pateyron, S.; Leonhardt, N.; Montillet, J.L.; Leung, J.; Hirt, H.; Colcombet, J. Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 2012, 24, 4281–4293. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, K.; Yamaguchi-Shinozaki, K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013, 32, 959–970. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, J.; He, J.; Chen, Q.; Li, X.; Yang, Y. Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses. Int. J. Mol. Sci. 2018, 19, 3643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.Y.; Chen, A.L.; Li, Q. Novel benzofuran constituent from the husk of Carya cathayensis Sarg. Phytochem. Lett. 2012, 5, 473–475. [Google Scholar] [CrossRef]
- Liu, J.; Meng, M.; Li, C.; Huang, X.; Di, D. Simultaneous determination of three diarylheptanoids and an alpha-tetralone derivative in the green walnut husks (Juglans regia L.) by high-performance liquid chromatography with photodiode array detector. J. Chromatogr. A 2008, 1190, 80–85. [Google Scholar] [CrossRef]
- Li, X.X.; Yu, M.F.; Ruan, X.; Zhang, Y.Z.; Wang, Q. Phytotoxicity of 4,8-dihydroxy-1-tetralone isolated from Carya cathayensis Sarg. to various plant species. Molecules 2014, 19, 15452–15467. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.H.; Yang, L.; Ruan, X.; Sheng, Z.L.; Yu, M.F.; Zheng, B.S.; Zhang, J.Y.; Li, X.X.; Zhao, Y.X.; Wang, Q. Synthesis and herbicidal activity of 4, 8-DHT and its derivates. Ind. Crops Prod. 2018, 111, 755–767. [Google Scholar] [CrossRef]
- Ignes, M.; McCurdy, J.D.; McElroy, J.S.; Castro, E.B.; Ferguson, J.C.; Meredith, A.N.; Rutland, C.N.; Stewart, B.R.; Tseng, P.T. Target-site and non–target site mechanisms of pronamide resistance in annual bluegrass (Poa annua) populations from Mississippi golf courses. Weed Sci. 2023, 71, 206–216. [Google Scholar] [CrossRef]
- Laforest, M.; Soufiane, B.; Patterson, E.L.; Vargas, J.J.; Boggess, S.L.; Houston, L.C.; Trigiano, R.N.; Brosnan, J.T. Differential expression of genes associated with non-target site resistance in Poa annua with target site resistance to acetolactate synthase inhibitors. Pest Manag. Sci. 2021, 77, 4993–5000. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, X.; Li, B.H.; Qi, Z.Z.; Huang, J.; Hu, A.; Wang, G.Q.; Liu, X.M. Target-site mutation and enhanced metabolism endow resistance to nicosulfuron in a Digitaria sanguinalis population. Pestic. Biochem. Physiol. 2023, 194, 105488. [Google Scholar] [CrossRef]
- Dong, H.; Wang, D.; Bai, Z.; Yuan, Y.; Yang, W.; Zhang, Y.; Ni, H.; Jiang, L. Generation of imidazolinone herbicide resistant trait in Arabidopsis. PLoS ONE 2020, 15, e0233503. [Google Scholar] [CrossRef] [PubMed]
- Dorion, S.; Ouellet, J.C.; Rivoal, J. Glutathione metabolism in plants under stress: Beyond reactive oxygen species detoxification. Metabolites 2021, 11, 641. [Google Scholar] [CrossRef]
- Yaqoob, U.; Jan, D.; Venkat Raman, P.; Siddique, K.; John, R. Crosstalk between brassinosteroid signaling, Ros signaling and phenylpropanoid pathway during abiotic stress in plants: Does it exist? Plant Stress 2022, 4, 100075. [Google Scholar] [CrossRef]
- Kang, Y.C.; Yao, Y.H.; Liu, Y.H.; Shi, M.F.; Zhang, W.N.; Zhang, R.Y.; Hong, L.; Qin, S.H.; Yang, X.Y. Exogenous Glutathione enhances tolerance of the potato (Solanum tuberosum L.) to cadmium stress by regulating the biosynthesis of phenylpropanoid and the signal transduction of plant hormones. Chem. Biol. Technol. Agric. 2023, 10, 24. [Google Scholar] [CrossRef]
- Staszek, P.; Krasuska, U.; Ciacka, K.; Gniazdowska, A. ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants 2021, 11, 1648. [Google Scholar] [CrossRef]
- Ifuku, K.; Ido, K.; Sato, F. Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex. J. Photochem. Photobiol. B Biol. 2011, 104, 158–164. [Google Scholar] [CrossRef]
