Effects of Salicylic Acid and Macro- and Micronutrients through Foliar and Soil Applications on the Agronomic Performance, Physiological Attributes, and Water Productivity of Wheat under Normal and Limited Irrigation in Dry Climatic Conditions
Abstract
:1. Introduction
2. Results
2.1. Effects of Experimental Factors on Growth Parameters
2.2. Effects of Experimental Factors on Physiological Parameters
2.3. Effects of Experimental Factors on Yield Parameters and Water Productivity
2.4. Pearson’s Correlation Coefficient between all Studied Parameters under Normal and Limited Irrigation Conditions
2.5. Heatmap Analysis for Providing an Overall Picture of the Response of Different Parameters of Wheat to Various Co-A Treatments under Each Irrigation Treatment
2.6. Economic Budgeting
3. Discussion
4. Materials and Methods
4.1. Experimental Design, Site, Conditions, and Treatments
4.2. Agronomical Management Practices
4.3. Data Recording and Related Procedures
4.3.1. Growth Parameters
4.3.2. Physiological Parameters
4.3.3. Yield Parameters and Water Productivity
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- FAOSTAT, Food and Agriculture Organization of the United Nations Statistics Database, Rome. 2022. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 March 2022).
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, N.; El-Hendawy, S.; Alsamin, B.; Mubushar, M.; Dewir, Y.H. Integrating application methods and concentrations of salicylic acid as an avenue to enhance growth, production, and water use efficiency of wheat under full and deficit irrigation in arid countries. Plants 2023, 12, 1019. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.; Soolanayakanahally, R.; Ogawa, S.; Uga, Y.; Selvaraj, M.G.; Kagale, S. Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front. Chem. 2017, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef]
- Muhammad, F.; Raza, M.A.S.; Iqbal, R.; Zulfiqar, F.; Aslam, M.U.; Yong, J.W.H.; Altaf, M.A.; Zulfiqar, B.; Amin, J.; Ibrahim, M.A. Ameliorating Drought Effects in Wheat Using an Exclusive or Co-Applied Rhizobacteria and ZnO Nanoparticles. Biology 2022, 11, 1564. [Google Scholar] [CrossRef]
- Karim, M.R.; Rahman, M.A. Drought risk management for increased cereal production in Asian least developed countries. Weather Clim. Extrem. 2015, 7, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Noctor, G.; Reichheld, J.P.; Foyer, C.H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 2018, 80, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Bakht, S.; Safdar, K.; Khair, K.; Fatima, A.; Fayyaz, A.; Ali, S.; Munir, H.; Farid, M. The response of major food crops to drought stress: Physiological and biochemical responses. In Agronomic Crops; Springer: Singapore, 2020; pp. 93–115. [Google Scholar]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R.; Luo, Z.; Kholova, J.; Choudhary, S. Conservation tillage increases water use efficiency of spring wheat by optimizing water transfer in a semi-arid environment. Agronomy 2019, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Wang, Z.; Yang, L.; Zhang, L.; Zhang, Q. Combined effects of mulching and crop density on soil evaporation, temperature, and water use efficiency of winter wheat. Exp. Agric. 2021, 57, 163–174. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Alsamin, B.; Mohammed, N.; Al-Suhaibani, N.; Refay, Y.; Alotaibi, M.; Tola, E.; Mattar, M.A. Combining planting patterns with mulching bolsters the soil water content, growth, yield, and water use efficiency of spring wheat under limited water supply in arid regions. Agronomy 2022, 12, 1298. [Google Scholar] [CrossRef]