- Gupta, R. The oxygen-evolving complex: A super catalyst for life on earth, in response to abiotic stresses. Plant Signal. Behav. 2020, 15, 1824721. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyeva, Y.; Suorsa, M.; Rossi, F.; Pavesi, A.; Kater, M.M.; Antonacci, A.; Tadini, L.; Pribil, M.; Schneider, A.; Wanner, G.; et al. Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. Plant J. 2013, 75, 671–684. [Google Scholar] [CrossRef]
- Ifuku, K.; Yamamoto, Y.; Ono, T.A.; Ishihara, S.; Sato, F. PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol. 2005, 139, 1175–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisz, D.A.; Liu, H.; Zhang, H.; Thangapandian, S.; Tajkhorshid, E.; Gross, M.L.; Pakrasi, H.B. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in photosystem II. Proc. Natl. Acad. Sci. USA 2017, 114, 2224–2229. [Google Scholar] [CrossRef]
- Von Sydow, L.; Schwenkert, S.; Meurer, J.; Funk, C.; Mamedov, F.; Schröder, W.P. The PsbY protein of Arabidopsis photosystem II is important for the redox control of cytochrome b559. Biochim. Biophys. Acta Bioenerg. 2016, 1857, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.M.; Tavares, O.C.H.; Oliveira, C.M.d.; Souza, S.R.D.; Fernandes, M.S.; Santos, L.A. Morphological and physiological responses to drought stress in a set of brazilian traditional upland rice varieties in post-anthesis stage. Aust. J. Crop Sci. 2020, 14, 116–123. [Google Scholar] [CrossRef]
- Tikkanen, M.; Grieco, M.; Kangasjärvi, S.; Aro, E.M. Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol. 2010, 152, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Tikkanen, M.; Mekala, N.R.; Aro, E.M. Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim. Biophys. Acta Bioenerg. 2014, 1837, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Ohno, H.; Banayo, N.P.M.C.; Bueno, C.; Kashiwagi, J.L.; Nakashima, T.; Iwama, K.; Corales, A.M.; Garcia, R.; Kato, Y. On-farm assessment of a new early-maturing drought-tolerant rice cultivar for dry direct seeding in rainfed lowlands. Field Crops Res. 2018, 219, 222–228. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Q.; Mao, P. Ultrastructural and photosynthetic responses of pod walls in alfalfa to drought stress. Int. J. Mol. Sci. 2020, 21, 4457. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Gao, J.; Guo, N.; Guo, Y. Variations of leaf cuticular waxes among C3 and C4 gramineae herbs. Chem. Biodivers. 2016, 13, 1460–1468. [Google Scholar] [CrossRef]
- Jia, X.H.; Zhang, P.P.; Shi, D.J.; Mi, H.L.; Zhu, J.C.; Huang, X.W.; He, P.M. Regulation of pepc gene expression in Anabaena sp. PCC 7120 and its effects on cyclic electron flow around photosystem I and tolerances to environmental stresses. J. Plant Biol. 2015, 57, 468–476. [Google Scholar] [CrossRef]
- Kong, Y.; Elling, A.A.; Chen, B.; Deng, X. Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am. J. Sci. 2010, 1, 69. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, Q.; Wang, Y.; Xu, Y.; Li, J.; Zhao, S.; Wang, D.; Ma, Z.; Yan, F.; Liu, Y. Combined transcriptomic and metabolomic analysis reveals the role of phenylpropanoid biosynthesis pathway in the salt tolerance process of Sophora alopecuroides. Int. J. Mol. Sci. 2021, 22, 2399. [Google Scholar] [CrossRef]