- Dutta, T.; Neelapu, N.R.; Wani, S.H.; Challa, S. Compatible solute engineering of crop plants for improved tolerance toward abiotic stresses. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants; Elsevier: London, UK, 2018; pp. 221–254. [Google Scholar]
- Hasanuzzaman, M.; Matin, M.; Fardus, J.; Hasanuzzaman, M.; Hossain, M.; Parvin, K. Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobot. 2019, 72, 2. [Google Scholar] [CrossRef]
- Tayyab, N.; Naz, R.; Yasmin, H.; Nosheen, A.; Keyani, R.; Sajjad, M.; Hassan, M.N.; Roberts, T.H. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought induced stress in maize. PLoS ONE 2020, 15, e0232269. [Google Scholar] [CrossRef]
- Hafez, E.M.; Kheir, A.; Badawy, S.A.; Rashwan, E.; Farig, M.; Osman, H.S. Differences in physiological and biochemical attributes of wheat in response to single and combined salicylic acid and biochar subjected to limited water irrigation in saline sodic soil. Plants 2020, 9, 1346. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Khan, M.A.R. Understanding the roles of osmolytes for acclimatizing plants to changing environment: A review of potential mechanism. Plant Signal. Behav. 2021, 16, 8. [Google Scholar] [CrossRef]
- Sedaghat, M.; Sarvestani, Z.T.; Emam, Y.; Bidgoli, A.M.; Sorooshzadeh, A. Foliar-applied GR24 and salicylic acid enhanced wheat drought tolerance. Russ. J. Plant Physiol. 2020, 67, 733–739. [Google Scholar] [CrossRef]
- El Sherbiny, H.A.; El-Hashash, E.F.; Abou El-Enin, M.M.; Nofal, R.S.; Abd El-Mageed, T.A.; Bleih, E.M.; El-Saadony, M.T.; El-Tarabily, K.A.; Shaaban, A. Exogenously applied salicylic acid boosts morpho-physiological traits, yield, and water productivity of lowland rice under normal and deficit irrigation. Agronomy 2022, 12, 1860. [Google Scholar] [CrossRef]
- Khan, M.I.; Poor, P.; Janda, T. Salicylic Acid: A versatile signaling molecule in plants. J. Plant Growth Regul. 2022, 41, 1887–1890. [Google Scholar] [CrossRef]
- Karim, M.R.; Zhang, Y.Q.; Zhao, R.R.; Chen, X.P.; Zhang, F.S.; Zou, C.Q. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012, 175, 142–151. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Chen, J.; Chen, A.; Wang, L.; Guo, X.; Niu, Y.; Liu, S.; Mi, G.; Gao, Q. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agric. Water Manag. 2019, 212, 328–337. [Google Scholar] [CrossRef]
- Ashraf, M.Y.; Tariq, S.; Saleem, M.; Khan, M.A.; Hassan, S.W.U.; Sadef, Y. Calcium and zinc mediated growth and physiobiochemical changes in mung bean grown under saline conditions. J. Plant Nutr. 2020, 43, 512–525. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Umer Chattha, M.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y. The critical role of zinc in plants facing the drought stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Kumari, V.V.; Banerjee, P.; Verma, V.C.; Sukumaran, S.; Chandran, M.A.S.; Gopinath, K.A.; Venkatesh, G.; Yadav, S.K.; Singh, V.K.; Awasthi, N.K. Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. Int. J. Mol. Sci. 2022, 23, 8519. [Google Scholar] [CrossRef] [PubMed]