- Caverzan, A.; Piasecki, C.; Chavarria, G.; Stewart, C.N., Jr.; Vargas, L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol Sci. 2019, 20, 1086. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.Q.; Zhou, M.R.; Nie, X.M.; Zhang, L.; Shi, P.T.; Shalmani, A.; Hai, M.; Wen, Q.L.; Wen, T.; Chen, K.M. OsGSTU6 contributes to cadmium stress tolerance in rice by involving in intracellular ROS homeostasis. J. Plant Growth Regul. 2021, 40, 945–961. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, L.; Ye, S.; Jiang, L.; Liu, S. Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. 3 Biotech 2018, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Chowdhury, K.; Rohman, M.M. Comparative investigation of glutathione S-transferase (GST) in different crops and purification of high active GSTs from onion (Allium cepa L.). Int. J. Plant Sci. 2015, 3, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Abdel Razik, E.S.; Alharbi, B.M.; Pirzadah, T.B.; Alnusairi, G.S.H.; Soliman, M.H.; Hakeem, K.R. γ-Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus L.) by regulating its physiological, biochemical and molecular pathways. Physiol. Plant 2021, 172, 505–527. [Google Scholar] [CrossRef]
- Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J. 2021, 105, 459–476. [Google Scholar] [CrossRef]
- Wang, Z.; Su, G.; Li, M.; Ke, Q.; Kim, S.Y.; Li, H.; Huang, J.; Xu, B.; Deng, X.P.; Kwak, S.S. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiol. Biochem. 2016, 109, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, Y.; Yan, Q.; Chen, W. Salicylic acid promotes autophagy via NPR3 and NPR4 in Arabidopsis senescence and innate immune response. Acta Physiol. Plant. 2016, 38, 241. [Google Scholar] [CrossRef]
- Oh, S.J.; Song, S.I.; Kim, Y.S.; Jang, H.J.; Kim, S.Y.; Kim, M.; Kim, Y.K.; Nahm, B.H.; Kim, J.K. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005, 138, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Yi, L.; Li, L.; Zhang, H.; Zhang, Y.; Deng, G.; Hai, L.; Yu, M. Identification of PP2C genes in Tibetan hulless barley (Hordeum vulgare var. nudum) under dehydration stress and initiatory expression and functional analysis of HvPP2C59. Plant Mol. Biol. Rep. 2022, 40, 611–627. [Google Scholar] [CrossRef]
- Tian, Y.N.; Zhong, R.H.; Wei, J.B.; Luo, H.H.; Eyal, Y.; Jin, H.L.; Wu, L.J.; Liang, K.Y.; Li, Y.M.; Chen, S.Z.; et al. Arabidopsis chlorophyllase 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. Mol. Plant 2021, 14, 1149–1167. [Google Scholar] [CrossRef]
- Yamada, S.; Ozaki, H.; Noguchi, K. The mitochondrial respiratory chain maintains the photosynthetic electron flow in Arabidopsis thaliana leaves under high-light stress. Plant Cell Physiol. 2020, 61, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Mansilla, N.; Racca, S.; Gras, D.E.; Gonzalez, D.H.; Welchen, E. The Complexity of mitochondria complex IV: An update of cytochrome c oxidase biogenesis in plants. Int. J. Mol. Sci. 2018, 19, 662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, L.; Welchen, E.; Gey, U.; Arce, A.L.; Steinebrunner, I.; Gonzalez, D.H. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. Plant Cell Environ. 2016, 39, 628–644. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Wang, T.; Huang, J.; Gu, X.; Dong, Y.; Yang, Y.; Da, X.; Mo, X.; Xie, X.; Jiang, H.; et al. Transcriptome Analysis Reveals the Response Mechanism of Digitaria sanguinalis, Arabidopsis thaliana and Poa annua under 4,8-Dihydroxy-1-tetralone Treatment. Plants 2023, 12, 2728. https://doi.org/10.3390/plants12142728
Sun Q, Wang T, Huang J, Gu X, Dong Y, Yang Y, Da X, Mo X, Xie X, Jiang H, et al. Transcriptome Analysis Reveals the Response Mechanism of Digitaria sanguinalis, Arabidopsis thaliana and Poa annua under 4,8-Dihydroxy-1-tetralone Treatment. Plants. 2023; 12(14):2728. https://doi.org/10.3390/plants12142728
Chicago/Turabian StyleSun, Qiumin, Tao Wang, Jiu Huang, Xinyi Gu, Yanling Dong, Ying Yang, Xiaowen Da, Xiaorong Mo, Xiaoting Xie, Hangjin Jiang, and et al. 2023. "Transcriptome Analysis Reveals the Response Mechanism of Digitaria sanguinalis, Arabidopsis thaliana and Poa annua under 4,8-Dihydroxy-1-tetralone Treatment" Plants 12, no. 14: 2728. https://doi.org/10.3390/plants12142728