- Bagci, S.A.; Ekiz, H.; Yilmaz, A.; Cakmak, I. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J. Agron. Crop Sci. 2007, 193, 198–206. [Google Scholar] [CrossRef]
- Fageria, N.; Filho, M.B.; Moreira, A.; Guimarães, C. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Subbaiah, L.V.; Prasad, T.N.V.K.V.; Krishna, T.G.; Sudhakar, P.; Reddy, B.R.; Pradeep, T. Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem. 2016, 64, 3778–3788. [Google Scholar] [CrossRef]
- Walsh, O.S.; Shafian, S.; Christiaens, R.J. Nitrogen fertilizer management in dryland wheat cropping systems. Plants 2018, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Dal Cortivo, C.; Panozzo, A.; Barion, G.; Visioli, G.; Giannelli, G.; Vamerali, T. Comparing soil vs. foliar nitrogen supply of the whole fertilizer dose in common wheat. Agronomy 2021, 11, 2138. [Google Scholar] [CrossRef]
- Castro, S.A.Q.d.; Kichey, T.; Persson, D.P.; Schjoerring, J.K. Leaf Scorching following Foliar Fertilization of Wheat with Urea or Urea–Ammonium Nitrate Is Caused by Ammonium Toxicity. Agronomy 2022, 12, 1405. [Google Scholar] [CrossRef]
- Dass, A.; Rajanna, G.A.; Babu, S.; Lal, S.K.; Choudhary, A.K.; Singh, R.; Rathore, S.S.; Kaur, R.; Dhar, S.; Singh, T. Foliar application of macro-and micronutrients improves the productivity, economic returns, and resource-use efficiency of soybean in a semiarid climate. Sustainability 2022, 14, 5825. [Google Scholar] [CrossRef]
- Li, H.; Testerink, C.; Zhang, Y. How roots and shoots communicate through stressful times. Trends Plant Sci. 2021, 26, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Peng, Y.; Xu, W. Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. Int. J. Mol. Sci. 2022, 23, 9310. [Google Scholar] [CrossRef] [PubMed]
- Amanullah, M.I.; Nabi, H.; Khalid, S.; Ahmad, M.; Muhammad, A.; Ullah, S.; Ali, I.; Fahad, S.; Adnan, M.; Elshikh, S.; et al. Integrated foliar nutrients application improve wheat (Triticum Aestivum L.) productivity under calcareous soils in drylands. Commun. Soil Sci. Plant Anal. 2021, 52, 2748–2766. [Google Scholar] [CrossRef]
- Mandre, B.K.; Singh, R.; Dubey, M.; Waskle, U.; Birla, V. Effect of foliar application of nutrients on growth and yield attributing characters of black gram. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 419–428. [Google Scholar] [CrossRef]
- Mahmoodi, B.; Moballeghi, M.; Eftekhari, A.; Neshaie-Mogadam, M. Effects of foliar application of liquid fertilizer on agronomical and physiological traits of rice (Oryza sativa L.). Acta Agrobot. 2020, 73, 7332. [Google Scholar] [CrossRef]
- Lv, X.; Ding, Y.; Long, M.; Liang, W.; Gu, X.; Liu, Y.; Wen, X. Effect of foliar application of various nitrogen forms on starch accumulation and grain filling of wheat (Triticum aestivum L.) under drought stress. Front. Plant Sci. 2021, 12, 645379. [Google Scholar] [CrossRef]
- Wang, S.; Sun, N.; Yang, S.; Tian, X.; Liu, Q. The effectiveness of foliar applications of different zinc source and urea to increase grain zinc of wheat grown under reduced soil nitrogen supply. J. Plant Nutr. 2021, 44, 644–659. [Google Scholar] [CrossRef]
- Deswal, J.; Pandurangam, V. Morpho-physiological and biochemical studies on foliar application of zinc, iron and boron in maize (Zea mays L.). J. Pharmacogn. Phytochem. 2018, 7, 3515–3518. [Google Scholar]
- Farooq, M.; Ullah, A.; Rehman, A.; Nawaz, A.; Nadeem, A.; Wakeel, A.; Nadeem, F.; Siddique, K.H. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Res. 2018, 216, 53–62. [Google Scholar] [CrossRef]
- Hussain, S.; Rao, M.J.; Anjum, M.A.; Ejaz, S.; Zakir, I.; Ali, M.A.; Ahmad, N.; Ahmad, S. Oxidative stress and antioxidant defense in plants under drought conditions. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Hasanuzzaman, M., Hakim, K., Nahar, K., Alharby, H.F., Eds.; Springer: Cham, Switzerland, 2019; pp. 207–219. [Google Scholar]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species generation, hazards, and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. In Handbook of Plant and Crop Physiology, 4th ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 617–658. [Google Scholar]
- Naikwade, P.V. Plant responses to drought stress: Morphological, physiological, molecular approaches, and drought resistance. In Plant Metabolites under Environmental Stress: Mechanisms, Responses, and Adaptation Strategies; Desai, N.M., Patil, M., Pawar, U.R., Eds.; Apple Academic Press: New York, NY, USA, 2023; Volume 1, pp. 149–183. [Google Scholar]
- Vries, F.T.; Brown, C.; Stevens, C.J. Grassland species root response to drought: Consequences for soil carbon and nitrogen availability. Plant Soil. 2016, 409, 297–312. [Google Scholar] [CrossRef]
- Saud, S.; Fahad, S.; Yajun, C.; Ihsan, M.Z.; Hammad, H.M.; Nasim, W.; Amanullah, J.; Arif, M.; Alharby, H. Effects of Nitrogen Supply on Water Stress and Recovery Mechanisms in Kentucky Bluegrass Plants. Front. Plant Sci. 2017, 8, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tariq, A.; Pan, K.; Olatunji, O.A.; Graciano, C.; Li, Z.; Sun, F.; Zhang, L.; Wu, X.; Chen, W.; Song, D.; et al. Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential. Sci. Rep. 2018, 8, 5644. [Google Scholar] [CrossRef] [PubMed]
- Bechtaoui, N.; Rabiu, M.K.; Raklami, A.; Oufdou, K.; Hafidi, M.; Jemo, M. Phosphate-dependent regulation of growth and stresses management in plants. Front. Plant Sci. 2021, 12, 679916. [Google Scholar] [CrossRef]
- Aksu, G.; Altay, H. The effects of potassium applications on drought stress in sugar beet. Sugar Technol. 2020, 22, 1092–1102. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Arshad, M.; Meraj, T.A.; Hefft, D.I.; Jan, B.L.; Ahmad, P. The impact of calcium, potassium, and boron application on the growth and yield characteristics of durum wheat under drought conditions. Agronomy 2022, 12, 1917. [Google Scholar] [CrossRef]
- Mostofa, M.G.; Rahman, M.M.; Ghosh, T.K.; Kabir, A.H.; Abdelrahman, M.; Khan, M.A.R.; Mochida, K.; Tran, L.S.P. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol. Biochem. 2022, 186, 279–289. [Google Scholar] [CrossRef]
- Parveen, A.; Ashraf, M.A.; Hussain, I.; Perveen, S.; Rasheed, R.; Mahmood, Q.; Hussain, S.; Ditta, A.; Hashem, A.; Al-Arjani, A.F.; et al. Promotion of growth and physiological characteristics in water-stressed Triticum aestivum in relation to foliar-application of salicylic acid. Water 2021, 13, 1316. [Google Scholar] [CrossRef]
- Maruri-López, I.; Aviles-Baltazar, N.Y.; Buchala, A.; Serrano, M. Intra and extracellular journey of the phytohormone salicylic acid. Front. Plant Sci. 2019, 10, 423. [Google Scholar] [CrossRef] [Green Version]
- Kimbembe, R.E.R.; Li, G.; Fu, G.; Feng, B.; Fu, W.; Tao, L.; Chen, T. Proteomic analysis of salicylic acid regulation of grain filling of two near-isogenic rice (Oryza sativa L.) under soil drying condition. Plant Physiol. Biochem. 2020, 151, 659–672. [Google Scholar] [CrossRef]
- Liu, X.; Meng, F.X.; Zhang, S.Q.; Lou, C.H. Ca2+ is involved in the signal transduction during stomatal movement induced by salicylic acid in Viciafaba. Physiol. Mol. Biol. Plants. 2003, 1, 59–64. [Google Scholar]
- Bagautdinova, Z.Z.; Omelyanchuk, N.; Tyapkin, A.V.; Kovrizhnykh, V.V.; Lavrekha, V.V.; Zemlyanskaya, E.V. Salicylic acid in root growth and development. Int. J. Mol. Sci. 2022, 23, 2228. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.; El-Hendawy, S.; Mohammed, N.; Alsamin, B.; Refay, Y. Appropriate application methods for salicylic acid and plant nutrients combinations to promote morpho-physiological traits, production, and water use efficiency of wheat under normal and deficit irrigation in an arid climate. Plants 2023, 12, 1368. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
Source of Variation | PH | TN | GLN | LAI | SFW | SDW | |
---|---|---|---|---|---|---|---|
Season (S) | |||||||
First season | 77.11 a | 4.17 a | 4.89 a | 1.76 a | 15.05 a | 7.39 a | |
Second season | 74.04 a | 4.11 a | 4.34 a | 1.39 b | 14.77 a | 6.81 a | |
Irrigation treatment (IR) | |||||||
Normal irrigation | 80.16 a | 4.85 a | 5.86 a | 2.07 a | 17.70 a | 8.32 a | |
Limited irrigation | 70.99 b | 3.46 b | 3.37 b | 1.08 b | 12.12 b | 5.89 b | |
Co-application treatments (Co-A) | |||||||
Control | 73.69 c | 3.78 c | 3.86 d | 1.35 e | 13.36 d | 6.27 d | |
FSA + Mic | 75.97 ab | 4.25 ab | 4.90 ab | 1.65 bc | 15.69 ab | 7.44 b | |
FSA + Mac | 76.56 a | 4.08 b | 4.86 b | 1.61 c | 15.37 b | 7.21 b | |
SSA+ FMic | 75.94 ab | 4.20 ab | 4.31 c | 1.47 d | 14.17 c | 6.82 c | |
SSA+ FSA + Mic | 77.03 a | 4.39 a | 5.06 a | 1.74 a | 15.95 a | 7.80 a | |
SSA + Mic + FSA | 76.03 a | 4.22 ab | 4.87 b | 1.68 ab | 15.79 ab | 7.35 b | |
SSA + Mic + FMac + Mic | 73.81 bc | 4.17 ab | 4.44 c | 1.52 d | 14.04 c | 6.82 c | |
ANOVA | df | ||||||
S | 1 | 0.059 ns | 0.663 ns | 0.143 ns | 0.001 ** | 0.286 ns | 0.082 ns |
IR | 1 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
IR × S | 1 | 0.103 ns | 0.581 ns | 0.004 ** | <0.001 *** | 0.256 ns | 0.330 ns |
Co-A | 6 | 0.015 * | 0.009 ** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Co-A × S | 6 | 0.120 ns | 0.677 ns | 0.969 ns | <0.001 *** | 0.585 ns | 0.261 ns |
Co-A × IR | 6 | 0.367 ns | 0.626 ns | 0.003 ** | 0.008 ** | 0.002 ** | 0.002 ** |
Co-A × IR × S | 6 | 0.779 ns | 0.782 ns | 0.042 * | 0.098 ns | 0.071 ns | 0.225 ns |
Source of Variation | RWC | Chl-a | Chl-b | Chlt | |
---|---|---|---|---|---|
Season (S) | |||||
First season | 69.57 b | 1.58 b | 0.76 b | 2.37 b | |
Second season | 75.05 a | 1.76 a | 0.97 a | 2.76 a | |
Irrigation treatment (IR) | |||||
Normal irrigation | 81.15 a | 2.07 a | 1.08 a | 3.19 a | |
Limited irrigation | 63.48 b | 1.27 b | 0.65 b | 1.94 b | |
Co-application treatments (Co-A) | |||||
Control | 67.57 d | 1.35 d | 0.71 d | 2.09 d | |
FSA + Mic | 75.03 a | 1.78 ab | 0.90 b | 2.71 b | |
FSA + Mac | 72.96 b | 1.77 b | 0.94 ab | 2.74 ab | |
SSA+ FMic | 70.08 c | 1.58 c | 0.80 c | 2.41 c | |
SSA+ FSA + Mic | 75.51 a | 1.84 a | 0.97 a | 2.82 a | |
SSA + Mic + FSA | 74.10 ab | 1.78 ab | 0.92 b | 2.73 b | |
SSA + Mic + FMac + Mic | 70.96 c | 1.62 c | 0.82 c | 2.45 c | |
ANOVA | df | ||||
S | 1 | 0.009 ** | 0.004 ** | 0.008 ** | 0.005 ** |
IR | 1 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
IR × S | 1 | 0.002 ** | <0.001 *** | <0.001 *** | <0.001 *** |
Co-A | 6 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Co-A × S | 6 | 0.260 ns | <0.001 *** | <0.001 *** | <0.001 *** |
Co-A × IR | 6 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Co-A × IR × S | 6 | 0.758 ns | 0.321 ns | 0.022 * | 0.248 ns |
Source of Variation | SL | GWS | GNS | TGW | GY | BY | HI | WP | |
---|---|---|---|---|---|---|---|---|---|
Season (s) | |||||||||
First season | 8.27 a | 1.51 a | 42.74 a | 34.76 a | 5.18 a | 14.69 a | 34.60 a | 10.94 a | |
Second season | 8.35 a | 1.57 a | 43.65 a | 35.55 a | 5.10 a | 14.82 a | 33.83 a | 10.70 a | |
Irrigation treatment (IR) | |||||||||
Normal irrigation | 9.05 a | 1.91 a | 49.03 a | 39.00 a | 6.52 a | 17.42 a | 37.43 a | 10.05 b | |
Limited irrigation | 7.57 b | 1.17 b | 37.35 b | 31.30 b | 3.76 b | 12.09 b | 31.00 b | 11.59 a | |
Co-application treatments (Co-A) | |||||||||
Control | 8.22 ns | 1.35 d | 40.65 e | 32.25 d | 4.44 d | 13.46 d | 31.99 d | 9.05 e | |
FSA + Mic | 8.30 ns | 1.60 b | 43.66 bc | 36.18 a | 5.40 b | 15.41 ab | 34.52 abc | 11.43 b | |
FSA + Mac | 8.32 ns | 1.56 b | 43.83 bc | 35.05 b | 5.26 b | 14.99 b | 34.43 bc | 10.97 c | |
SSA+ FMic | 8.18 ns | 1.47 c | 41.60 de | 34.74 bc | 4.93 c | 14.23 c | 33.97 c | 10.31 d | |
SSA+ FSA + Mic | 8.46 ns | 1.70 a | 45.55 a | 36.91 a | 5.66 a | 15.83 a | 35.31 a | 12.06 a | |
SSA + Mic + FSA | 8.30 ns | 1.66 a | 44.58 ab | 36.92 a | 5.36 b | 15.10 b | 35.15 ab | 11.55 b | |
SSA + Mic + FMac + Mic | 8.38 ns | 1.47 c | 42.47 cd | 34.02 c | 4.94 c | 14.28 c | 34.14 c | 10.38 d | |
ANOVA | df | ||||||||
S | 1 | 0.107 ns | 0.101 ns | 0.058 ns | 0.063 ns | 0.430 ns | 0.479 ns | 0.056 ns | 0.272 ns |
IR | 1 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
IR × S | 1 | 0.112 ns | 0.119 ns | 0.732 ns | <0.001 *** | 0.288 ns | 0.115 ns | 0.072 ns | 0.127 ns |
Co-A | 6 | 0.637 ns | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Co-A × S | 6 | 0.741 ns | 0.601 ns | 0.507 ns | 0.100 ns | 0.170 ns | 0.245 ns | 0.136 ns | 0.135 ns |
Co-A × IR | 6 | 0.715 ns | <0.001 *** | 0.005 ** | <0.001 *** | <0.001 *** | 0.001 ** | <0.001 *** | <0.001 *** |
Co-A × IR × S | 6 | 0.813 ns | 0.058 ns | 0.899 ns | 0.001** | 0.740 ns | 0.105 ns | 0.058 ns | 0.542 ns |
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH (1) | 0.34 ns | 0.32 ns | 0.28 ns | 0.39 ns | 0.36 ns | 0.45 ns | 0.23 ns | 0.42 ns | 0.33 ns | −0.48 ns | 0.48 ns | 0.29 ns | 0.60 ns | 0.45 ns | 0.27 ns | 0.53 ns | 0.45 ns | |
TN (2) | 0.65 ns | 0.47 ns | 0.55 ns | 0.56 ns | 0.58 ns | 0.59 ns | 0.52 ns | 0.49 ns | 0.45 ns | 0.39 ns | 0.49 ns | 0.51 ns | 0.55 ns | 0.42 ns | 0.50 ns | 0.52 ns | 0.42 ns | |
GLN (3) | 0.84 * | 0.65 ns | 0.97 *** | 0.93 ** | 0.94 ** | 0.86 * | 0.98 *** | 0.88 ** | 0.98 *** | 0.21 ns | 0.92 ** | 0.82 * | 0.85 * | 0.95 ** | 0.91 ** | 0.64 ns | 0.95 ** | |
LAI (4) | 0.78 * | 0.68 ns | 0.97 *** | 0.93 ** | 0.96 *** | 0.92 ** | 0.98 *** | 0.81 * | 0.96 *** | 0.26 ns | 0.93 ** | 0.81 * | 0.88 ** | 0.93 ** | 0.91 ** | 0.59 ns | 0.93 ** | |
SFW (5) | 0.79 * | 0.80 * | 0.97 *** | 0.95 ** | 0.90 ** | 0.90 ** | 0.91 ** | 0.94 ** | 0.96 *** | 0.21 ns | 0.98 *** | 0.91 ** | 0.86 * | 0.94 ** | 0.89 ** | 0.56 ns | 0.94 ** | |
SDW (6) | 0.84 * | 0.73 ns | 0.99 *** | 0.98 *** | 0.97 *** | 0.95 ** | 0.92 ** | 0.81 * | 0.91 ** | 0.22 ns | 0.91 ** | 0.84 * | 0.81 * | 0.98 *** | 0.98 *** | 0.66 ns | 0.98 *** | |
RWC (7) | 0.86 * | 0.76 * | 0.99 *** | 0.94 ** | 0.96 *** | 0.97 *** | 0.84 * | 0.73 ns | 0.84 * | 0.04 ns | 0.91 ** | 0.76 * | 0.89 ** | 0.92 ** | 0.89 ** | 0.60 ns | 0.92 ** | |
Ch a (8) | 0.91 ** | 0.87 * | 0.95 ** | 0.90 ** | 0.95 ** | 0.94 ** | 0.96 *** | 0.85 * | 0.98 *** | 0.33 ns | 0.91 ** | 0.82 * | 0.84 * | 0.91 ** | 0.88 ** | 0.69 ns | 0.91 ** | |
Ch b (9) | 0.92 ** | 0.79 * | 0.97 *** | 0.93 ** | 0.94 ** | 0.96 *** | 0.98 *** | 0.99 *** | 0.94 * | 0.29 ns | 0.92 ** | 0.93 ** | 0.72 ns | 0.89 ** | 0.83 * | 0.66 ns | 0.89 ** | |
Cht (10) | 0.92 ** | 0.84 * | 0.96 *** | 0.91 ** | 0.95 ** | 0.95 ** | 0.97 *** | 1.00 *** | 0.99 *** | 0.30 ns | 0.96 *** | 0.89 ** | 0.84 * | 0.94 ** | 0.89 ** | 0.65 ns | 0.94 ** | |
SL (11) | 0.81 * | 0.77 * | 0.88 ** | 0.76 * | 0.82 * | 0.85 * | 0.89 ** | 0.89 ** | 0.88 ** | 0.89 ** | 0.26 ns | 0.51 ns | −0.08 ns | 0.19 ns | 0.31 ns | −0.21 ns | 0.19 ns | |
GWS (12) | 0.79 * | 0.77 * | 0.98 *** | 0.99 *** | 0.98 *** | 0.98 *** | 0.96 *** | 0.94 ** | 0.95 ** | 0.95 ** | 0.80* | 0.92 ** | 0.89 ** | 0.94 ** | 0.88 ** | 0.60 ns | 0.94 ** | |
NGPS (13) | 0.79 * | 0.72 ns | 0.98 *** | 0.99 *** | 0.96 *** | 0.97 *** | 0.97 *** | 0.93 ** | 0.96 *** | 0.94 ** | 0.79 * | 0.99 *** | 0.64 ns | 0.89 ** | 0.89 ** | 0.59 ns | 0.89 ** | |
TGW (14) | 0.79 * | 0.83 * | 0.97 *** | 0.97 *** | 0.98 *** | 0.98 *** | 0.94 ** | 0.95 ** | 0.95 ** | 0.95 ** | 0.81 * | 0.99 *** | 0.96 *** | 0.81 * | 0.69 ns | 0.59 ns | 0.81 * | |
GY (15) | 0.81 * | 0.81 * | 0.99 *** | 0.98 *** | 0.97 *** | 0.98 *** | 0.98 *** | 0.96 *** | 0.97 *** | 0.96 *** | 0.85 * | 0.99 *** | 0.99 *** | 0.99 *** | 0.97 *** | 0.64 ns | 1.00 *** | |
BY (16) | 0.77 * | 0.76 * | 0.99 *** | 0.97 *** | 0.99 *** | 0.98 *** | 0.96 *** | 0.93 ** | 0.93 ** | 0.93 ** | 0.84 * | 0.98 *** | 0.96 *** | 0.98 *** | 0.98 *** | 0.56 ns | 0.97 *** | |
HI (17) | 0.79 * | 0.82 * | 0.89 ** | 0.88 ** | 0.84 * | 0.88 ** | 0.91 ** | 0.92 ** | 0.94 ** | 0.93 ** | 0.80 * | 0.91 ** | 0.92 ** | 0.90* * | 0.93 ** | 0.84 * | 0.64 ns | |
WP (18) | 0.81 * | 0.81 * | 0.99 *** | 0.98 *** | 0.97 *** | 0.98 *** | 0.98 *** | 0.96 *** | 0.97 *** | 0.96 *** | 0.85 * | 0.99 ** | 0.99 *** | 0.99 *** | 1.00 *** | 0.98 *** | 0.93 ** |
Co-Application Treatments (Co-A) | Cost of Cultivation (USD ha−1) | Increase Yield (ton ha−1) | Monetary Efficiency (USD ha−1) | ||||
---|---|---|---|---|---|---|---|
Soil Fertilizer Cost | Foliar Fertilizer Cost | Foliar Machine Cost | Total Coats | Revenue (USD ha−1) | Profit (USD ha−1) | ||
Normal Irrigation | |||||||
Control | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
FSA + Mic | 0.00 | 41.23 | 100 | 141.23 | 0.775 | 245.57 | 104.34 |
FSA + Mac | 0.00 | 49.00 | 100 | 149.00 | 0.815 | 258.24 | 109.24 |
SSA + FMic | 60.00 | 36.81 | 100 | 196.81 | 0.328 | 103.93 | −92.88 |
SSA + FSA + Mic | 60.00 | 49.00 | 100 | 209.00 | 0.927 | 293.73 | 84.73 |
SSA + Mic + FSA | 165.3 | 4.24 | 100 | 269.54 | 0.459 | 145.44 | −124.10 |
SSA + Mic + FMac + Mic | 165.3 | 81.40 | 100 | 346.70 | 0.292 | 92.52 | −254.18 |
Limited Irrigation | |||||||
Control | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
FSA + Mic | 0.00 | 41.23 | 100 | 141.23 | 1.165 | 369.14 | 227.91 |
FSA + Mac | 0.00 | 49.00 | 100 | 149.00 | 0.837 | 265.21 | 116.21 |
SSA + FMic | 60.00 | 36.81 | 100 | 196.81 | 0.652 | 206.59 | 9.78 |
SSA + FSA + Mic | 60.00 | 49.00 | 100 | 209.00 | 1.468 | 465.15 | 256.15 |
SSA + Mic + FSA | 165.3 | 4.24 | 100 | 269.54 | 1.387 | 439.48 | 169.94 |
SSA + Mic + FMac + Mic | 165.3 | 81.40 | 100 | 346.70 | 0.720 | 228.14 | −118.56 |
Physicochemical Properties | Season 1 | Season 2 |
---|---|---|
pH (soil paste 1:5) | 7.86 | 7.83 |
Electrical conductivity (dS m−1) | 3.60 | 3.67 |
Organic matter (%) | 0.48 | 0.46 |
CaCO3 (%) | 29.01 | 29.42 |
Nitrogen (%) | 0.12 | 0.09 |
Phosphorus (mg kg−1) | 9.4 | 11.70 |
Potassium (mg kg−1) | 186.9 | 167.1 |
Manganese (mg kg−1) | 4.83 | 5.24 |
Zinc (mg kg−1) | 1.01 | 1.13 |
Water-holding capacity (%) | 18.69 | 18.42 |
Permanent wilting point (%) | 7.28 | 7.14 |
Sand (%) | 57.92 | 56.70 |
Silt (%) | 28.40 | 29.26 |
Clay (%) | 13.68 | 14.04 |
Soil texture | Sandy loam | Sandy loam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, M.; El-Hendawy, S.; Mohammed, N.; Alsamin, B.; Al-Suhaibani, N.; Refay, Y. Effects of Salicylic Acid and Macro- and Micronutrients through Foliar and Soil Applications on the Agronomic Performance, Physiological Attributes, and Water Productivity of Wheat under Normal and Limited Irrigation in Dry Climatic Conditions. Plants 2023, 12, 2389. https://doi.org/10.3390/plants12122389
Alotaibi M, El-Hendawy S, Mohammed N, Alsamin B, Al-Suhaibani N, Refay Y. Effects of Salicylic Acid and Macro- and Micronutrients through Foliar and Soil Applications on the Agronomic Performance, Physiological Attributes, and Water Productivity of Wheat under Normal and Limited Irrigation in Dry Climatic Conditions. Plants. 2023; 12(12):2389. https://doi.org/10.3390/plants12122389
Chicago/Turabian StyleAlotaibi, Majed, Salah El-Hendawy, Nabil Mohammed, Bazel Alsamin, Nasser Al-Suhaibani, and Yahya Refay. 2023. "Effects of Salicylic Acid and Macro- and Micronutrients through Foliar and Soil Applications on the Agronomic Performance, Physiological Attributes, and Water Productivity of Wheat under Normal and Limited Irrigation in Dry Climatic Conditions" Plants 12, no. 12: 2389. https://doi.org/10.3390/plants12122389
APA StyleAlotaibi, M., El-Hendawy, S., Mohammed, N., Alsamin, B., Al-Suhaibani, N., & Refay, Y. (2023). Effects of Salicylic Acid and Macro- and Micronutrients through Foliar and Soil Applications on the Agronomic Performance, Physiological Attributes, and Water Productivity of Wheat under Normal and Limited Irrigation in Dry Climatic Conditions. Plants, 12(12), 2389. https://doi.org/10.3390/plants12122389